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Abstract. Functional connectivity is a neurobiological notion, informally stating that there would be a strong
dependence between neurons and that this dependence might be useful in understanding the way the
brain encodes stimuli, programs actions, etc. However, in practice such strong dependencies are often
reconstructed via Hawkes processes based on an amazingly small number of neurons, because of the
very scarce observation of this very complex and huge network. We derive new simple equations, which
explain how the ideal Hawkes reconstruction is linked to the covariance between the observed neurons.
These equations help us in particular to understand what the Hawkes reconstruction does in two settings,
synchronization and classical point process asymptotics. Moreover they might help us to also understand
what is qualitatively happening at the scale of the huge unobserved network, paving the path for a possible
mathematical definition of functional connectivity.
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Version française abrégée

La connectivité fonctionnelle est une notion neurobiologique, qui affirme informellement qu’il y
aurait une forte dépendance entre neurones et que cette dépendance pourrait être utilisée pour
comprendre comment le cerveau encode les stimuli, programme les actions, etc. Cependant, en
pratique, ces fortes dépendances sont souvent reconstruites, grâce aux processus de Hawkes, sur
un nombre incroyablement faible de neurones, parce que l’observation du réseau sous-jacent
est excessivement partielle. Nous prouvons de nouvelles équations qui expliquent comment la
reconstruction idéale par processus de Hawkes est liée à la covariance entre neurones observés.
Ces équations nous aident à comprendre ce que fait exactement la reconstruction par processus
de Hawkes dans deux cadres asymptotiques, la synchronization et le cadre classique des proces-
sus ponctuels. De plus, elles pourraient nous permettre de comprendre qualitativement ce qui se
passe dans l’immense réseau non observé, ouvrant la voie à une possible définition mathéma-
tique de la connectivité fonctionnelle.
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1. Introduction

The brain is constituted of several types of cells, including excitable cells, called neurons, which
are able to produce electrical signals called action potentials (discretized as spikes). Cognition
is the result of millions of neurons which are working together in a fine orchestration. Many
experiments have shown that the electrical activity of neurons can depend strongly on the activity
of other neurons, in particular through synchronization [12, 20, 31]. But does synchronisation
require that the neurons are physically connected to each other? More generally, is it possible for
non connected neurons to strongly depend on each other? Can we explain it from a mathematical
point of view?

In biology, the synchronization of neurons leads to the concept of neuronal assemblies.
Historically, Donald Hebb assumed that an assembly consists of neurons ’wiring together and
firing together’ to achieve a behavior at individual level [16]. At this time, Hebb did not have
the experimental apparatus to verify his assumption. Once neuroscientists had the experimental
capacity to record the electrical activity of particular neurons in vivo (i.e., during the behavior of
animals), they validated statistically the firing part assertion - not the wiring one [11]. Assemblies
were then populations of neurons whose high dependency may code for stimulus, action or
anticipation [28, 29, 32].

More recently a notion has emerged in neuroscience: the functional connectivity [10]. This can
be thought as highly dependent brain areas at functional neuroimaging approaches such as fMRI,
but more microscopically, this pools down to say that neurons may be highly dependent and form
a network of strong interactions that can evolve in time, thanks to external stimuli, for instance.
This statistical dependence between neurons does not mean necessarily that neurons are wired
- that is, physically connected. Indeed, dependent neurons can be indirectly connected. The
statistical dependence or graph of dependence obtained may therefore be part of the neural code
and used for decoding. However, the significance of this dependence is very hard to establish
because there are few data in the recordings. Indeed, at least at the microscopic neuronal scale,
the recordings of electrical action potentials are very scarce.

