Pretreatment by recyclable Fe3O4@Mg/Al-CO3-LDH magnetic nano-adsorbent to dephosphorize for the determination of trace F– and Cl– in phosphorus-rich solutions

Si Chen, Yongchun Xu, Yu Tang, Wei Chen, Shubin Chen, Lili Hu, Georges Boulon

To cite this version:
Si Chen, Yongchun Xu, Yu Tang, Wei Chen, Shubin Chen, et al.. Pretreatment by recyclable Fe3O4@Mg/Al-CO3-LDH magnetic nano-adsorbent to dephosphorize for the determination of trace F– and Cl– in phosphorus-rich solutions. RSC Advances, 2020, 10 (72), pp.44361-44372. 10.1039/D0RA07761E. hal-03093623

HAL Id: hal-03093623
https://hal.science/hal-03093623
Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Pretreatment by recyclable $\text{Fe}_3\text{O}_4@\text{Mg/Al-CO}_3$-LDH magnetic nano-adsorbent to dephosphorize for the determination of trace F^- and Cl^- in phosphorus-rich solutions

Si Chen,ab Yongchun Xu,ab Yu Tang,ab Wei Chen,d* Shubin Chen,ab Lili Huab and Georges Boulonbc

The magnetic nano-adsorbent $\text{Fe}_3\text{O}_4@\text{Mg/Al-CO}_3$-LDH (Mg/Al-type layered double hydroxide) with a CO_3^{2-} interlayer anion has been synthesized successfully on Fe_3O_4 nanoparticles via a urea hydrothermal method. It is confirmed that the nano-adsorbent can adsorb PO_4^{3-} rapidly and efficiently in multi-ion solutions; meanwhile, it did not adsorb any F^- and Cl^-, even with a high amount of the nano-adsorbent or a longer adsorption time. This behaviour is beneficial for applications to remove PO_4^{3-} in phosphorus-rich solutions, and especially can be utilized to determine trace F^- and Cl^- anions in phosphorus-rich solutions by physical and chemical analysis methods including ion chromatography without serious interference from PO_4^{3-} for trace determinations. Herein, the hydrothermally synthesized $\text{Fe}_3\text{O}_4@\text{Mg/Al-CO}_3$-LDH was characterized via SEM, TEM, SAED, XRD, FTIR, magnetic hysteresis loop analysis and adsorption–desorption isotherm analysis. The structure and stability, adsorption mechanism, magnetic saturation value, specific surface area, total pore volume, phosphate adsorption capacity and recyclability are discussed. Using the optimized pretreatment conditions, $\text{Fe}_3\text{O}_4@\text{Mg/Al-CO}_3$-LDH was utilized successfully to adsorb PO_4^{3-} in real samples and determine trace F^- and Cl^- accurately by ion chromatography; this would be very beneficial for continuous analysis and on-line tests by physical and chemical analysis methods without interference from PO_4^{3-} in phosphorus-rich samples, leaving F^- and Cl^- even if in a trace content.

1 Introduction

Currently, phosphate materials or its hybrid materials, presented as crystal, glass or ceramics, are widely applied in numerous fields such as optics and electronics, as well as medical biomaterials for applications in bone grafting and regeneration, drug delivery, etc. However, in the determination of target ions in solutions containing these materials, the matrix phosphate anion PO_4^{3-} seriously interferes in determinations by methods such as spectrophotometry, neutron activation, molecular absorption spectrometry, graphite furnace, electrothermal atomic absorption spectrometry, and inductively coupled plasma mass spectrometry. To determine anion impurities, the commonly used chromatography method will be affected seriously by interference from the phosphate anion. The signal from a high concentration PO_4^{3-} will cover the peak or deform the peak shape of the target anion. Furthermore, it will make the analytical column overloaded, which will shorten the service life of the column. Once the analytical column is overloaded, a ghost peak will appear, or the next injection may not even be allowed. Although solutions with a high concentration of PO_4^{3-} can be diluted greatly, this also reduces the content of the target anion, leading to a content much lower than the detection limit. After fully rinsing the loops of the chromatographs for several runs using deionized water, a certain amount of PO_4^{3-} as carryover resulting from the previous injection may still be observed even if a blank sample is used. Therefore, an appropriate sample pretreatment to dephosphorize solutions with a high PO_4^{3-} content is particularly important.

A further issue is specifically related to the determination of trace F^- and Cl^- anions in phosphorus-rich solutions. If F^- anions from the raw materials and products of the phosphate industry such as from phosphate ore, phosphate fertilizer, phosphogypsum enter the biological chain continuously during manufacturing processes, storage and utilization, the bio-accumulated F^- will pose a serious threat to human life. Thus, it is necessary to monitor trace F^- and Cl^- anions in phosphorus-rich solutions.
rich raw materials and final products. Moreover, hydroxyapatite is a particularly promising bone-grafting material for dental and orthopaedic applications. The addition of trace F− can construct a microenvironment favouring bone healing and bone regeneration, but its trace amount must be strictly controlled to avoid cell death or necrosis. Thus, all the above-mentioned factors make the accurate determination of trace F− and Cl− in phosphorus-rich solutions necessary, with the aim to fully keep F− and Cl− and adsorb PO4^{3−} as much as possible during the pretreatment, which should be developed.

Layered double hydroxides (LDHs) are two-dimensional nanostructured anionic clays, with the general formula of [M1−xMx]^{2+}\((\text{OH})_2\)\((\text{NO}_3)_{2x}\)\[A_{y−x}/\text{H}_2\text{O}\]−, where M is a metal cation and A is the interlayer anion with n-valence. Strong chemical bonds exist within the layer of [M1−xMx]^{2+}\((\text{OH})_2\)\(x\), but the bonds between the interlayer anion of [A_{y−x}/\text{H}_2\text{O}]− and the layer of [M1−xMx]^{2+}\((\text{OH})_2\)\(x\) are relatively weak. This makes LDHs promising ion-exchangers for applications to adsorb the PO4^{3−}.

