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ABSTRACT  

Amphiphilic molecules, forming self-assembled nanoarchitectures, are typically composed of 

hydrophobic and hydrophilic domains. Peptide amphiphiles can be designed from two, three or 

four building blocks imparting novel structural and functional properties and affinities for 

interaction with cellular membranes or intracellular organelles. Here we present a combined 

numerical approach to design amphiphilic peptide scaffolds that are derived from the human 

nuclear Ki-67 protein. Ki-67 acts, like a biosurfactant, as a steric and electrostatic charge barrier 

against the collapse of mitotic chromosomes. The proposed predictive design of new Ki-67 

protein-derived amphiphilic aminoacid sequences exploits the computational outcomes of a set 

of web-accessible predictors, which are based on machine learning methods. The ensemble of 

such artificial intelligence algorithms, involving support vector machine (SVM), random forest 

(RF) classifiers and neural networks (NN), enables the nano-engineering of a broad range of 

innovative peptide materials for therapeutic delivery in various applications. Amphiphilic cell-

penetrating peptides (CPP), derived from natural protein sequences, may spontaneously form 

self-assembled nanocarriers characterized by enhanced cellular uptake. Thanks to their inherent 

low immunogenicity, they may enable the safe delivery of therapeutic molecules across the 

biological barriers.  
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Introduction 

The development of novel drug delivery systems to improve the bioavailability of 

therapeutic compounds and reduce severe side effects is a research area of growing interest.1-24 

Drug delivery nano-assemblies are composed of either lipids, peptides, surfactants, 

carbohydrates or polymers besides of different combinations of multiple amphiphilic 

ingredients.25-39 Screening of new carrier structures by application of machine learning in 

materials science40-49 creates alternatives to the complex synthesis of new drug molecules, which 

require a long and expensive process of biological assays and physico-chemical characterization 

of the formulations up to clinical trials.  

The focus of the present work is on bio-inspired peptides with self-assembly properties as 

designed candidates for more efficient and safe drug delivery nanocarriers (Figure 1). Cell 

penetrating peptides (CPP) are short sequences of amino acids (generally up to 35 aa), which 

have a capacity to cross the cellular bilayer membranes without damaging them.50-60 The 

research on CPPs has been inspired by the fact that proteins (like transcription-activating factors, 

signal sequences and homeoproteins) involve subunits that may facilitate their translocation 

across the plasma membranes into the inner cellular compartments.50-52,61-63 This finding has 

stimulated a number of investigations on the design of synthetic aminoacid sequences, which 

self-assemble and enable the cellular internalization of various compounds.3-7,53-60,64-84 The large 

diversity of CPPs has been classified into sequences of cationic, anionic or neutral nature.50 CPPs 

can be either protein-derived53,73 or synthetic ones.56,72 Other CPP classifications regard their 

amphipathic character and their conformation type (e.g. α-helical, β-sheet or other).50-52,75 CPPs 

may transport and deliver different types of bioactive molecules into living cells (anticancer 

drugs, RNA, DNA, or proteins).3-7,35-39,54,57-60 It is expected that CPPs derived from native 
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proteins and characterized by amphiphilic nature may be more efficient as drug delivery systems 

thanks to their self-assembly properties and low immunogenicity.  

 
 

 

 

 

 
Figure 1. Top panel: Self-assembled nanostructures formed by amphiphilic peptides: (A) 

vesicles, (B) micelles, (C) nanotubes, and (D) rod-like objects exemplifying precursors of fibers. 

