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ZETA-LIKE MULTIPLE ZETA VALUES IN POSITIVE

CHARACTERISTIC

HUY HUNG LE AND TUAN NGO DAC

Abstract. We study multiple zeta values (MZV’s) over the rational function
field over Fq which were introduced by Thakur as analogues of classical multiple

zeta values of Euler. In this paper we affirmatively solve a conjecture of Lara

Rodriguez and Thakur which gives a full list of zeta-like MZV’s of weight at
most q2 and depth 2. Further, we completely determine all zeta-like MZV’s

of weight at most q2 and arbitrary depth. Our method is based on a criterion

which is derived from the Anderson-Thakur motivic interpretation of MZV’s
and the Anderson-Brownawell-Papanikolas criterion for linear independence in

positive characteristic.
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1. Introduction

1.1. Classical multiple zeta values.

Multiple zeta values of Euler (MZV’s for short) are real numbers of the form

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knr

r
, where ni ≥ 1, nr ≥ 2.

Here r is called the depth and w = n1 + · · · + nr is called the weight of the
presentation ζ(n1, . . . , nr). For r = 1 we recover the special values ζ(n) for n ≥ 2
of the Riemann zeta function. These values have been studied in different contexts
with deep connections to mathematical physics, knot theory, mixed Tate motives,

Date: January 4, 2021.

2010 Mathematics Subject Classification. Primary 11M32; Secondary 11G09, 11M38, 11R58.
Key words and phrases. Function field arithmetic, Drinfeld and Anderson modules, t-motives,

multiple zeta values.

1



2 HUY HUNG LE AND TUAN NGO DAC

and modular forms (see the survey of Zagier [34] and the book of Burgos Gil and
Fresan [9] for more details and more complete references).

Relations among MZV’s have been studied extensively for the last three decades.
Of particular interest, we are interested in two special relations that were discovered
by Euler.

• The first one states that

ζ(n)

(2iπ)n
= −1

2

Bn
n!

for all n ≥ 2, n ≡ 0 (mod 2),

where Bn denotes the nth Bernoulli number. We say that ζ(n) for n ≥ 2
and n even is Eulerian.
• The second one is the following identity

ζ(1, 2) = ζ(3).

We say that ζ(1, 2) is zeta-like.

More generally, we say that a MZV ζ(n1, . . . , nr) is Eulerian (resp. zeta-like) if
ζ(n1, . . . , nr)/(2iπ)n1+···+nr (resp. ζ(n1, . . . , nr)/ζ(n1 + · · ·+ nr)) is rational.

Until now, we have extremely limited knowledge about zeta-like MZV’s. We
refer the reader to [19, Remark after Conjecture 4.3] and [30, §7.5] for a discussion
about the known Eulerian and zeta-like MZV’s. We also mention that a sufficient
condition for Eulerian MZV’s in terms of motivic MZV’s was given by Brown (see
[7, Theorem 3.3]), but this condition is not completely effective (see [12, §1] for a
detailed discussion).

1.2. Characteristic p multiple zeta values (MZV).

By a well-known analogy between the arithmetic of number fields and that of
global function fields conceived in the 1930s by Carlitz, we now switch to the
function field setting.

Let A = Fq[θ] be the polynomial ring in the variable θ over a finite field Fq of q
elements of characteristic p > 0. Let K = Fq(θ) be the fraction field of A equipped
with the rational point ∞. Let K∞ be the completion of K at ∞ and C∞ be the
completion of a fixed algebraic closure K of K at∞. We denote by v∞ the discrete
valuation on K corresponding to the place ∞ normalized such that v∞(θ) = −1,
and by |·|∞ = q−v∞ the associated absolute value on K. The unique valuation of
C∞ which extends v∞ will still be denoted by v∞.

In [10] Carlitz introduced the Carlitz zeta values ζA(n) for n ∈ N given by

ζA(n) :=
∑
a∈A+

1

an
∈ K∞

which are analogues of classical special zeta values in the function field setting. Here
A+ denotes the set of monic polynomials in A. For any tuple of positive integers
s = (s1, . . . , sr) ∈ Nr, Thakur [27] defined the characteristic p multiple zeta value
(MZV for short) ζA(s) or ζA(s1, . . . , sr) by

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > . . . >
deg ar. We call r the depth of ζA(s) and w(s) = s1 + · · ·+ sr the weight of ζA(s).
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We note that Carlitz zeta values are exactly depth one MZV’s. Thakur [28] showed
that all the MZV’s do not vanish.