To efficiently adsorb PO4^{3−}, the interlayer anion choice will play a key role. Based on LDHs, there are some good options to use the Cl− anion, but their adsorption efficiencies are inevitably affected by carbon dioxide (CO2) or carbonate (CO3^{2−}) from the preparation process of the LDH, the solution environment and even the atmosphere.

Employing CO3^{2−} as the interlayer anion, Zn–Al-LDH, Zr-modified Mg-Fe-LDH(CO3), Fe2O3@Mg-Al-LDH, Mg–Fe LDH and Fe2O3@gelatin-encapsulated hydroxalite were prepared to adsorb PO4^{3−} successfully by a co-precipitation method. By comparison, the hydrothermal method is a better way to prepare LDH with the CO3^{2−} interlayer anion using urea, which can well control the size and crystallinity of the prepared nanoparticle. In the investigations for the preparation of LDH with CO3^{2−} via the urea hydrolysis method, only two LDHs have been used as a phosphate adsorbent. Cu–Al LDH (CuAl/biomass carbon fibre-layered double hydroxide) was synthesized at 110 °C for 12 h, and Zn–Al LDHs were synthesized at 150 °C for 36 h.

Herein, an Mg-Al LDH was hydrothermally synthesized with Mg(NO3)2, Al(NO3)3, and urea, using CO3^{2−} as the interlayer anion. To utilize magnetic solid phase extraction (MSPE), which can achieve the purpose of phosphate adsorption and its rapid separation, Fe3O4 magnetic nanoparticles were introduced into the Mg–Al LDH nano-adsorbent during the hydrothermal synthetic process. Using the prepared Fe3O4@Mg-Al-CO3-LDH magnetic nano-adsorbent, adsorption-determination and recycle procedures were conducted, as described in Section 2.3. As described in Section 3.1, its structural properties were characterized via SEM, TEM, FTIR, and XRD, and its magnetic property, specific surface area, and porosity were also analysed. After optimizing the pretreatment conditions, as discussed in Section 3.2, the stability and recyclability after 15 cycles with high adsorption capacity is shown in Section 3.3. More importantly, it was found that the hydrothermally synthesized Fe3O4@Mg-Al-CO3-LDH magnetic nano-adsorbent only adsorbed PO4^{3−}, not F− and Cl− in solution. This is undoubtedly beneficial to accurately determine the content of F− and Cl− in phosphate solutions by chromatography, and the practical applications are introduced in Section 4.
K using an ASAP 2460 Accelerated Surface Area and Porosimeter System (Micromeritics).

The contents of F^-, Cl^-, and PO_4^{3-} were determined using an ICS 5000+ ion chromatograph (Thermo Fisher) with a 25 µL sample loop and a conductivity detector. An IonPac® AS18 (250 mm × 4.0 mm i.d.) was applied as the anion exchange analytical column, which was protected by the guard column of IonPac® AG18 (50 mm × 4.0 mm i.d.). The temperature of the column compartment was set to 30 °C. For the eluent of NaOH solution, the flow rate through the anion exchange analytical column was 1.00 mL min$^{-1}$, and its concentration was automatically adjusted by an electrolytic eluent generator. When the test time was set to 35 min, the eluent concentration would be 25 mmol (0–13 min), 40 mmol (13–30 min), and 25 mmol (30–35 min). Manual injection was done in the operation.

2.3 Adsorption–determination and recycle procedures

The two main procedures are exhibited in Fig. 1 to adsorb PO_4^{3-} in a solution of Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH for the determination of F^- and Cl^-, and to recycle and reuse Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH. Specifically, 50 mg of the synthesized magnetic nano-adsorbent was added to 80 mL of sample solution. They were mixed in a beaker by a vortex mixer for 5 min. After the adsorbent was isolated from the suspension with a magnet, the residual solution was filtered using a 0.22 µm membrane. It was bubbled with N_2 for 30 s to remove CO$_3^{2-}$, and then passed through an OnGuard II H column to remove the metal cations. At this time, the residual solution after adsorption on the Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH nanoparticles could be introduced into the ion chromatograph to determine F^- and Cl^-.

For the recycle procedure, the used Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH was collected and placed in 15 mL desorption solution, 5 wt% NaOH and 10 wt% Na$_2$CO$_3$ (AR grade), and further mixed using a vortex mixer for 30 min. With the aid of a magnet, the Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH nanoparticles were washed with deionized water and ethanol three times. This was followed by drying in an oven at 60 °C for 12 h, and then Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH was regenerated for use for a new cycle adsorption. It should be noted that NaOH in the desorption solution will not affect the stability of Mg/Al-CO$_3$-LDH since it was synthesized in an environment of NaOH, as indicated in Section 2.1.

![Fig. 1 Schematic illustration of the synthesis, adsorption, determination and recycle processes.](image-url)
To evaluate the recyclability of the magnetic adsorbent, the phosphate adsorption capacity per unit mass of Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH was measured for each cycle. Briefly, 50 mg of the magnetic adsorbent was added to 80 mL mixed solution with 1.00 mg L$^{-1}$ F$^-$, 1.00 mg L$^{-1}$ Cl$^-$ and C$_{0}$ = 100 mg P per L PO$_4^{3-}$ (based on P). Then, it was processed by 60 min mixing/adsorption, magnetic solid phase extraction–separation, filtering, bubbling, cation removal and chromatographic determination, as stated above. After determining the remaining phosphate concentration, C_e, which is also the equilibrium PO$_4^{3-}$ concentration in the solution, the adsorption capacity, Q_e, of PO$_4^{3-}$ was calculated by $Q_e = [(C_0 - C_e)V]/m$, where V is the solution volume in L and m is the dry weight of the nano-adsorbent in g.