Bottom panel: Molecular architecture of an amphiphilic peptide composed of hydrophilic (blue) 

and hydrophobic (yellow) domains. The red dots indicate positively charged residues along the 

aminoacid sequence. The latter can be a cell penetrating peptide (CPP).  
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When immerged in aqueous media, amphiphilic molecules (lipids, surfactants, peptides, 

lipid-drug or peptide-drug conjugates, etc.) self-assemble through a spontaneous process leading 

to the formation of organized supramolecular structures.64-84 Figure 1 shows a few examples of 

nanoscale self-assembled architectures of amphiphilic derivatives. The underlying self-assembly 

mechanism is governed by hydrophobic interactions, dipole and electrostatic forces, π–π 

stacking, and hydrogen bonding.75 In a first approximation, the shapes of the generated self-

assembled aggregates are determined, according to the Israelachvili's concept, by the 

hydrophobic/hydrophilic balance and the sizes of the hydrophilic and hydrophobic domains of 

the molecules.66-68,75,76 However, a same chemical composition may yield different 

supramolecular aggregates depending on the environmental conditions (e.g. pH, salt type and 

concentration, temperature, etc).30,33,70,77,80 The resulting topologies may comprise vesicles, 

spherical or elongated micelles, tubules and donut shapes of nanoscale dimensions as examples 

(Fig. 1). The shapes, which may globally span in space, correspond to indefinite nanotubes, 

fibers, and gels. The properties of the obtained amphiphilic nanostructures can be tuned by the 

inclusion of various functionalities towards the design of nano-biomaterials for a wide range of 

biomedical applications (e.g. vaccines, drug delivery, diagnostic imaging, tissue engineering and 

regeneration).4-7,26,27,33-39  

The present work exploits chosen computational approaches, developed on the basis of 

machine learning, for the design of amphiphilic peptides suitable for drug delivery applications. 

We first compare the published predictors of CPPs, some of which make use of artificial 

intelligence algorithms based on support vector machine (SVM) and random forest (RF) 

classifier methods.85-102 We then apply selected web-accessible programs to the prediction of 

new peptide amphiphiles from the sequence of the human protein Ki-67 (as a protein of interest). 
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The combined results of the validated methods for CPP and transmembrane helix prediction will 

yield peptide sequences with natural biocompatibility and targeting properties, which are 

valuable characteristics for potential therapeutic applications. Based on such numerical 

computations, the research on amphiphilic peptides can be expanded to assist the design of safe 

and efficient nanocarriers for biomolecular delivery and specific targeting. In further steps, the 

stability of the predicted peptide scaffolds can be increased by the inclusion of unnatural amino 

acid residues. Various building blocks can be integrated towards functionalization of the 

peptides, for instance signal domains for improved selectivity, lipid anchors for enhanced 

amphiphilicity, vaccine epitopes, or fluorescent labels for theranostic purposes.3,13-15,26,27,37,84  

 
Methods 

Choice between rational and machine learning assisted strategies for design of cell-

penetrating peptides and amphiphilic derivatives thereof 

The CPP class of peptides has gained significant interest since the finding that the HIV-1-

derived Tat peptide sequence can cross the cellular membranes to trans-activate the viral 

promoter.61,62 Some of the first CPPs have been found serendipitously by studying the 

internalization of chemically synthesized peptides, which have been derived from the third helix 

of the homeodomain of Antennapedia.63  

Rational design of biomimetic cell-penetrating peptides has been performed by Karagiannis 

et al.,55 Stupp et al.,76,78 and Zhang et al.71 among others.56,72,75,80 Peptide amphiphile structures 

consisting of up to four building blocks (a hydrophobic alkyl chain, a β-sheet forming segment, a 

bioactive epitope and charged groups) have been phenomenologically designed with the purpose 

to achieve both self-assembly and functional features of the generated constructs.76 Molecular 
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dynamics (MD) simulations of self-assembled peptide systems have been performed by different 

groups.82 It has been experimentally shown that the hydrophobicity plays a crucial role for the 

shape of the resulting self-assembled aggregates.9 The structures produced with synthetic 

peptides, such as K3-(WL)3-W-NH2), C16-WAAAAKAAAAKAAAAK), or C18–KTTKS, have 

been in agreement with the molecular shape concept of the critical packing parameter, which 

determines the type of the obtained aggregates (micelles, vesicles or nanotube rods).66-68,71,72,83,84 