Since their introduction many works have revealed the importance of these values
for both their independent interest and for their applications to a wide variety of
arithmetic applications, see for example [3, 4, 5, 6, 12, 22, 23, 24, 25, 29, 32, 33].
We refer the reader to the excellent surveys of Thakur [30, 31] for more details and
more complete references.

As in the classical setting one can argue that the main goal of this theory is
to determine all algebraic relations over K among MZV’s. It is worth noting that
analogues of the aforementioned identities of Euler were proved:

• In 1935 Carlitz [10] introduced analogues of the Bernoulli numbers BCn
and proved (see also [15, §9.2])

ζA(n)

π̃n
=
BCn
Γn

for all n ≥ 1, n ≡ 0 (mod q − 1).

Here π̃ is the Carlitz period which is the analogue of 2iπ (see [15, 27]), and
Γn ∈ A is the nth Carlitz factorial (see §2.3 for more details).
• In [29] Thakur proved

(θq − θ)ζA(1, q − 1) = ζA(q).

More precisely, we say that a MZV ζA(s1, . . . , sr) is Eulerian (resp. zeta-like) if
ζA(s1, . . . , sr)/π̃

s1+···+sr (resp. ζA(s1, . . . , sr)/ζA(s1 + · · ·+ sr)) belongs to K.

In [19, 30] Lara Rodriguez and Thakur proved some families of zeta-like MZV’s
and made several conjectures on zeta-like MZV’s based on the numerical evidence,
which will be discussed below.

1.3. A conjecture of Lara Rodriguez and Thakur.

In [19] Lara Rodriguez and Thakur showed (see [19, Remark p. 796]):

Theorem 1.1 (Lara Rodriguez-Thakur [19]). Let 1 ≤ i ≤ q and i ≤ j ≤ b q
2−i
q−1 c.

Then ζA(i, j(q − 1)) is zeta-like.

They conjectured that the converse also holds. A weak form of this conjecture
was stated in [19, Conjecture 4.4]. Later, Thakur [30] gave a slightly stronger form
which is given below (see [30, the discussion after Conjecture 7.3, p. 1010]).

Conjecture 1.2 (Lara Rodriguez-Thakur [19, 30]). All zeta-like tuples of weight at

most q2 and depth 2 are exactly (i, j(q−1)) such that 1 ≤ i ≤ q and i ≤ j ≤ b q
2−i
q−1 c.

The proof of Theorem 1.1 is of algebraic nature and based on explicit formulas
of power sums (see [19, §5]). We mention that Lara Rodriguez and Thakur have
extended their result for a more general setting (see [20, 26]). On the other hand,
the statement that there are no other zeta-like MZV’s is of a different nature, which
may need some elaborated transcendental tools.

1.4. Statement of main results.

We are ready to state the main results of our paper. First we present an affir-
mative answer to Conjecture 1.2.
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Theorem 1.3. All zeta-like tuples of weight at most q2 and depth 2 are exactly

(i, j(q − 1)) such that 1 ≤ i ≤ q and i ≤ j ≤ b q
2−i
q−1 c.

Next we extend our method and prove a similar result for zeta-like MZV’s of
weight at most q2 and depth 3.

Theorem 1.4. All zeta-like tuples of weight at most q2 and depth 3 are exactly
(1, q − 1, q(q − 1)).

In particular, there are no Eulerian MZV’s of weight at most q2 and depth 3.

Finally, we obtain a complete list of all zeta-like MZV’s of weight at most q2.

Theorem 1.5. All zeta-like tuples of weight at most q2 are exactly

• the tuples of depth 2: (i, j(q − 1)) such that 1 ≤ i ≤ q and i ≤ j ≤ b q
2−i
q−1 c,

• one tuple of depth 3: (1, q − 1, q(q − 1)).

Let us briefly outline the main ideas of the proofs of Theorems 1.3, 1.4 and 1.5.

(1) First, by using a motivic interpretation of MZV’s due to Anderson and
Thakur in [4] and the Anderson-Brownawell-Papanikolas criterion for linear
independence in positive characteristic in [2], Chang, Papanikolas and Yu
[12] succeeded in devising a criterion called the CPY criterion deciding
whether a MZV is zeta-like (resp. Eulerian). As a consequence we are
led to find non-trivial solutions of a system of difference equations having
Anderson-Thakur polynomials as parameters.