3 Results and discussion

3.1 Characterization of Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH

Fig. 2 shows the electron microscopy analysis of Fe$_3$O$_4$ and the synthesized Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH magnetic nanoparticles. Both the SEM and bright-field TEM images show that Fe$_3$O$_4$ is an octahedral nanoparticle with clear edges and smooth surface, and its size is about 120 nm, as shown in Fig. 2(a) and (b). On the surface of Fe$_3$O$_4$, Mg/Al-CO$_3$-LDH was synthesized via the urea hydrothermal method. The shape of these irregular Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH nanoparticles is not like the octahedron of Fe$_3$O$_4$, and on their surface, some protuberances exist, as shown in Fig. 2(c). According to the bright-field TEM image shown in Fig. 2(d), these protuberances also can be observed at the outer boundary of the bright gray region, and the bright gray region surrounding the dark region of Fe$_3$O$_4$ is characterized by a flake-like matrix. This is similar to the morphology of Fe$_3$O$_4$@CuMgAl-LDH nanoparticles. Due to the stacking of many small flakes, the hydrothermally synthesized Mg/Al-CO$_3$-LDH on Fe$_3$O$_4$ nanoparticles appears to consist of an agglomeration of plate-like structures.

Fig. 3(a) shows the high-resolution TEM image of the synthesized Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH, where the bottom-left dark region and the bottom-right bright region were chosen for SAED, as shown in Fig. 3(b) and (c), respectively. The selected area electron diffraction (SAED) for the dark region clearly shows 4.910 Å, 3.193 Å, 2.469 Å and 1.698 Å diffractions, corresponding to the (111), (220), (222) and (422) planes of Fe$_3$O$_4$ (PDF card: #19-0629). Also, the SAED for the bright region shows 1.541 Å and 1.476 Å diffractions, corresponding to the (110) and (113) planes of Mg/Al-LDH (PDF card: #89-0460). Although the diffraction spots for the bright region are somewhat blurred, as shown in Fig. 3(c), the hexagonal diffraction pattern can still be observed, which is the typical diffraction pattern of LDH crystals.

Thus, the above electron microscopic analysis indicates that during the hydrothermal process, Fe$_3$O$_4$ retains its original crystalline state, and Mg/Al-LDH is grown as small crystal plates. Their crystallization is also indicated by the XRD pattern shown in Fig. 4(a) for as-synthesized Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH. The diffraction peaks at the 2θ values of 18.24° (111), 30.08° (220), 35.46° (311), 37.04° (222), 43.12° (400), 53.50° (422), 57.04° (511), and 62.56° (400) correspond to the octahedral Fe$_3$O$_4$ crystal, and the peaks at the 2θ values of 11.54° (003), 23.44° (006), 35.46° (012), 61.02° (110), and 62.56° (113) correspond to the Mg-Al-LDH crystal. More importantly, after 15 cycles of PO$_4^{3-}$-adsorption and regeneration of Fe$_3$O$_4$@Mg/Al-CO$_3$-LDH, as stated in Section 2.3, both the XRD peak positions and intensities remained almost unchanged, as shown in Fig. 4(a) and (b). This indicates that even after 15 cycles, the
Fe3O4@Mg/Al-CO3-LDH magnetic nano-adsorbent can still maintain its structural stability, and thus has important potential for recycling.26

To explore the adsorption and desorption of PO43-, the FTIR spectra of Fe3O4@Mg/Al-CO3-LDH were measured for the as-synthesized, PO43--adsorbed, and regenerated after 15 cycles of PO43--adsorption samples, as shown in Fig. 5(a)-(c), respectively. The Fe-O vibration peak29 appeared at 586 cm-1 before and after adsorption and desorption, showing the stable assembly between Fe3O4 and Mg/Al-CO3-LDH.

As shown in Fig. 5(a), the spectrum of the as-synthesized sample exhibits peaks at 448 cm-1, 681 cm-1, and 788 cm-1, which are attributed to the vibration of Mg-OH,64 Mg-O-Al,31 and Al-OH,66 respectively. The two peaks located at 3445 cm-1 and 1637 cm-1 are related to the stretching and bending modes of the water molecule existing in the interlayer structure, respectively.62 These peaks indicate the successful synthesis of the layered structure Mg/Al-LDH. As the interlayer anion, the vibration of CO32- appears25 at 1362 cm-1 and 1502 cm-1. During the hydrothermal process, urea decomposes at high temperature and produces the CO32- anion,44 which then enters Mg/Al-LDH to form the interlayer anion. Moreover, there is a small peak located at 1385 cm-1, corresponding to the NO3- vibration, but it is rather weak. This is due to the use of nitrate during the synthetic process, where a small amount of NO3- existing in Fe3O4@Mg/Al-CO3-LDH was not replaced by CO32-.