Some studies have yielded ambiguous conclusions about the topology of the self-assembled 

peptide scaffolds because the Israelachvili's prediction does not account for the intermolecular 

interactions between α-helical moieties nor for the hydrogen bonding interactions between 

peptides of β-sheet conformations.4,13,34,75,80  

The initially proposed numerical approaches for CPP prediction have mainly been based on 

trial and error methods.57,58 These time-consuming analyses have permitted the constitution of a 

database of cell-penetrating peptides,46,85 but could not satisfy the growing market demand yet. 

The existing challenge has led to the emergence of an entirely new way for the prediction of 

aminoacid sequences based on numerical methods.85-102 The first generation of the in silico 

algorithms has been dedicated to CPPs predictions based on quantitative structure-activity 

relationship (QSAR) studies.85 This method determines the score of a peptide according to the 

physico-chemical properties of its amino acid sequence. Such features have been calculated by 

Sandberg and colleagues through the principal component analysis (PCA) algorithm.85 The 

considered descriptors, referred to as Z-factors, are related to the polarity, molecular weight, and 

orbital calculations. This approach has turned out to be simplistic because it has not taken into 

account the order of the amino acid residues in the studied peptide sequences. However, the 

obtained results have been essentially valuable as the method predicted about 95% of the known 
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CPPs to have cell-penetration characteristics. At the same time, only 68% of the known non-

CPPs sequences have been predicted to be such. The limitation of this approach has been 

associated with the fact that the dataset used to train the algorithm has been composed of a small 

number of peptides. The latter have been extracted from heterogeneous experimental studies 

using different experimental parameters (concentrations, types of cells, etc.). Furthermore, it has 

been established that the training process of the QSAR method was biased, which may strongly 

affect the results of the predictions.  

Subsequently, a new generation of algorithms came out with the development of artificial 

intelligence.86-92 The first one has been based on the support vector machine classifier (SVM) 

and quantitative structure-activity relationship models.86 The SVM involves information about 

the protein sequence, a position-specific aminoacid propensity, and physicochemical properties. 

The classifier has achieved a maximal accuracy of 83% by excluding the difficult aminoacid 

sequences. Sanders et al. have overcome this problem and have emphasized the importance of 

using balanced datasets of peptides.87 The SVM classifier has been applied to a benchmark 

dataset using a total of 145 peptides, 111 of which were known CPPs and the others were known 

non-CPPs. Subsequently, the SVM classifier method has been used by Gautam et al. who have 

extended the benchmark dataset to a much larger set consisting of 708 peptides.88 For this 

CellPPD predictor, the percentage of accuracy has increased to 81% on the independent datasets.  

The machine training on neuronal network (NN) has emerged later and has become publicly 

available by the algorithm CPPpred conceived by Holton et al.89 The accomplishment of this 

approach has revealed that the accuracy of the algorithm increases when the redundancy of the 

training sequences is reduced by 80% (despite of the small training set of CPPs).  
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Random Forest (RF) classifier is another machine learning approach to predict peptides with 

cell penetrating properties.90 The RF algorithm integrates a number of decision trees and chooses 

the classification with the highest number of votes from the trees. The RF predictor is trained on 

various physicochemical and biochemical properties of amino acids and pairs of amino acids 

such as amino acid frequency, electrostatic charge, molecular volume, polarity, and secondary 

structure. In the random subsets of variables, each tree depends on the values of a random vector, 

which is sampled independently with the same distribution for all trees in the forest. A majority 

voting scheme is then applied for the classification purposes. 

We have chosen the neural network (CPPpred) and the support vector machine classifier 

(CellPPD) algorithms for the prediction of novel CPP sequences from the nuclear protein Ki-67. 