(2) Second, we apply the previous CPY criterion to determine all zeta-like
MZV’s of weight at most q2 and depth 2. In order to do so we manage to
completely solve the corresponding system of difference equations. We use
explicit formulas for Anderson-Thakur polynomials of weight at most q2

and carefully investigate both Eulerian and non-Eulerian cases. It settles
Theorem 1.3.

(3) Third, we apply the CPY criterion to determine the full list of all zeta-like
MZV’s ζA(s1, s2, s3) of weight at most q2 and depth 3. We observe that
the CPY criterion implies that ζA(s2, s3) is Eulerian. Thus by Theorem 1.3
above we obtain a very short list of (s2, s3). We then repeat the first two
steps to determine s1 and prove Theorem 1.4.

(4) Finally, we deduce from the CPY criterion and Theorem 1.4 that there are
no zeta-like MZV’s of weight at most q2 and depth at least 4. Theorem 1.5
is shown, and we are all done.

1.5. Organization of the paper.

Our paper is organized as follows. In §2 we briefly review the CPY criterion
deciding whether a MZV is zeta-like or Eulerian. We introduce the notion of dual
t-motives and recall the work of Anderson and Thakur [4] connecting dual t-motives
and MZV’s. After recalling the Anderson-Brownawell-Papanikolas criterion in [2]
we state the key CPY criterion deciding whether a MZV is zeta-like (resp. Eulerian).
The rest of the paper is devoted to the proofs of the main results (see §3 for Theorem
1.3, §4 for Theorem 1.4, and §5 for Theorem 1.5, respectively). At the end we give
some remarks in §6.
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2. A criterion for zeta-like and Eulerian MZV’s

We continue with the notation given in the Introduction. Further, letting t be
another independent variable, we denote by T the Tate algebra in the variable t
with coefficients in C∞ equipped with the Gauss norm ‖.‖∞, and by L the fraction
field of T.

2.1. Dual t-motives.

We recall the notion of dual t-motives due to to Anderson (see [8, §4] and [17,
§5] for more details). We refer the reader to [1] for the related notion of t-motives.

For i ∈ N we consider the i-fold twisting of C∞((t)) defined by

C∞((t))→ C∞((t))

f =
∑
j

ajt
j 7→ f (i) :=

∑
j

aq
i

j t
j .

We extend i-fold twisting to matrices with entries in C∞((t)) by twisting entry-wise.

Definition 2.1. An effective dual t-motive is a K[t, σ]-module M′ which is free
and finitely generated over K[t] such that for `� 0 we have

(t− θ)`(M′/σM′) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [12,
§2.2]. Note that Hartl and Juschka [17, §4] introduced a more general notion of
dual t-motives. In particular, effective dual t-motives are always dual t-motives.

Throughout this paper we will always work with effective dual t-motives. There-
fore, we will sometimes drop the word ”effective” where there is no confusion.

Let M and M′ be two effective dual t-motives. Then a morphism of effective dual
t-motives M→ M′ is just a homomorphism of left K[t, σ]-modules. We denote by
F the category of effective dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix Φ ∈ Matr(K[t]) if M is a
K[t]-module free of rank r and the action of σ is represented by the matrix Φ on
a given K[t]-basis for M. We recall that L denotes the fraction field of the Tate
algebra T. We say that an object M of F is uniformizable or rigid analytically
trivial if there exists a matrix Ψ ∈ GLr(L) satisfying Ψ(−1) = ΦΨ. The matrix Ψ
is called a rigid analytic trivialization of M. By [21, Proposition 3.3.9] there exists
a rigid analytic trivialization Ψ0 of M with Ψ0 ∈ GLr(T). Further, if Ψ is a rigid
analytic trivialization of M, then Ψ = Ψ0M with M ∈ Matr(Fq(t)).

2.2. Ext1-modules.

Let M′ be an effective dual t-motive of rank r over K[t]. We denote by Φ′ ∈
Matr(K[t]) the matrix defining the σ-action on M′ with respect to some K[t]-basis



6 HUY HUNG LE AND TUAN NGO DAC

of M′. Let M be the dual t-motive given by the matrix

Φ =

(
Φ′ 0
v 1

)
, with v = (v1, . . . , vr) ∈ Mat1×r(K[t]).

We note that M fits into an exact sequence of the form

0→M′ →M→ 1→ 0,

and so is an extension of the trivial dual t-motive 1 by M′, i.e. M represents a class
in Ext1F(1,M′).

Note that Ext1F(1,M′) has a natural Fq[t]-module structure defined as follows.