Let us detail a bit more how classical neuronal recordings are made in vivo to understand the
magnitude of this scarcity. Most in vivo experiences in electrophysiology are at the extracellular
level. The electrodes implanted in the extracellular medium are recording a difference of elec-
trical potential. In particular, they are sensible to the action potentials emitted by nearby neu-
rons, but the extracellular spike amplitude decreases rapidly as a function of distance from the
neuron [17]. It is usual in vivo to record the precise activity dynamics of a few tens of neurons
with apparatus called tetrodes [18] [15] or few hundreds of neurons with apparatus called sili-
con probes [7] [19] when an animal is performing a task, whereas the brain area that is recorded
contains more than 1000 times this number of actually physically connected neurons. Due to
the physical constraints of the recording, the order of magnitude is terrific: even if the appa-
ratus could "sense" the Local Field Potential (LFP), that is, the sum of the electrical activity of
thousands of neurons [3, 17], the neurons, whose action potentials are concretely identified and
recorded by the same apparatus, are just a few tens or hundreds. The scarcity is so large that, in
most experiments, neurobiologists do not dare to assume any sort of physical connectivity be-
tween the recorded neurons.

Nevertheless, an amazing phenomenon takes place. These observed neurons are sometimes
dependent and one may reconstruct a local dependence graph [8, 14], which we might be
tempted to assimilate to the graph of "functional connectivity" and which can be used to decode
the neural code [22, 27]. However from a more mathematical point of view, what do we actually
reconstruct? How can a few tens of neurons taken more or less at random in the network still be
that strongly dependent from a mathematical point of view? What does it tell us on the underlying
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Figure 1. Difference between the real underlying network and the reconstructed one.

full network?
To answer these questions, a model of neuronal interactions needs to be settle properly.

Hawkes processes and variants have been used in many articles as a model for interacting neu-
rons [23, 25]. Indeed, the shape of their intensity mimics approximately the synaptic integration.
In particular, they have been used as a model for statistical purpose to infer functional connectiv-
ity [22, 26, 27]. However there is one main problem to this global approach. Most of these articles
have assumed that the observed neurons form the totality of the network, whereas this is often
not the case. Few have tried to address the problem of statistical inference in this framework. Let
us cite in particular [9, 24].

These two approaches tend to prove that if the recordings are made on wired neurons, the
reconstruction of the network is locally correct. We want to go further and treat more general
cases. More precisely, we want to understand what is the meaning of the reconstructed network
on observed neurons with respect to the full network, even if the recorded neurons are not wired
(see Figure 1). To do that, we use an ideal estimator : the L2 projection of the underlying intensity
on the Hawkes-like intensities that are based on the observed neurons. It is ideal in the sense that
classical (penalized) least-square estimators [14, 22, 24] tend to this ideal, when the observation
time tends to infinity.

Mathematically, the aim of the present work is to understand what this projection is and to
derive what information on the underlying unobserved network, this projection is providing.
We hope that this new approach will help to mathematically define the functional connectivity
as a macroscopic phenomenon involving populations of neurons as in the neuronal assemblies
concept.

2. Mathematical set-up

We are using a discrete framework as in [6, 24], which is an approximation of the classically
continuous-time point processes that represent action potentials (or spikes) [14,22]. This models
the fact that we access information on the presence or absence of spike in a bin of time. We have
decided to give an order of magnitude ∆ to the size of the bin to see the impact of discretisation
and give a qualitative order of magnitude to the different quantities when ∆ tends to 0 (see
also [20] for similar consideration: in their case, this is used for synchronization). In practice,
∆ is at most a few milliseconds.

Let I be the possible infinite set of neurons of the network. Let ∆ be the size of the time bin
at which we are looking at the network. Then for all i ∈ I and t ∈ Z, X i

t is the 0/1 variable which
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tells if there is no spike or at least one spike emitted by neuron i in the t th time bin. We denote
X t = (X i

t )i∈I .
Note that when the size of the bin ∆ tends to 0, we recover the continuous-time framework

of point processes (see in particular [20] for a full mathematical explanation on this limit).
Informally, one can view this asymptotic as a fixed limit point process, which is observed at a
coarser and discrete time resolution, ∆ > 0: when the size of the discretization tends to 0, we
recover the limit point process.