These CPPs will be merged to hydrophobic signal sequences or membrane spanning fragments 

in order to form amphiphilic peptide scaffolds. The web-accessible predictor Skip-CPPpred, 

which is based on a random forest (RF) classification,91 will also be included in the employed 

here algorithm set.  

 

Biological small-angle X-ray scattering (BioSAXS) for characterization of amphiphilic 

peptide nanoassemblies and particles 

Biological small-angle X-ray scattering (BioSAXS), which comprises solution X-ray 

scattering, is an indispensable tool for the characterization of biological macromolecules and 

their propensity for self-assembly in aqueous media.103-108 Amphiphilic peptide assemblies 

represent randomly oriented supramolecular aggregates in a solution phase. The degree of 

arrangement and disorder leads to characteristic patterns when the samples are exposed to the X-

ray beam. The scattering emerges upon interaction between the X-ray photons and the electrons 
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in the studied samples. Thus, the BioSAXS method provides ensemble-averaged results about 

the peptide molecules or particles dispersed in the aqueous medium.103-108 

In aqueous environment, self-assembly of peptide amphiphiles into nanoscale aggregates 

occurs above a critical concentration. Structural evolution and transitions between different 

particle topologies are possible at increasing peptide concentrations. To probe the topologies of 

the peptide structural ensembles, the experimental SAXS profiles should be compared with 

computed theoretical scattering profiles. Such models have been developed for solutions of 

monodispersed identical particles with minimal interactions in a dispersed state.109-112 The 

derived analytical expressions of the scattering profiles provide information about the shape of 

the nanoscale objects through the form factors.109 

Particle form factors for various shape models can be considered in the analysis of the 

SAXS patterns, for instance monodispersed and homogeneous solid spheres, spherical shells, 

monodisperse cylinders, rods, discs, ellipsoids, cylinders with an elliptical cross section, or 

core/shell structures. The analytical models, employed in the particle shape analysis, describe the 

relationship between the scattered intensity and the particle shape for monodisperse particle 

solutions. Equations for form factors of different geometrical objects are used for this 

purpose.109-111 

Exemplary SAXS plots of model functions, which simulate the scattering of nanoparticles of 

ideal geometrical shapes,112 are presented in Figure 2 for selected values of the variable 

parameters. 

(A) Spherical particles (solid spheres) are simulated by a model scattering function with a 

single parameter, i.e. the sphere radius (50 nm);  
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(B) Hollow spherical particles (vesicles) are described by a model scattering function with 

two parameters, namely the radius of the spherical shell (50 nm) and thickness of the lipid 

bilayer shell (3.5 nm);  

(C) Hollow cylinders (nanotubes) are anisotropic particles, the scattering of which is 

simulated by three parameters, i.e. the length of the tube (300 nm), the radius of the cylindrical 

shell (50 nm) and the thickness of the lipid layer shell (3.5 nm);  

(D) Nonflexible cylindrical rods (fibers) are simulated by two-parameter model scattering 

function – the length of the fiber (300 nm) and its radius (50 nm). 

 

 

Figure 2. Examples of computed small-angle X-ray scattering (SAXS) patterns of 

monodispersed self-assembled amphiphilic peptide objects. The presented SAXS plots comprise 
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form factor scattering from a sphere (A), a hollow sphere (vesicle) (B), a hollow circular cylinder 

(nanotube) (C), and a rigid rod (fiber) (D).  

 

BioSAXS experiments were performed at the SWING beamline of synchrotron SOLEIL 

(Saint Aubin, France). The samples were sealed in capillaries for X-ray measurements. The q-

vector was defined as q = (4π/λ) sinθ, where 2θ is the scattering angle. The synchrotron radiation 

wavelength was λ = 1.033 Å. The synchrotron SAXS patterns were recorded with a two-

dimensional EigerX 4-M detector (Dectris, Baden, Switzerland) at 12 keV. The exposure time 

was 1 s. No radiation damage was observed at this exposure time. An average of three spectra 

per capillary was acquired. Scattering patterns of an empty capillary and a capillary filled with 

MilliQ water were recorded for intensity background subtraction.  