As shown in Fig. 5(b), in the spectrum of the PO43--adsorbed sample, the Fe-O vibration and the stretching and bending modes of the water molecule remained, but the vibrations resulting from Mg--OH, Mg--O-Al, and Al--OH almost disappear. Especially, there is no CO32- vibration at 1502 cm-1, and only a very weak CO32- peak at 1362 cm-1. On the other hand, new peaks at 2484 cm-1, 2401 cm-1, 1088 cm-1, and 901 cm-1 appear, which are due to the vibrations of PO43-.26,29,33,64 These results clearly indicate that the anion exchange28 really occurred for Fe3O4@Mg/Al-CO3-LDH after adsorbing PO43-, which is the process to use PO43- to replace CO32-. It is most probably the first mechanism for the synthesized Fe3O4@Mg/Al-CO3-LDH to adsorb PO43- in solution. Due to the disappearance of the vibrations of Mg--OH and Al--OH, it means that they can be protonated and become positively charged, and thus they can adsorb the negatively charged PO43- due to electrostatic adsorption on the surface of LDH.29 This may be the second mechanism to adsorb PO43- in solution. The disappearance of the vibration of Mg--O-Al may be possibly explained by the fact that, as a ligand anion,29 PO43- can be complexed with the Al3+ cation on the surface of Fe3O4@Mg/Al-CO3-LDH. This ligand exchange may be the third mechanism to adsorb PO43- in solution. The ability to perform these three mechanisms for the synthesized Fe3O4@Mg/Al-CO3-LDH is consistent with the reported PO43--adsorbed LDHs.26,29,11
As shown in Fig. 5(c), in the spectrum of the regenerated sample after 15 cycles of PO₄³⁻-adsorption, the positions and intensities of the FTIR peaks are almost the same as that in Fig. 4(a) of the as-synthesized sample. This means that the desorption was successful, and the regenerated Fe₃O₄@Mg/Al-CO₃-LDH returned to its original state with a strong ability to be recycled. It should be noted that there is still a weaker peak at 1688 cm⁻¹ due to PO₄³⁻, which indicates a small amount of was PO₄³⁻-adsorbed in the Fe₃O₄@Mg/Al-CO₃-LDH after 15 cycles. However, it had no great effect on the phosphate adsorption capacity, as stated in Section 3.3, since most of the interlayer anions were exchanged by CO₃²⁻ during the desorption process.

It was reported³² that for MgAl-LDO calcined at 500 °C for 4 h after its synthesis, the FTIR band of –OH was shifted to a higher frequency from 1644 cm⁻¹ to 1664 cm⁻¹ after F⁻-adsorption, which may be due to the adsorption of F⁻. However, as can be seen in Fig. 5(a)–(c), the band due to OH appears at 1637 cm⁻¹, 1640 cm⁻¹, and 1638 cm⁻¹ for the as-synthesized PO₄³⁻-adsorbed, and regenerated Fe₃O₄@Mg/Al-CO₃-LDH samples, respectively. Thus, the absence of a shift in the OH band means that the synthesized Fe₃O₄@Mg/Al-CO₃-LDH did not adsorb F⁻. This is in good agreement with the determination results by ion chromatography, indicating there was no change for the trace concentrations of F⁻ and Cl⁻ before and after adsorption (see Fig. 8 and 9 in Section 3.2, respectively). According to the literature, phosphate adsorption by some non-LDH adsorbents³⁶–⁷⁹ and some LDH adsorbents³¹–³³,³⁶–³⁷ is greatly affected by F⁻ or Cl⁻ due to their adsorption. For LDHs, considering the bonding strength between the layers and interlayer anions in aqueous solution, the strength of phosphates is generally higher than that of F⁻ and Cl⁻. Since there is a large amount of phosphate in aqueous solution, the adsorption possibility of phosphate is higher than that of F⁻ or Cl⁻. However, it is still inevitable that a small amount of F⁻ and Cl⁻ will be adsorbed.³¹–³³,³⁶–³⁷ although this possibility is small. Thus, to further decrease this possibility, for the synthesized nano-adsorbent of Fe₃O₄@Mg/Al-CO₃-LDH, CO₃²⁻ was employed as the interlayer anion. The bonding strength of CO₃²⁻ is the highest,³³ much greater than that of F⁻ and Cl⁻. During the phosphate adsorption process, a lot of CO₃²⁻ anions will be exchanged in the solution, which will further inhibit the adsorption of trace F⁻ and Cl⁻ anions. Moreover, if some OH⁻ anions exist in solution, the adsorption efficiencies³⁹ will further decline due to the combined effects of increasing competition from the OH⁻ anion and the Coulomb repulsion between the negatively-charged surface of the LDH adsorbent and F⁻ or Cl⁻. If there is insufficient positive charge such as H⁺ on the surface of the LDH adsorbent, and there are enough anions such as CO₃²⁻ and PO₄³⁻, which have a much higher bonding strength than F⁻ and Cl⁻, to strongly compete with F⁻ and Cl⁻ anions, the synthesized magnetic nano-adsorbent Fe₃O₄@Mg/Al-CO₃-LDH should not adsorb F⁻ and Cl⁻ anions.

Fig. 6 shows the magnetic hysteresis loops of Fe₃O₄ and Fe₃O₄@Mg/Al-CO₃-LDH before and after 15 cycles of PO₄³⁻-adsorption. Compared with the magnetic saturation value of 102 emu g⁻¹ for the pure Fe₃O₄ nanoparticles, that for the as-synthesized Fe₃O₄@Mg/Al-CO₃-LDH drops to 36.75 emu g⁻¹ since the non-magnetic Mg/Al-CO₃-LDH shields the magnetic Fe₃O₄. Even if after 15 cycles, it was still 36.47 emu g⁻¹. This value is sufficient to achieve repeated rapid magnetic extraction and separation. More importantly, it should be noted that the two loop curves before and after PO₄³⁻-adsorption come close to coinciding in shape. This truthfully reflects that the thickness of the Mg/Al-CO₃-LDH coating layer did not change, which indicates almost no etching and degradation occurred even after 15 cycles of adsorption, separation and desorption. Based on this, the structural stability indicated by the above Fig. 4(b), which is also the result after 15 cycles of PO₄³⁻-adsorption, means that the two-dimensional crystalline nanostructure of Mg/Al-CO₃-LDH and the interlayer anion CO₃²⁻ in the layer double hydroxide were both maintained rather stably. Actually, it can be seen in Fig. 5(c) that after 15 cycles of adsorption, separation and desorption, the FTIR peak intensity of CO₃²⁻ is as strong as that of the as-synthesized Fe₃O₄@Mg/Al-CO₃-LDH, as seen in Fig. 5(a). This means that the content of CO₃²⁻ was almost fully recovered even after 15 cycles of PO₄³⁻-desorption, which can provide an excellent performance for stable dephosphorization.