We are assuming throughout the present paper that (X t )t∈Z is stationary. Moreover, since each
neuron cannot fire in practice at more than 100 Hz, we are assuming that for each i , there exists
some constant mi , which represents their firing rate and that are bounded by a fixed constant M
that does not depend on ∆, so that,

∀i ∈ I , E(X i
t ) =P(X i

t = 1) = mi∆. (1)

Let us call m the vector of firing rates. Note that (1) makes sense as soon as M∆ ≤ 1. Indeed in
practice, ∆ is of the order of at best a few millisecond, whereas M = 100 Hz.

Let us denote V the covariance of the system, that is

∀i , j ∈ I ,h ∈Z, V (i , j ,h) = E(X i
t X j

t+h)−mi m j∆
2.

Let us denote the limit by →, whereas ∼ denotes the equivalent, that is f (∆) ∼∆→0 h(∆) if and
only if f (∆)/g (∆) →∆→0 1. Also in the sequel, f (∆) = O(∆α) means that there exists a positive
constant C such that for ∆ small enough, f (∆) ≤C∆α.

Note that for all neurons i , j ∈ I and lag h ∈ Z, V (i , j ,h) = V ( j , i ,−h) and that when i = j and
h = 0,

V (i , i ,0) = mi∆(1−mi∆) ∼∆→0 mi∆.

Remark that since the variables are Bernoulli, this covariance is also measuring the strong
mixing coefficients of X t .
We consider 2 different asymptotic set-ups.

Synchronization. If we follow [20], synchronization between 2 neurons, say j and i , amounts
to say that P(X i

t = 1 and X j
t = 1)/∆ →∆→0 s j ,i ,0, where s j ,i ,0 would be the "firing rate" of the

synchronisation. We can generalize it with some lag: j and i synchronize with lag h (where h
can eventually be seen as a function of ∆, i.e. h = h(∆)) if

1

∆
P(X i

t = 1 and X j
t+h(∆) = 1) →∆→0 si , j ,h .

Note that for all neurons i , j ∈ I and lag h, s j ,i ,h = si , j ,−h and that these quantities are bounded by
M too since

s j ,i ,h ≤ min(mi ,m j ).

Finally note that if j and i synchronize with lag h, then

V (i , j ,h) ∼∆→0 si , j ,h∆.

As explained in [20], the limiting point processes (N i
t , N j

t ) do not form a classical multivariate
point process with stochastic intensity, because for instance with lag h = 0, a spike on N i

t can

occur exactly at the same time as a spike on N j
t . For more general lag h, one can have a fixed

h (e.g. h = 1) for instance and therefore, in the limit where ∆ → 0, spikes on each neuron
can also happen at the same time, in the limit, with non zero probability. We could also have
∆h(∆) →∆→0 δ > 0 and then there might be a fixed delay between the spikes even in the limit,
with non zero probability.

The first case, when h is fixed, is the most usual. It means in practice that spikes on neuron j
and i can occur with non zero probability within a time delay less than h∆. This matches classical
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definition and detection of synchronization (see for instance [12]). Indeed for classical recordings
analysis as in [12, 13], ∆= 10−3s and h is between 5 and 20.

Classical point process asymptotic. On the other hand, we might think that, if there is an
influence between i and j , this is not done at such a small temporal scale and that asymptotically
(N i

t , N j
t ) will be nicely behaved point processes with stochastic intensities with respect to the

Lebesgue measure. More generally, this tells us that the probability that two spikes for two
different neurons occur in the exact same bin t is much smaller than ∆ and of order ∆2, that
is

∀i , j ∈ I , E(X i
t X j

t ) =O(∆2),

which somehow prevent too frequent perfect synchronization.
In the same spirit, for any fixed time lag h, we should have

∀i , j ∈ I , E(X i
t X j

t+h) =O(∆2),

to ensure that, in the same sense, we cannot have too much synchronization with prescribed lag
h.