The small angle X-ray scattering (SAXS) data processing included fitting of the 

experimental scattering intensities by a library of analytical expressions available in the SASfit 

software package for SAXS analysis.112  

 

Results  

Design of new cell-penetrating peptides and application of the chosen set of algorithms 

for the prediction of amphiphilic aminoacid scaffolds from protein-derived sequences 

The design of novel biocompatible CPP building blocks is inspired here by the features of 

the naturally occurring protein Ki-67.113-115 This human protein is composed of 3241 amino acids 

(see Fig. 3 below). It is an important nuclear protein that has been suggested to function as a 
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steric and electrostatic charge barrier against the aggregation of mitotic chromosomes.113 The 

cellular localization of the Ki-67 protein is a cell-cycle-phase dependent.  

The performed peptide design takes into account that the spontaneous self-assembly process 

of protein-derived peptides is controlled by the hydrophobic/hydrophilic balance of the 

aminoacid constructs. The tendency for assembly into micelles, nanotubes, vesicles, nanofibers, 

nanobelts, or nanosheets in aqueous solutions will depend on the composition and the relative 

sizes of the two constituting building blocks (Fig. 1). The latter will impact the organization of 

the final aggregates. If the length of the hydrophobic domain is too long, the peptide solubility 

will be low. As a consequence, the corresponding critical aggregation concentration (CAC) 

might be too low for the development of drug delivery carriers. A sufficiently high concentration 

of positively charged amino acids in the hydrophilic domain can stabilize the thermodynamic 

equilibrium of the dispersed supramolecular aggregates (Fig. 1). Moreover, it can provide a 

higher affinity for interaction with the negatively charged cellular membranes, which is essential 

for efficient intracellular delivery of biomolecules.  

For the selection of candidate peptides with a membrane insertion potential, aminoacid 

sequences must be identified from protein domains that reside or interact with lipid plasma 

membranes. Transmembrane helices116 can be derived from the muscarinic acetylcholine 

receptor M2, the angiotensine 1A receptor, the metabotrobic glutamate receptor, or the human 

galanin receptor type 1 as examples. Peptides with high membrane affinity involve also magainin 

2, melittin, α-synuclein, orexin-A, lactoferricin, indolicidin, eledoisin, and endothelin-1 among 

others.10,58,74 The hydrophobic scaffold domains, derived from transmembrane spanning 

segments, will facilitate the membrane fusion, translocation, or endocytosis of the created 

peptides.  
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Our purpose here is to build, by the chosen computational tools, bio-inspired amphiphilic 

peptides comprising two distinct building blocks: a hydrophilic domain and a hydrophobic 

domain (Fig. 1, bottom panel). The protein-derived hydrophilic domain should involve positively 

charged amino acid fragments from the Ki-67 sequence, whereas the hydrophobic domain should 

be mainly composed of non-polar amino acids. The properties of the constructed protein-derived 

peptides will be computed and optimized by the cluster of web-accessible predictor software 

presented in Table 1. 

 
Table 1. Machine learning based algorithms and web-based prediction tools 

employed for the calculation of the peptide properties. 

Name Principal Outcomes 

EMBOSS  Associates charges to amino acids 

and performs an average 

Charge distribution of a 

protein sequence 

I-Tasser Hierarchical approach using 

different algorithms (Iterative 

Threading ASSEmbly Refinement) 

Protein structure and 

function predictions; 

secondary structure 

prediction 

CellPPD Support vector machine (SVM) CPP score 

CPP pred Neuronal Network (NN) CPP score 

SkipCPP-Pred Random forest (RF) classifier CPP score 

TMHMM Hidden Markov Model Transmembrane helix 

prediction 
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Towards the identification of hydrophilic aminoacid sequences with cell penetrating 

properties, derived from the human antigen protein Ki-67, we started with the evaluation of its 

charge distribution using the EMBOSS system.117 Figure 3 (top panel) shows the localization of 

the largest positively charged aminoacid cluster identified along the sequence of the Ki-67 

protein (Fig. 3, bottom panel).  
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Figure 3. Top panel: Charge distribution along the aminoacid sequence of the protein antigen 