As a result, it can be concluded that the synthesized Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent Fe₃O₄@Mg/Al-CO₃-LDH can adsorb, separate and desorb PO₄³⁻ in aqueous solution. This magnetic nano-adsorbent is feasible for rapid and efficient phosphate adsorption and separation.
specific surface area and total pore volume will affect the chance of contact between the adsorbent and the adsorbate, thereby affecting the adsorption effect of the adsorbent. According to the BET (Brunauer-Emmett-Teller) method, the specific surface area of Fe₃O₄@Mg/Al-CO₃-LDH was calculated to be 88.4 m² g⁻¹. Thus, the hydrothermally synthesized Fe₃O₄@Mg/Al-CO₃-LDH can adsorb PO₄³⁻ in solution rapidly and efficiently.

3.2 Optimized pretreatment by Fe₃O₄@Mg/Al-CO₃-LDH

For 80 mL solution containing 1.00 mg L⁻¹ F⁻, 1.00 mg L⁻¹ Cl⁻ and 100 mg P per L PO₄³⁻ are the optimized adsorbent amount and adsorption time for Fe₃O₄@Mg/Al-CO₃-LDH, respectively. These optimized pretreatment conditions were utilized for the analysis of real samples, as stated in Section 4.

By using different amounts of Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent to adsorb PO₄³⁻ for the same adsorption time of 60 min, Fig. 8 shows the chromatograms, in which three chromatographic peaks at about 3 min, 7 min, 22 min correspond to F⁻, Cl⁻, and PO₄³⁻, respectively. Their concentrations were calculated based on their peak area, and plotted at the top of Fig. 8. With the addition of Fe₃O₄@Mg/Al-CO₃-LDH in the solution, the concentration of both F⁻ and Cl⁻ was always maintained at around 1.00 mg L⁻¹ with the fluctuation of ±2%, regardless of the adsorbent time used. Similarly, as indicated in the plots at the top of Fig. 8, Fe₃O₄@Mg/Al-CO₃-LDH did not adsorb any F⁻ and Cl⁻ anions in the solution, no matter how long the interaction time. However, for PO₄³⁻, even with fast magnetic separation immediately after the addition of Fe₃O₄@Mg/Al-CO₃-LDH in the solution, the residual PO₄³⁻ concentration directly declined to 72.9 mg P per L. Also, after 2 and 5 min adsorption, it decreased to 60.3 and 52.2 mg P per L, respectively. With a further increase in the adsorption time, the adsorption of PO₄³⁻ slows down to the equilibrium stage, until the residual PO₄³⁻ concentration finally reached 48.1 mg P per L after 120 min adsorption.

According to the formula for phosphate adsorption capacity, the capacity of Fe₃O₄@Mg/Al-CO₃-LDH is 83.04 mg P per g for 120 min adsorption. Even for 5 min adsorption, it is still as high as 76.48 mg P per g. Thus, the optimized adsorption time was chosen to be 5-60 min for the solution using 50 mg Fe₃O₄@Mg/Al-CO₃-LDH.

![Fig. 7](image-url) **Fig. 7** N₂ adsorption–desorption isotherms (a) and Barrett–Joyner–Halenda (BJH) pore diameter distribution curve (b) of the prepared Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent.

![Fig. 8](image-url) **Fig. 8** Chromatograms for the solution with 1.00 mg L⁻¹ F⁻, 1.00 mg L⁻¹ Cl⁻ and 100 mg P per L PO₄³⁻ using 0, 20, 50, and 80 mg Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent, respectively. The same adsorption time of 60 min was applied.

![Fig. 9](image-url) **Fig. 9** Determined concentrations by chromatography for 80 mL solution with 1.00 mg L⁻¹ F⁻, 1.00 mg L⁻¹ Cl⁻ and 100 mg P per L with the adsorption time. In the adsorption experiment, the used Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent is 50 mg.
3.3 Recyclability of Fe3O4@Mg/Al-CO3-LDH

The recyclability of an adsorbent is vital for its practical application, and the premise for recycling is the stability of its structure. The crystalline structure stability, the adsorption stability, and the coating layer stability of Fe3O4@Mg/Al-CO3-LDH after 15 cycles of PO43−-adsorption and regeneration were confirmed by XRD, as shown in Fig. 4(b), FTIR, as shown in Fig. 5(c), and magnetic hysteresis loop analysis, as shown in Fig. 6, respectively.

To evaluate the recyclability of the Fe3O4@Mg/Al-CO3-LDH magnetic nano-adsorbent, the phosphate adsorption capacities were determined for each cycle and shown in Fig. 10, where the 60 min adsorption, 30 min desorption and regeneration processes are stated in Section 2.3. The initial capacity of 83.04 mg P per g calculated from Fig. 9 was used for the as-synthesized Fe3O4@Mg/Al-CO3-LDH. For the subsequent cycles, the phosphate adsorption capacity decreased but very slowly. Even after 15 desorption–adsorption cycles, the capacity was still as high as 80.41 mg P per g, which is only 3.2% lower than the initial 83.04 mg P per g. Among the 15 cycles, the maximum decrease occurred in the 5th cycle, but not more than 1%, and the average decrease was as low as ~0.2%. This clearly indicates that the synthesized Fe3O4@Mg/Al-CO3-LDH has excellent recyclability and stability, maintaining high phosphate adsorption capacities even after manifold cycles.