This implies that except V (i , i ,0), which is of order ∆, all other V (i , j ,h) are of order ∆2. As
discussed later in Section 4.3, such a small interaction might seem realistic.

3. Ideal reconstruction

We consider the problem where we observe only a finite subset F of I . The statistician then often
does as if the set of observed neurons is the totality of the network and he/she tries to fit a Hawkes
model on the data at hand. More mathematically, in this discrete time set-up, he/she wants to
evaluate µi and g j→i for i and j in the set of observed neurons F (and not in the complete set of
neurons I which is not totally observed) such that

φi
µ,g (t ) =µi +

∑
i∈F

t−1∑
s=t−A

g j→i (t − s)X j
s

represents the probability for a given neuron i to spike at time t given the past spikes on the
observed neurons. Informally, µi would correspond to the spontaneous firing rate when none
of the other observed neurons have fired whereas g j→i : {1, ..., A} ⊂ N∗ → R is the interaction
function which gives how much neuron j excites or inhibits neuron i after a certain delay in
{1, ..., A}. In practice, A is small with respect to the classical duration of recordings (typically up to
100 ms whereas a recordings might last several minutes) and A reflects the range of the potential
interaction between neurons, but it might be interesting to consider A increasing in ∆ or even
A =+∞ (see Section 4). Note also that by convention, outside of {1, ..., A}, g j→i is null : since we
are looking at prediction of the spiking behavior of X i given the past, it is logical to look only at
non negative indices. Note in particular, that we are also forcing the functions to be null in 0,
which means that the reconstruction of the interactions between neurons is always done with
some delay and cannot be instantaneous.

In the present article, we do not need to precise conditions for φi
µ,g (t ) to be a conditional

probability (in [0,1]). Indeed, and as proved by many articles using least-squares [14, 22, 24] (see
in particular the oracle inequalities), the main point is to say that, for a wide range of ergodic
stationary processes (X t )t∈Z at least, the resulting estimator aims at minimizing the following
quantity, when the duration of the observed spike trains tends to infinity,

E
(
[X i

t −φi
µ,g (t )]2

)
, (2)

quantity which does not depend on t , by stationarity. Note that we use this L2 criterion, because
it is particularly well suited to deal with the covariance matrix of the system, which is linked to the
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strong mixing coefficient in the special case of Bernoulli variables. However in the simple case
of Bernoulli variables, the L2 distance is equivalent to the total variation distance, and is smaller
than the Hellinger or Kullback-Leibler distances, for which computation would have been more
difficult.

Because E([X i
t ]2) does not depend on µ = (µi )i∈F and g = (g j→i (u))i , j∈F,u∈N∗ , we can also say

that the minimizer in (µ, g ) is minimizing for all i ,

C i (µ, g ) =−2E
(

X i
0φ

i
µ,g (0)

)
+E

(
[φi

µ,g (0)]2
)

. (3)

Theorem 1. Let A be a positive integer or A = +∞ and let F be a finite subset of I . Let also IF be
the identity matrix of size the cardinal of F , |F |.

The L2 projection of (X i
0)i∈F on the vectorial space{(
φi
µ,g (0)

)
i∈F

/
µ ∈RF , g ∈RF×F×{1,...,A}

}
is given by the choice (µ̄, ḡ ) which satisfies

µ̄= (IF − Ḡ)mF∆ (4)

where Ḡ is the square matrix of size |F |, such that Ḡi , j = ∑
u>0 ḡ j→i (u) and mF = (mi )i∈F is the

vector of firing rates restricted to the set of observed neurons. Moreover, for all i , j ∈ F and positive
integer u,

V ( j , i ,u) =V ∗ ḡ ( j , i ,u), (5)

where

V ∗ ḡ ( j , i ,u) = ∑
k∈F

∑
s>0

V ( j ,k,u − s)ḡk→i (s).