Ki-67 represented by EMBOSS.117 The observed maximum is associated with the presence of a 

cluster (KRRR) of positively charged residues. The human protein Ki-67 (composed of 3241 

amino acids) is encoded by the MKI67 gene. Bottom panel: Amino acid sequence of the human 
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Ki-67 protein with an indication of positively charged aminoacids (lysine [K] or arginine [R], 

yellow collour) and the clusters of charged residues (red and green colours).  

 

 

Computational scans were realized with the chosen natural protein sequence (Fig. 3, bottom 

panel) using the set of algorithms listed in Table 1. This allowed identifying the regions of 

aminoacid residues that correspond to the positively charged fragments (as determined by the 

calculated charge distribution in Fig. 3). Then, a second scan of the algorithmic approach was 

realized in order to extract the potential cell-penetrating peptide (CPP) sequences inside the Ki-

67 protein. Two algorithms were used for this purpose: CellCPP and CPPpred (Table 1). Based 

on the obtained scores, the most promising peptide fragments, each of 10aa length, were chosen 

for the constitution of the hydrophilic domain of the designed peptides.  

Selected results of the performance of the machine learning prediction methods are presented 

in Table 2. The new cell penetrating peptides, which we derived from the biosurfactant protein 

Ki-67, are indicated in blue color as sequences of 10 amino acids (Table 2). Towards the 

objective to design novel amphiphilic peptides as candidate drug delivery carriers, we decided to 

merge the obtained new cell penetrating peptides (e.g. KKKARQKLVK) with chosen 

hydrophobic fragments, which may enable the targeting of the lipid plasma membranes or the 

intracellular membranes. Candidate hydrophobic chains of aminoacid residues were selected 

from the protein databank of transmembrane proteins (pdbtm).116 Interesting fragment sequences 

were chosen based on the criteria of simplicity, secondary structure, and length. Examples of 

such hydrophobic domain sequences, e.g. the mitochondria-targeting N-terminal region of the 

hexokinase-II protein and the membrane spanning segment of the acetylcholine receptor, are 

shown in Table 2 (yellow color).  
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Table 2. Examples of numerically predicted amphiphilic peptides and their properties calculated 

by the set of algorithms summarized in Table 1. The positively charged hydrophilic fragments 

are indicated in blue and the hydrophobic domains are indicated in yellow. Representative 

CPPpred and SkipCPP-pred scores are obtained for all cell penetrating peptides derived from the 

human protein Ki-67. 

 

 

 
 

Practically, several amphipathic peptides were created by joining hydrophilic and 

hydrophobic moieties in all possible configurations. The resulting various combinations were 

numerically examined by the ensemble of algorithms (Table 1) for the prediction of their cell 

penetrating and transmembrane helix behaviour. The peptide chains were examined by I-Tasser 

(for the secondary structure and solvent accessibility), TMHMM (for the transmembrane 

probability rate and hydropathy), and CPPpred and SkipCPP-pred for the determination of the 

CPP scores (Table 2). The molecular models of the predicted peptide architectures with lengths 

of 25-29 residues long are shown in Figure 4.  

Peptide amino acid sequence Length 
(aa) 

CPPpred  
score 

SkipCPP-
pred score 

Transmembrane 
helix score 

1:      KKKARQKLVKNLETFFYALLHSAIM 25 0.5 0.58 0 

2:      GSRRRPRAPRMSTAISVLLAQAVFLLLTSQ 29 0.6 0.87 0.6 

3:      GSRRRPRAPTAISVLLAQAVFLLLTSQ 27 0.75 0.89 0.2 

4:      KRRPRTRAQKMSTAISVLLAQAVFLLLTSQ 29 0.7 0.81 0.6 
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Figure 4. Molecular models of the numerically predicted amphiphilic peptide sequences given in 

Table 2. The cell penetrating peptide fragments are newly derived from the human nuclear 

protein Ki-67.  