Table 1 presents the phosphate adsorption capacity, adsorption time, and recycle number of various magnetic adsorbents. These adsorbents, LDH adsorbents with interlayer anion and non-LDH adsorbents, can all be used to efficiently adsorb PO43− in solution. Compared with most of the adsorbents, the phosphate capacity per unit mass of the synthesized Fe3O4@Mg/Al-CO3-LDH is as high as 76.48 mg P per g, higher than 1.8675–36.9 mg P per g, but somewhat lower than 128–252.88 mg P per g of these four adsorbents. However, they used about 360–4320 min to adsorb phosphates in solution. It

Table 1 Comparison of the adsorption time, adsorption capacity and the number of reuse cycles by various magnetic adsorbents for the adsorption of the PO43− phosphate group

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Interlayer anion for LDH</th>
<th>Adsorption time (min)</th>
<th>Adsorption capacity (mg P per g)</th>
<th>Cycle no.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnFeZr adsorbent@Fe3O4/SiO2</td>
<td>Cl−</td>
<td>60</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Magnetic Fe/Mn oxide composites [TS-N]</td>
<td>Cl−</td>
<td>90</td>
<td>26.0</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Fe3O4/Zn-Al–Fe–La–LDH</td>
<td>Cl− and SO42−</td>
<td>1440</td>
<td>169.5</td>
<td>4b</td>
<td>25</td>
</tr>
<tr>
<td>Fe3O4@Zn–Al-LDH</td>
<td>CO32−</td>
<td>60</td>
<td>36.9</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Fe3O4@Mg–Al-LDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe3O4@Ni–Al-LDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/Co3O4_PVA</td>
<td>Non-LDH</td>
<td>16.7</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe/MgCo3O4_PVA</td>
<td></td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe3O4@SiO2–CeO2</td>
<td>Non-LDH</td>
<td>1440</td>
<td>10.8</td>
<td>2d</td>
<td>76</td>
</tr>
<tr>
<td>Ce–Ti@Fe3O4</td>
<td>Non-LDH</td>
<td>1440</td>
<td>11.10</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Carboxylated chitosan–Fe3O4</td>
<td>Non-LDH</td>
<td>60</td>
<td>1.8675</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>La-chitosan magnetic spheres</td>
<td>Non-LDH</td>
<td>300</td>
<td>27.78</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>ZrO2/Fe3O4</td>
<td>Non-LDH</td>
<td>1440</td>
<td>29.5</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Magnetic Caragana korshinskii biochar/Mg–Al-LDH</td>
<td>Cl−</td>
<td>720</td>
<td>252.88</td>
<td>5e</td>
<td>31</td>
</tr>
<tr>
<td>Fe3O4@alkali-treated calcium-silicate</td>
<td>Non-LDH</td>
<td>4320</td>
<td>128</td>
<td>2d</td>
<td>69</td>
</tr>
<tr>
<td>Fe3O4@gelatin encapsulated hydroxalite</td>
<td>CO32−</td>
<td>40</td>
<td>32.73</td>
<td>4d</td>
<td>33</td>
</tr>
<tr>
<td>NtGO/Fe3O4</td>
<td>Non-LDH</td>
<td>360</td>
<td>135.3</td>
<td>5</td>
<td>74</td>
</tr>
<tr>
<td>Humic acid coated magnetite nanoparticles</td>
<td>Non-LDH</td>
<td>180</td>
<td>28.9</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Fe3O4@Mg–Al-CO3-LDH</td>
<td>CO32−</td>
<td>5</td>
<td>76.48</td>
<td>15</td>
<td>This work</td>
</tr>
</tbody>
</table>

* Adsorption capacity of phosphate, \(Q_e = (C_0 - C_e)W/m \), where \(C_0 \) and \(C_e \) are the initial and equilibrium phosphate concentration in mg L−1, \(V \) is the volume of phosphate solution in L, and \(m \) is the dry weight of the adsorbent in g. The adsorption capacity decreased to 31 mg g−1 after 4 cycles. The adsorption capacity decreased to 25.71 mg g−1 after 5 cycles. The adsorption efficiency was reduced to 70.01% after 4 cycles. The adsorption capacity decreased to 4.8 mg g−1 after 2 cycles. The adsorption capacity decreased to 20.2 mg g−1 after 2 cycles. The information is summarized from the description of preparation processes, or FTIR, XPS and other characterization in refs.
should be noted that the capacity is related to the adsorption time used. Even if the adsorption time used is as fast as 5 min, which is 1/8–1/288 of the reported times listed in Table 1, the adsorption capacity of 76.48 mg P per g for Fe₃O₄@Mg/Al-CO₃-LDH is high enough to adsorb PO₄³⁻ rapidly and efficiently so as to determine F⁻ and Cl⁻ without serious interference due to PO₄³⁻. In the case of the recycle number, which is one of the vital properties for the recyclability of an adsorbent, it is 15 cycles for Fe₃O₄@Mg/Al-CO₃-LDH, more than the reported 2–5 cycles. The reported recycle number could reach up to 20 cycles, but there was no information about the phosphate adsorption capacity. According to Table 1, if only considering magnetic LDHs with a CO₃²⁻ interlayer anion, Fe₃O₄@Mg/Al-CO₃-LDH behaves very well to adsorb PO₄³⁻ in solution, with four times greater cycle number and two times greater phosphate adsorption capacity.