NB : The last equation corresponds to a convolution operator. Similar equations have been
derived in the literature when the whole network is observed and the Hawkes model is true [25].
Close formula have also been derived in the continuous framework and the present equation
can be put in perspective with respect to the Wiener Hopf equation [1]. However, up to our
knowledge, no such equations were derived on the covariance when the Hawkes model is not
assumed to be true and when only a small subset of the neurons are observed.

Proof. Since φi
µ,g (t ) is linear in (µ, g ), C (µ, g ) is convex and minimal when its derivative is null.

Let us call (µ̄, ḡ ) the value of the minimizer. The minimizer should therefore verify

∀i ∈ F, ∂µi [C i (µ̄, ḡ )] = 0 (6)

∀i , j ∈ F,u ∈N∗, ∂g j→i (u)[C
i (µ̄, ḡ )] = 0 (7)

This leads to the following interpretation. With (1), we have that for all i ∈ F ,

∂µi C i (µ̄, ḡ ) = −2E
(

X i
0

)
+2E

(
φi
µ̄,ḡ (0)

)
= 2

[
µ̄i +

∑
j∈F

∑
u>0

ḡ j→i (u)m j∆−mi∆

]

Using (6), the vector µ̄ of size |F | should satisfy

µ̄= (IF − Ḡ)mF∆. (8)
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On the other hand,for all i , j ∈ F and positive integer u,

∂g j→i (u)C
i (µ̄, ḡ ) = −2E(X i

0 X j
−u)+2E

(
X j
−uφ

i
µ̄,ḡ (0)

)
= −2V ( j , i ,u)−2m j mi∆

2 +2m j∆µ̄i +2
∑

k∈F

∑
s>0

ḡk→i (s)E(X k
−s X j

−u)

= −2V ( j , i ,u)−2m j mi∆
2 +2m j∆µ̄i +2

∑
k∈F

∑
s>0

ḡk→i (s)
[
E(X k

−s X j
−u)−mk m j∆

2
]

+2
∑

k∈F

∑
s>0

ḡk→i (s)mk m j∆
2

But by (8) ∑
k∈F

∑
s>0

ḡk→i (s)mk∆= mi∆− µ̄i .

Moreover,

E(X k
−s X j

−u)−mk m j∆
2 =V ( j ,k,u − s),

which concludes the proof.
�

4. Interpretation

4.1. About µ̄

If the process X was a Hawkes process on the set of observed neurons F with parameter µ̄ and ḡ ,
that is for all i ∈ F, t ∈Z

P(X i
t = 1|(X j

s ) j∈F,s<t ) =φi
µ̄,ḡ (t ),

then it is easy to see, by taking expectation on both sides, that

mF∆= (IF − Ḡ)−1µ̄.

So in this sense, the formula (4):

µ̄= (IF − Ḡ)mF∆,

is a generalization, which applies even if X restricted to F is not a Hawkes process. It just tells
us that the "projected" µ̄ is what cannot be explained in the mean firing rate of neuron i by the
interactions with the other neurons j that have been observed including j = i (that is the auto-
interaction). Indeed, the term ḠmF∆ is exactly the fraction of firing rate which can be explained
through the interaction, ḡ . Moreover, in Theorem 1, there is no need to assume any restriction
on Ḡ, such as a spectral radius less than 1 (which guarantees the invertibility of IF − Ḡ) and it is
totally possible to have negative µ̄i as a solution of (4).

The estimation of [14, 22] is performed by a Lasso estimator, which is sparse and therefore
might eventually put the estimation of µi to 0. The Lasso penalty which enforces sparsity is there
to take care of the level of noise and would eventually tend to 0 when the observation time is
infinite. Therefore, when this estimator finds 0 for the spontaneous part µ̄i of neuron i , it means
that up to the inherent level of noise in the observation, the firing rate of i is totally explained by
what is seen on the other observed neurons.
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4.2. About ḡ

Note that ḡ does not need µ̄ to be found. Indeed, by (5), for all i , j ∈ F and positive integer u,

V ( j , i ,u) = ∑
k∈F

∑
s>0

V ( j ,k,u − s)ḡk→i (s).