 

Discussion 

Contribution of SAXS to establish the amphiphilic peptide self-assembly  

Structural results obtained by SAXS revealed that the peptide amphiphile building blocks, 

predicted by the numerical approaches and yielding significant CPPpred and SkipCPP-pred 

scores, may easily self-assemble into nanoscale objects above a critical aggregation 

concentration. The SAXS data obtained from solutions of the predicted peptides were analyzed 

using analytical expressions restricted to simple shapes and geometries. An ellipsoidal shape of 
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the self-assembled aggregates was deduced from the analysis of the synchrotron small-angle 

scattering (BioSAXS) data shown in Figure 5. The performed fitting of the experimental 

scattering intensities by a model scattering function from a population of ellipsoids of revolution 

yielded the best outcome. The investigated amphiphilic peptide 

MIASHLLAYFFTELNKVLKQRAKKK has been designed with the purpose to target the 

mitochondria. Liu et al. have shown that the critical aggregation concentration of the peptide can 

be decreased by anchoring of a long fatty acid chain to the hydrophobic terminus of the 

aminoacid sequence MIASHLLAYFFTELN.9 This effect has enhanced the bioactivity of peptide 

conjugate upon mitochondrial targeting of lung cancer cells.9 

 

 

Figure 5. Synchrotron small-angle scattering (BioSAXS) pattern presenting an experimental 

evidence for the self-assembly propensity of the predicted amphiphilic peptide 

MIASHLLAYFFTELNKVLKQRAKKK in an aqueous medium. The peptide construct consists 

of the mitochondria-targeting N-terminal region of the protein hexokinase-II 
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(MIASHLLAYFFTELN) and a cell penetrating peptide derived from the Ki-67 sequence (i.e. 

KVLKQRAKKK).  

 

The shapes and the sizes of the self-assembled amphiphilic peptide aggregates are crucial 

for the drug delivery efficacy in addition to their charge and interfacial characteristics. The 

transport and diffusion properties of nanocarriers with elongated shapes are different from those 

of the sphere-shaped particles. The latter move faster and accumulate to a lower extent at 

interfaces. At variance, the circulation time of the rod-like particles is prolonged with regards to 

spherical ones. Thus, the nanocarrier shape and geometry have impact on the drug transport 

across the biological barriers and the cellular internalization process.  

Elongated, rod- and tubule-shaped nanoparticles may be more efficient in controlled release 

applications because of the increased circulation time and the promoted adhesive interactions 

with the cellular membranes. However, it is challenging to achieve a control over their 

asymmetric geometries in the nanoscale range. Moreover, such long objects may cause 

remodeling of the plasma membranes.  

Quite often, the self-assembly of amphiphilic peptides yields fibers, which considerably 

exceed nanoscale dimensions and form micrometer-long aggregates.7,76 Long nanotubes may 

also reach macroscopic sizes. Delivery carriers of such micrometer-large dimensions are 

challenging for a systemic administration of drugs and generally should be avoided for parenteral 

use (via injections). Consequently, topical applications, such as implants and intracutaneous 

administration, have been envisioned for their clinical use.7   
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Drug delivery carriers of sizes typically below 100 nm can evade the systemic clearance. 

Therefore, the ellipsoid-like nanoassemblies, as those reported in Figure 5, may be expected to 

display higher therapeutic efficacy in parenteral drug delivery. 