4 Analysis of real samples

Phosphate and fluorophosphate laser glasses contain high PO₄³⁻ and a certain amount of various monovalent, divalent, trivalent metal cations. The leaching solutions from these glasses were determined before and after adsorption pretreatment using the Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent, and the chromatograms are shown in Fig. 11. As seen in Fig. 11(a) for the phosphate (P₂O₅ molar ratio of both N31 and N41 glasses is close to 60%) with high PO₄³⁻ but low F⁻ and Cl⁻, the strong peak at 22.36 min due to PO₄³⁻ is too overloaded, and thus it seems to be a leading peak with 100 μS conductivity. After the adsorption pretreatment, the 22.36 min peak shape became normal and its intensity decreased greatly to 10 μS. This indicates that Fe₃O₄@Mg/Al-CO₃-LDH could efficiently adsorb PO₄³⁻ in the multi-ion leaching solution in a short time of only 5 min. On the other hand, Fe₃O₄@Mg/Al-CO₃-LDH did not adsorb any F⁻ or Cl⁻. The peaks at 3.79 and 7.34 min are due to F⁻ and Cl⁻, respectively, and their intensities did not change after the adsorption pretreatment. As shown in Fig. 11(b) for the fluorophosphate with a high F⁻ and PO₄³⁻ content but low Cl⁻, the 22.36 min PO₄³⁻ peak almost disappeared after the adsorption pretreatment by Fe₃O₄@Mg/Al-CO₃-LDH for 5 min. The strong F⁻ peak at 3.79 min and the weak Cl⁻ peak at 7.34 min did not change after the pretreatment. Regardless of a high or low PO₄³⁻ content in a multi-ion solution, the synthesized Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent can adsorb and extract PO₄³⁻ rapidly. Also, regardless of a high or low F⁻ or Cl⁻ content in a multi-ion solution, the addition and extraction of the nano-adsorbent did not result in any change in the contents of F⁻ or Cl⁻. These two facts determine the usefulness of the nano-adsorbent for specific applications, i.e. the removal of PO₄³⁻, and especially the determination of F⁻/Cl⁻ after removing PO₄³⁻ in a multi-ion solution. By using the Fe₃O₄@Mg/Al-CO₃-LDH adsorption pretreatment, the pretreated solution can be utilized for other determination techniques or methods since there will be no serious interference from PO₄³⁻ in the solution. Considering chromatography, the determination time for the accurate determination of F⁻ and Cl⁻ can be greatly shortened after removing PO₄³⁻. More importantly, without being affected by PO₄³⁻ and fully retaining trace F⁻ and Cl⁻, a continuous analysis or on-line test can be done during processes in the laboratory and industry in fields such as pharmaceuticals and biomaterials. If PO₄³⁻ is not removed from a PO₄³⁻-rich solution, the next injection must not be allowed.

By chromatography, Table 2 lists the determined results of F⁻ and Cl⁻ for various real samples, such as a certified reference ore material (GBW07108 containing F, Cl and P, as well as 66 other elements), silicate glass, fluorophosphate glass, phosphate laser glasses, and environmental water samples. Specifically, 80 mL sample solution was pretreated using Fe₃O₄@Mg/Al-CO₃-LDH under the optimized conditions. For the certified ore sample, the determined values of 0.395 and 0.0071 mg L⁻¹ are very close to the certified values of 0.406 and 0.0078 mg L⁻¹ for F⁻ and Cl⁻, respectively. After determining F⁻ and Cl⁻ for the other samples, a certain amount of F⁻ and Cl⁻ standard solutions was added, i.e. the added content was 1.00 mg L⁻¹. Subsequently, the contents of F⁻ and Cl⁻ in the solution re-pretreated by Fe₃O₄@Mg/Al-CO₃-LDH were measured again. Accordingly, the spiked recoveries were calculated. As seen in Table 2, these spiked recoveries were all within an acceptable range of 95.7–104.9%. Thus, the above determinations prove the accuracy to determine F⁻ and Cl⁻ in multi-ion solutions pretreated by the synthesized Fe₃O₄@Mg/Al-CO₃-LDH magnetic nano-adsorbent.

It should be noted that the pH values of real sample solutions may vary from sample to sample, especially when dissolving solid samples by acid or alkali. The pH value of the solution will affect the existing form of phosphate anions, such as PO₄³⁻, HPO₄²⁻ and H₂PO₄⁻. Thus, two phosphate
solutions were obtained by dissolving high purity Na₃PO₄ or NaH₂PO₄ in deionized water without adding any acid and alkali, and treated with the magnetic nano-adsorbent of Fe₃O₄@Mg/Al-CO₃-LDH, and their ion chromatogram peaks due to phosphate greatly decreased. The large decrease indicates the effective adsorption of both Na₃PO₄ and NaH₂PO₄ solutions. This implies that no matter the existing form of phosphate anions, such as PO₄³⁻ and H₂PO₄⁻, the synthesized Fe₃O₄@Mg/Al-CO₃-LDH can adsorb them efficiently. On the other hand, the pH value of real sample solutions as in the above applications is not adjusted by acid and alkali to avoid any further disturbance in the trace determination of F⁻ and Cl⁻ by ion chromatography.