Let M1 and M2 be two objects of Ext1F(1,M′) defined by the matrices

Φ1 =

(
Φ′ 0
v1 1

)
∈ Matr+1(K[t]), v1 ∈ Mat1×r(K[t]),

and

Φ2 =

(
Φ′ 0
v2 1

)
∈ Matr+1(K[t]), v2 ∈ Mat1×r(K[t]).

Then for any a1, a2 ∈ Fq[t], a1∗M1+a2∗M2 is defined to be the class in Ext1F(1,M′)
represented by (

Φ′ 0
a1v1 + a2v2 1

)
∈ Matr+1(K[t]).

2.3. Dual t-motives connected to MZV’s.

Following Anderson and Thakur [4] we introduce dual t-motives connected to
MZV’s. We briefly review Anderson-Thakur polynomials introduced in [3]. For

k ≥ 0, we set [k] := θq
k − θ and Dk :=

∏k
`=1[`]q

k−`

. For n ∈ N we write n − 1 =∑
j≥0 njq

j with 0 ≤ nj ≤ q − 1 and define

Γn :=
∏
j≥0

D
nj

j .

We set γ0(t) := 1 and γj(t) :=
∏j
`=1(θq

j−tq`) for j ≥ 1. Then Anderson-Thakur
polynomials αn(t) ∈ A[t] are given by the generating series

∑
n≥1

αn(t)

Γn
xn := x

1−
∑
j≥0

γj(t)

Dj
xq

j

−1 .
Finally, we define Hn(t) by switching θ and t

Hn(t) = αn(t)
∣∣
t=θ, θ=t

.(2.1)

By [3, Eq. (3.7.3)] we get ‖Hn‖∞ < |θ|
nq
q−1
∞ .
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We consider the dual t-motives Ms and M′s attached to s given by the matrices

Φs =



(t− θ)s1+···+sr 0 0 . . . 0

H
(−1)
s1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 . . . 0

0 H
(−1)
s2 (t− θ)s2+···+sr

. . .
...

...
. . . (t− θ)sr 0

0 . . . 0 H
(−1)
sr (t− θ)sr 1


∈ Matr+1(K[t]),

and Φ′s ∈ Matr(K[t]) is the upper left r× r sub-matrix of Φs. Then Ms represents
a class in Ext1F(1,M′s).

Throughout this paper, we work with the Carlitz period π̃ which is a fundamental
period of the Carlitz module (see [15, 27]). We fix a choice of (q− 1)st root of (−θ)
and set

Ω(t) := (−θ)−q/(q−1)
∏
i≥1

(
1− t

θqi

)
∈ T×

so that

Ω(−1) = (t− θ)Ω and
1

Ω(θ)
= π̃.

Given s as above, Chang introduced the following series (see [11, Lemma 5.3.1] and
also [12, Eq. (2.3.2)])

L(s) = L(s1, . . . , sr) :=
∑

i1>···>ir≥0

(ΩsrHsr )(ir) . . . (Ωs1Hs1)(i1).(2.2)

Letting Γ(s) = Γs1 . . .Γsr , by [11, Eq. (5.5.3)] we have

(2.3) L(s)(θ) = Γ(s)ζA(s)/π̃w(s).

In particular, L(s)(θ) is non-zero since ζA(s) is known to be non-zero by Thakur
[28].

If we denote E the ring of series
∑
n≥0 ant

n ∈ K[[t]] such that limn→+∞
n
√
|an|∞ =

0 and [K∞(a0, a1, . . .) : K∞] <∞, then any f ∈ E is an entire function. It is proved
that L(s) ∈ E (see [11, Lemma 5.3.1]).

Then the matrix given by

Ψs =



Ωs1+···+sr 0 0 . . . 0
L(s1)Ωs2+···+sr Ωs2+···+sr 0 . . . 0

... L(s2)Ωs3+···+sr
. . .

...
...

. . .
. . .

...
L(s1, . . . , sr−1)Ωsr L(s2, . . . , sr−1)Ωsr . . . Ωsr 0

L(s1, . . . , sr) L(s2, . . . , sr) . . . L(sr) 1


∈ GLr+1(T)

satisfies

Ψ
(−1)
s = ΦsΨs.

Thus Ψs is a rigid analytic trivialization associated to the dual t-motive Ms.