Note that this equation might be read as "There is (at least) a relay neuron k and a positive
delay s such that j and k are correlated at lag u − s (either positive or negative) and then, the
interaction ḡk→i (s) projects this dependence onto the covariance of j and i at lag u".

This is a linear system, which might not have a solution, or could have several. However using
Z transform or Fourier transform, it is easy to find conditions where this system is invertible. One
of the main hidden assumptions, for this kind of inversion to work, would be that X is mixing
enough in a certain sense (for instance ρ-mixing), assumption which is quite usual for these kind
of ergodic processes. This leads to estimators of ḡ that have already been used several times by
Bacry and coauthors (see for instance [1]).

We do not want to go into a discussion about the merits of one estimator or another. In
any case, all these estimators converge eventually towards the L2 projection, that is, the ideal
reconstruction described in Theorem 1. So let us just consider ḡ solution of (5) and let us assume
that it is bounded by R when ∆→ 0. Let us now discuss what the existence of such a solution
would mean depending on the different asymptotics: synchronization or classical point process
asymptotic.

Synchronization. Let us assume that some neurons in the observed set F , are synchronized at
very particular small lags, that is very few V ( j , i ,u) are of order ∆ whereas the others are of order
∆2. Assume also that the range A as well as the number of observed neurons |F | is small and does
not grow with ∆.

We can easily see that in the asymptotic∆→ 0, most of the V ( j , i ,u) vanish at first order, except
the ones with synchronization and the terms V ( j , j ,0). So what remains is

(i) if j and i synchronizes with lag h,

s j ,i ,h = ḡ j→i (h)m j +
∑

k sync. with j at lag h−`
s j ,k,h−` ḡk→i (`).

(ii) if j and i are not synchronized at lag h,

0 = ḡ j→i (h)m j +
∑

k sync. with j at lag h−`
s j ,k,h−` ḡk→i (`).

The interpretation is close to the one for µ̄ at the level of the system ḡ : in the limit ∆→ 0, ḡ j→i

is here to explain what is not explained by other synchronizations in the system (case (i)), or
eventually to cancel out what is explained by the other interactions so that we do not see any
synchronization in the limit (case (ii)). So the estimation by the Hawkes process is disentangling
the interactions. For instance, if we have synchronization with delay 1 between neuron 1 and 2,
and synchronization with delay 1 between neuron 2 and 3, it may happen that synchronization
between 1 and 3 occurs at delay 2, but if strong ḡ1→2(1) and ḡ2→3(1) are sufficient to explain s1,3,2,
ḡ1→3(2) will be 0. On the other hand, if it is not sufficient to explain it then ḡ1→3(2) will be positive
to augment the effect. Of course, if there is no synchronization at all between neuron 1 and 3 at
lag 2, then eventually ḡ1→3(2) will be negative to cancel the effect. This is a very basic example
but more generally, Hawkes processes will use the delays between synchronization to get a graph
of interactions between the neurons (where j influences i if ḡ j→i 6= 0), which would explain the
pattern of covariance.
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This also underlines why Hawkes processes estimation cannot take well into account synchro-
nization with no lag at all (h = 0), because the estimation process cannot turn it into a cause-effect
link : indeed the graph of interaction is directed because the cause precedes the effect.

Classical point processes asymptotic. Now let us assume that all the V ( j , i ,h) are of order ∆2

except V ( j , j ,0) and let us start again with a fixed range A and a fixed set of observed neurons F .
In this case, we see that

V ( j , i ,u) =V ( j , j ,0)ḡ j→i (u)+O(|F |R A∆2).