 

Discussion on the applications of amphiphilic peptides in drug delivery 

The advantages of using peptides as delivery systems rather than other chemicals rely on 

their biocompatibility, their low cost and facile synthesis using standard solid-phase techniques, 

their tunable bioactivity, and targeting opportunities including for instance nuclear localization 

sequences (NLS) or mitochondria targeting fragments. The peptide self-assembly into 

nanostructures can provide reservoirs with enhanced drug delivery efficiency and can permit the 

extension of the half-life of the encapsulated biomolecules. Peptide-based drug delivery carriers 

comprise various supramolecular architectures including nanotubes, vesicles, micelles, 

cubosomes, and hydrogels constituted of self-assembled fibers.4,6,7,13,15,24,26,33-35 Vesicles and 

micelles offer interesting possibilities to encapsulate or covalently bind therapeutic 

molecules.20,22,26,27,76-78 

The research on application of amphiphilic peptides in therapeutic delivery and regenerative 

medicine (e.g. ocular drug delivery, vaccine delivery, and anticancer agents delivery) constantly 

increases.3-10,13-24,35-39 Besides the wide range of potential biomedical applications in tissue 

engineering, imaging and diagnostics, comprehensive reviews have been published about the use 

of amphiphilic peptides for delivery of biotherapeutics such as oligonucleotides, proteins, or 

siRNA.3,7,23,24,26,35,37,51,52,58,75-84 Cell-penetrating peptide amphiphiles can form complexes with 

siRNAs and mediate the delivery of nucleic acids toward gene silencing in gene therapy.35,53-58 

They have successfully delivered drugs and photosensitisers in vitro and in vivo, for instance in 
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cultured rabbit lens epithelial cells.19 The reported uptake mechanisms are varied among 

endocytosis, membrane breaking and translocation, or macropinocytocis.  

One of the most promising research directions on peptide amphiphiles includes cancer 

treatment strategies.5,20-22 Recent reports have shown that treatments of breast cancer could be 

improved by coupling the active drug molecule to a cell-penetrating peptide.20,37,39 The 

conjugation of an anti-cancer cargo to a CPP can improve tumor targeting and the in vivo drug 

transport, thus reducing the side effects of the therapy.20,39  

Peptide-based hydrogels have been used for controlled drug release and are the most 

common and studied self-assembled peptide nanostructures at the time.6,7,67,78,84 The regenerative 

potential of hydrogels composed of peptide amphiphile nanofibers has been examined in various 

applications, e.g. traumatic injury of spinal cord, bone regeneration, and promotion of neurite 

formation.67,79 Peptide amphiphile hydrogels have provided sustained release of therapeutic 

proteins (e.g. trophic factors) in topical applications.7 The bioactivity of the entrapped proteins 

has been preserved over long periods. Hydrogels of supramolecular peptide amphiphile 

nanofibers, loaded with drugs and high affinity antibodies, can suppress tumor growth in cancer 

therapy. A concrete example is the RADA16-I peptide,15 which has been the subject of a number 

of studies on protein release kinetics, breast tissue reconstruction, and also for the elaboration of 

peptide fibrous scaffolds for commercial purposes (e.g. the PuraMatrix
TM product).  

 
Conclusion 

Taking into account the expanding applications of amphiphilic peptides in nanobiomaterials 

science and regenerative nanomedicine, the development of efficient algorithms for CPPs 
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prediction and evaluation of the peptide properties is crucial for the acceleration of the 

translational research into clinics.  

We proposed a combined computational design approach, which comprises a set of 

algorithms that is applied for scanning of naturally occurring protein sequences for CPP 

fragments towards the identification of candidate amphiphilic peptides with desired features. The 

amphiphilic peptide scaffolds are created from at least two building blocks. The hydrophobic 

domains can be designed from transmembrane protein fragments, which are available in the 

protein databank of transmembrane proteins (pdbtm). The hydrophilic domains can be designed 

as CPP sequences, which are derived from proteins with biosurfactant properties. In perspective, 

the outcome of the suggested combined algorithm may include also the uptake score of the CPPs 

and their mode of cellular internalization. 
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