We also denote by Ψ′s the upper r × r sub-matrix of Ψs. It is clear that Ψ′s is a
rigid analytic trivialization associated to the dual t-motive M′s.
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To end this section, for r ≥ 2 we let Ns ∈ F be the dual t-motive defined by the
matrix

(t− θ)s1+···+sr 0 0 . . . 0

H
(−1)
s1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 . . . 0

0 H
(−1)
s2 (t− θ)s2+···+sr

. . .
...

...
. . . (t− θ)sr 0

H
(−1)
w(s) (t− θ)s1+···+sr 0 . . . 0 1


∈ Matr+1(K[t]).

Then Ns represents also a class in Ext1F(1,M′s).

2.4. A criterion for zeta-like and Eulerian MZV’s in positive character-
istic.

We recall the Anderson-Brownawell-Papanikolas criterion which is crucial in the
sequel (see [2, Theorem 3.1.1]).

Theorem 2.2 (Anderson-Brownawell-Papanikolas). Let Φ ∈ Mat`(K[t]) be a ma-
trix such that det Φ = c(t − θ)s for some c ∈ K and s ∈ Z≥0. Let ψ ∈ Mat`×1(E)
be a vector satisfying ψ(−1) = Φψ and ρ ∈ Mat1×`(K) such that ρψ(θ) = 0. Then
there exists a vector P ∈ Mat1×`(K[t]) such that

Pψ = 0 and P (θ) = ρ.

We now state the following result for zeta-like (resp. Eulerian) MZV’s proved in
[12].

Theorem 2.3 ([12], Theorems 4.4.2 and 4.2.2). Let s = (s1, . . . , sr) ∈ Nr. Then
ζA(s) is zeta-like (resp. Eulerian) if and only if there exist c, d ∈ Fq[t] (resp.
c ∈ Fq[t]) with c 6= 0 such that c ∗Ms + d ∗ Ns (resp. c ∗Ms) represents a trivial

class in Ext1F(1,M′s).

We stress that since ζA(s) is non-zero, this result is an immediate consequence
of [12, Theorem 2.5.2] whose key tool is the Anderson-Brownawell-Papanikolas
(ABP) criterion as stated in Theorem 2.2. Roughly speaking, using rigid analytic
trivializations Ψs defined as above, one applies the ABP criterion to lift a K-linear
relation among MZV’s to a K[t]-linear relation among corresponding series defined
in (2.2), which gives enough information to conclude.

We also recall the following corollary of Theorem 2.3 which was also conjectured
by Lara Rodriguez and Thakur (see [19, Conjecture 4.1, Part 2]).

Corollary 2.4 ([12], Corollary 4.4.1). Let s = (s1, . . . , sr) ∈ Nr. Suppose that
ζA(s) is zeta-like. Then each of

ζA(s2, . . . , sr), . . . , ζ1(sr)

is Eulerian.

In particular, each si is divisible by q − 1 for all 2 ≤ i ≤ r.

By [12, Remark 3.1] it implies the following criterion which will be used in the
sequel.
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Theorem 2.5 ([12]). Let s = (s1, . . . , sr) ∈ Nr as above. Then ζA(s) is zeta-like
(resp. Eulerian) if and only if there exist c, d ∈ Fq[t] (resp. c ∈ Fq[t] and d = 0)

with c 6= 0 and polynomials δ1, . . . , δr ∈ K[t] such that

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w,(2.4)

δ2 = δ
(−1)
2 (t− θ)s2+···+sr + δ

(−1)
3 H(−1)

s2 (t− θ)s2+···+sr ,
. . .

δr−1 = δ
(−1)
r−1 (t− θ)sr−1+sr + δ(−1)r H(−1)

sr−1
(t− θ)sr−1+sr ,

δr = δ(−1)r (t− θ)sr + cH(−1)
sr (t− θ)sr .

Remark 2.6. 1) By [18, Theorem 2] we know that δ1, . . . , δr belong to K[θ] =
Fq[t, θ] and

(2.5) degθ δi ≤
q(si + · · ·+ sr)

q − 1
.

2) Note that if (δ1, . . . , δr, c, d) ∈ Fq[θ, t]r×Fq[t]2 is a solution of the above system
(2.4), then (fδ1, . . . , fδr, fc, fd) ∈ Fq[θ, t]r ×Fq[t]2 is also a solution of (2.4) for all
f ∈ Fq[t].

3. Proof of Theorem 1.3

This section aims to present a proof of Theorem 1.3.