Hence

O(∆2) = ḡ j→i (u)m j∆+O(|F |R A∆2)

Hence if |F |, R and A are sufficiently small to say that |F |R A∆ = o(1), we get that ḡ j→i (u) has to
be proportional to∆ in the limit. We have gained an order: if we assume ḡ =O(1), we have in fact
that ḡ =O(∆).

Let us denote ḡ j→i (u) = γ j→i (u)∆ so that γ j→i (u) is interpreted as an instantaneous firing rate
increase (or decrease) generated by a spike on neuron j with delay u on the firing rate at time 0
of neuron i .

We see in particular that, if we assume that γ is bounded too (say by Γ), then asymptotically

γ j→i (u)m j =V ( j , i ,u)∆−2 +O(|F |AΓ∆). (9)

This means that, basically, in the limit, the function ḡ j→i , which is reconstructed as the
link between j and i , is mainly reflecting the covariance between neuron j and i . The other
covariance terms V ( j ,k,u−s) only add correction terms that are essentially negligible in the limit
∆→ 0.

4.3. What does it mean for the underlying system ?

Now let us model the underlying network I .
Let us assume that (X t )t∈Z is a Hawkes process with (true) parameters (ν,ϕ). This means that

(ν,ϕ) are such that

P(X i
t = 1|(Xs )s<t ) = νi +

∑
i∈I

∑
s<t

ϕ j→i (t − s)X j
s .

The advantages of the Hawkes model is that the functions ϕ j→i are mimicking the synaptic
integration and that at the same time, the model is tractable. In particular, ϕ j→i is non zero
only for physically connected neurons.

A neuron gets thousands of synapses [30], that is physical connections, so that, if we want the
formula to hold, without adding any non linearities, we need some assumptions on the ϕ j→i to
make it small. So let us assume (as we have done in the classical point process asymptotic on the
projection) that, from now on, in the full network, for neurons i and j , ϕ j→i (.) = ψ j→i (.)∆, and
that the ψ j→i ’s are bounded byΨ.

This model means in particular that the interaction between two physically connected neuron
is (i) not instantaneous (there is a delay of at least ∆) (ii) quite small: in particular no individual
synapse is so strong that one spike of the presynaptic neuron can force alone the post synaptic
neuron to fire with macroscopic probability (this probability is microscopic in O(∆)).

Now we can look at the consequences of these assumptions on the covariance V ( j , i ,u).
Indeed Theorem 1 also applies to the whole set I . Since

E(X i
t |(Xs )s<t ) =P(X i

t = 1|(Xs )s<t ) =φν,ϕ(t ),
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and since the conditional expectation is an L2 projection on the past filtration, we have that (ν,ϕ)
should also satisfy (4) and (5). Hence, for all neurons j , i and all positive u

V ( j , i ,u) = ∑
k∈I

∑
s>0

V ( j ,k,u − s)ψk→i (s)∆

= ψ j→i (u)m j∆
2(1−m j∆)+ ∑

k∈I ,s>0,(k,s)6=( j ,u)
V ( j ,k,u − s)ψk→i (s)∆

So let us comment on the order of magnitude in this equation.

• First of all, assume there is synchronization, that is for some j , i ,u, V ( j , i ,u) > 0 and
V ( j , i ,u) = O(∆). With a Hawkes model, synchronization cannot come from a direct
interaction, which would be too small (O(∆2)), but from a macroscopic collaboration in
the network in time and space (from now on, by space, we refer to neurons). Indeed we
need, for instance, at least M neurons pointing at i (ψk→i 6= 0) and at least S different
lags, with corresponding V ( j ,k,u − s) = O(∆) (meaning that other neurons are also
synchronizing), such that MS = O(∆−1). If no other neurons are synchronizing and
V ( j ,k,u − s) =O(∆2), this could happen only if MS is even larger, that is MS =O(∆−2).