5 Conclusion

Using the urea hydrothermal method, the layered double hydroxide Mg/Al-CO₃-LDH was synthesized and aggregated as small crystal plates on Fe₃O₄ nanoparticles, which retained its original crystalline state with high magnetism. The magnetic saturation value of 36.47 emu g⁻¹ was sufficient to achieve rapid magnetic extraction—separation during PO₄³⁻-adsorption by Fe₃O₄@Mg/Al-CO₃-LDH. As a recyclable magnetic nano-adsorbent, its structural stability was confirmed after 15 regeneration cycles for PO₄³⁻-adsorption and desorption. The vibrations of the CO₃²⁻ and PO₄³⁻ groups, and the Mg–OH, Al–OH, and Mg–O–Al bonds indicated that the mechanism for the adsorption of PO₄³⁻ by Fe₃O₄@Mg/Al-CO₃-LDH is related to the anion exchange between the interlayer anion CO₃²⁻ and PO₄³⁻ in solution. The LDH surface electrostatic adsorption for PO₄³⁻ in solution, and the ligand exchange between LDH and PO₄³⁻ in solution. Since mesoporous pores are created within the aggregates of small crystal plates during the synthesis of Fe₃O₄@Mg/Al-CO₃-LDH, its large specific surface area and total pore volume are 88.4 m² g⁻¹ and 0.59 cm³ g⁻¹, respectively. These endow the magnetic nano-adsorbent with a high phosphate adsorption capacity of 83.04 mg P per g for 120 min adsorption, or still up to 76.48 mg P per g for rapid 5 min adsorption. Even after 15 desorption—adsorption cycles, the capacity was still as high as 80.41 mg P per g with only a decline by 3.2%. Compared with other magnetic LDHs with CO₃²⁻, the synthesized Fe₃O₄@Mg/Al-CO₃-LDH exhibited very good ability to adsorb PO₄³⁻, with four times greater cycle number, two times greater phosphate adsorption capacity, and eight–twelve times less adsorption time. More importantly, regardless of a high or low F⁻ or Cl⁻ content, and regardless of the used amount and adsorption time of Fe₃O₄@Mg/Al-CO₃-LDH, the addition and extraction of the nano-adsorbent did not result in any change in the contents of F⁻ and Cl⁻ in a multi-ion solution. Thus, the usefulness of the synthesized Fe₃O₄@Mg/Al-CO₃-LDH is concentrated on two specific applications, the removal of PO₄³⁻, and especially the accurate determination of F⁻ and Cl⁻ after the removal of PO₄³⁻. By optimizing the nano-adsorbent amount and adsorption time, Fe₃O₄@Mg/Al-CO₃-LDH was successfully utilized to adsorb PO₄³⁻ rapidly and determine F⁻/Cl⁻ accurately by ion chromatography for real samples such as certified reference ore materials, phosphate laser glass, fluorophosphate glass, silicate glass and environmental water samples. Currently, these applications are greatly beneficial for product quality monitoring for extremely hazardous F⁻ and Cl⁻ to protect the ecological environment. On the other hand, excess P will lead to widespread eutrophication in aquatic environments, in which algal blooms are also harmful towards human health due to cyanotoxins. With the further development and progress on the adsorption capacity, adsorption recovery velocity, and adsorption kinetics, studies will be devoted to online applications and widening the scope of these significant methods using LDH adsorbents, which will contribute immensely to environmental protection.

Table 2 Determination of F⁻ and Cl⁻ anions in a certified reference ore sample, silicate glasses, fluorophosphate glasses, phosphate glasses and river water samples by ion chromatography after adsorption pretreatment by Fe₃O₄@Mg/Al-CO₃-LDH

<table>
<thead>
<tr>
<th>Sample</th>
<th>Added (mg L⁻¹)</th>
<th>Found (mg L⁻¹)</th>
<th>Recovery (%)</th>
<th>Added (mg L⁻¹)</th>
<th>Found (mg L⁻¹)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBW07108²</td>
<td>0.406³</td>
<td>0.395</td>
<td>97.3</td>
<td>0.078³</td>
<td>0.071</td>
<td>91.0</td>
</tr>
<tr>
<td>Silicate glass</td>
<td>1.00</td>
<td>1.444</td>
<td>104.9</td>
<td>1.00</td>
<td>1.092</td>
<td>102.1</td>
</tr>
<tr>
<td>Fluorophosphate glass</td>
<td>0</td>
<td>9.970</td>
<td>—</td>
<td>0</td>
<td>0.083</td>
<td>—</td>
</tr>
<tr>
<td>N31 phosphate glass, pot melting</td>
<td>1.00</td>
<td>10.927</td>
<td>95.7</td>
<td>1.00</td>
<td>1.069</td>
<td>98.6</td>
</tr>
<tr>
<td>Fluorophosphate glass</td>
<td>0</td>
<td>21.972</td>
<td>—</td>
<td>0</td>
<td>0.066</td>
<td>—</td>
</tr>
<tr>
<td>N41 phosphate glass, pot melting</td>
<td>1.00</td>
<td>0.744</td>
<td>—</td>
<td>0</td>
<td>0.251</td>
<td>—</td>
</tr>
<tr>
<td>N41 phosphate glass, continuous melting</td>
<td>1.00</td>
<td>1.738</td>
<td>99.4</td>
<td>1.00</td>
<td>1.245</td>
<td>99.4</td>
</tr>
<tr>
<td>River water</td>
<td>0</td>
<td>1.267</td>
<td>—</td>
<td>0</td>
<td>0.459</td>
<td>—</td>
</tr>
</tbody>
</table>

² The certified reference ore samples were approved by the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, which were mainly composed of silicate, carbonate and oxide of Al, Fe, Mg and Ca.³ The certified content of F⁻ and Cl⁻ in the certified reference material GBW07108.
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The research work was financially supported by Nd-doped phosphate laser glass projects from National Major Science and Technology Project of China, National High Technology Research and Development Program for Inertial Confinement Fusion of China.

References