• Next let us assume that there is no synchronization and that we are in the classical point
process asymptotics where V ( j , i ,u) = O(∆2) for all ( j ,u) 6= (i ,0). Now let us pick two
neurons j and i that are observed and imagine that the reconstruction (µ̄, ḡ ) is such that
γ j→i (u) = ḡ j→i (u)∆−1 > 0. From (9), then (i) either ψ j→i is non zero, and then it means
that the neurons j and i are physically connected in I , (ii) or that there is at least M
neurons connected to i and correlated to i at S different lags and that MS = O(∆−1).
As already pointed out in the introduction, the case (i) "having in vivo two physically
connected neurons in the observed data" is not the usual situation, in practice.

5. Conclusion and Perspective

The present article aims at providing a mathematical set-up where the reconstruction of the
functional connectivity makes sense, even if the observed neurons are a very small subset of the
complete network.

We have shown mathematically in Theorem 1 how we can easily understand what the ideal
Hawkes reconstruction on a small number of neurons means in terms of firing rates and covari-
ance between the neurons.

Indeed we consider two cases. The first case is a strong correlation between neurons which
lead to synchronization. In this case the Hawkes reconstruction disentangles the reduced
network to point out what might be thought of "cause" and "effect". The second case is
for a smaller correlation (classical point process asymptotics in terms of the size of the time
discretization parameter) and show that the interaction functions in this case, mainly reflects the
covariance itself: only j or i are the cause or the effect and there is no need for "disentangling"
because the higher order interactions than the direct ones are negligible.

Assume now that a Hawkes model is underlying the full network and that the observed
neurons for which we recontructed an interaction are not likely to be physically connected.
Imagine also that the reconstructed graph between the observed neurons is not empty and
that there are interaction functions ḡ j→i that are reconstructed and that are large, in O(1)
(synchronization case) or O(∆). Then Equation (5) and its analysis in Section 4.2 imply that there
are at least some j , i ,u 6= 0 such that the covariance between neuron j and i at lag u is in O(∆) or
O(∆2). Finally the analysis in Section 4.3, lead us to think that this can only happen in practice
if the product MS is very large, where M is the number of neurons physically connected to the
neurons that are observed and where S is the range of the interaction.
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From a biological point of view, this can point out to two phenomenons (and probably both
are taking place)

• The physical connection between two neurons modeled by the interaction functionϕ j→i

correspond more or less to a postsynaptic potential. In this case, the range would be the
duration of the postsynaptic potential, which is of few milliseconds (hence few ∆). In
this sense, to provide such visible connections in the reconstruction on the small set of
observed neurons, M has to be huge and therefore the network is massively connected.
Moreover this massive connection cannot be made uniformly at random, since in this
case, we might have a potential mean-field limit, which might say that two neurons
picked at random are almost independent [5]. This could maybe be put in perspective
with respect to expander graphs [21].

• The physical connection has a much longer "memory", and might in particular take into
account learning phenomenons, such as spike-timing dependent plasticity [4] or long-
term potentiation [2] phenomena that are at play at the synapse level and which modifies
the strength of the interaction between physically connected neurons.

Of course, such heuristic conclusions need (i) to be precisely derived with adequate and
quantified assumptions and (ii) to use a more realistic framework from a biological point of
view than just the linear Hawkes process in discrete time. However we think this might give
an intuition of which phenomenon might explain such a strong dependence between scarcely
observed neurons.

Indeed, in view of all this heuristics results, we want to define functional connectivity from a
mathematical point of view as any macroscopic behavior of the network in time and space (across
neurons) that would result in high correlation between two neurons that are not necessarily
directly connected. This would explain both the local reconstruction that can be made through
spike train analysis and the more global approach at the brain area level with EEG. This would
also explain how one can decode stimulus and behavior from the connectivity graph of a very
few neurons [27]: in fact, the interaction that is estimated between neurons might result from a
massive interaction inside the whole network.
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