3.1. Setup.

Let s = (s1, s2) ∈ N2 with s1 +s2 ≤ q2 such that ζA(s) is zeta-like. By Corollary
2.4 we can write s2 = `2(q− 1) for some `2 ∈ N. It suffices to show that we cannot
have `2 < s1 and s1 + `2(q − 1) ≤ q2.

Suppose that we do have `2 < s1 and s1 + `2(q − 1) ≤ q2. In particular,

(3.1) `2 < q

since `2q < s1 + `2(q − 1) ≤ q2. We will deduce a contradiction.

We start proving some preliminary results in §3.2 and then obtain a contradiction
by distinguishing two cases for the zeta-like MZV ζA(s): the non-Eulerian case in
§3.3 and the Eulerian case in §3.4. To do so we use two key ingredients: the bound
given in (2.5) and the explicit formulas for Anderson-Thakur polynomials of weight
at most q2. Roughly speaking, we consider δ1 as a polynomial in θ with coefficients
in Fq[t]. The explicit formulas for Anderson-Thakur polynomials of weight at most
q2 forces that δ1 is divisible by a product of certain factors. Then we manage to
prove that the latter product has degree strictly bigger than the bound given in
(2.5) so that δ1 = δ2 = 0, which is a trivial solution, and we are done.

From now on, we will use capital characters or Greek characters (e.g. F,G, δ)
for polynomials in Fq[t, θ] and usual characters (e.g. f, g) for polynomials in Fq[t].

3.2. Preliminaries.

We first recall Lucas’ theorem and refer the reader to [16] for more details.
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Lemma 3.1. For m,n ∈ N, we express m and n in base q

m = mkq
k + · · ·+m1q +m0,

n = nkq
k + · · ·+ n1q + n0,

with 0 ≤ mj , nj ≤ q − 1. Then we have the following equality in Fp(
m

n

)
=

k∏
j=0

(
mj

nj

)
.

We now prove some preliminary results which will be used later.

Lemma 3.2. Let F ∈ Fq[t, θ] be a polynomial. Suppose that F (t − θ) ∈ Fq[t, θq].
Then F = (t− θ)q−1G for some G ∈ Fq[t, θq].

Proof. We first suppose that degθ F < q. We write F = a0 + a1θ + · · ·+ aq−1θ
q−1

with a0, . . . , aq−1 ∈ Fq[t]. Then

F (t− θ) = a0t+

q−1∑
j=1

(ajt− aj−1)θj + aq−1θ
q.

Since F (t−θ) ∈ Fq[t, θq], it follows that for all 1 ≤ j ≤ q−1 we have ajt−aj−1 = 0,
that means aj = aq−1t

q−1−j . Therefore,

F = aq−1(tq−1 + tq−1θ + · · ·+ θq−1) = aq−1(t− θ)q−1.
Here the last equality follows from the fact that for all 0 ≤ j ≤ q − 1, we have
(−1)q−1−j

(
q−1
j

)
= 1 in Fp. We put G = aq−1 ∈ Fq[t] and we are done in this case.

We now move to the general case. We can always write F = F0+θqF1+· · ·+θkqFk
for some k ∈ N and some polynomials F0, . . . , Fk ∈ Fq[t, θ] with degθ Fj < q for all
0 ≤ j ≤ k. The hypothesis F (t − θ) ∈ Fq[t, θq] implies that Fj(t − θ) ∈ Fq[t, θq]
for all 0 ≤ j ≤ k. Thus by the previous discussion we deduce that there exist
G0, . . . , Gk ∈ Fq[t] such that Fj = Gj(t− θ)q−1 for all 0 ≤ j ≤ k. Therefore,

F = F0 + θqF1 + · · ·+ θkqFk

= G0(t− θ)q−1 + θqG1(t− θ)q−1 + · · ·+ θkqGk(t− θ)q−1

= (G0 + θqG1 + · · ·+ θkqGk)(t− θ)q−1.

We put G = G0 + θqG1 + · · ·+ θkqGk ∈ Fq[t, θq], and we are also done. �

As an immediate consequence we obtain the following result.

Lemma 3.3. Let k ∈ N and F ∈ Fq[t, θ] be a polynomial. Suppose that F (t−θ)k ∈
Fq[t, θq]. We denote by ` the unique integer such that 0 ≤ ` ≤ q − 1 and k + ` ≡ 0
(mod q). Then F = (t− θ)`G for some G ∈ Fq[t, θq].

Proof. The hypothesis F (t − θ)k ∈ Fq[t, θq] implies that F (t − θ)q−` ∈ Fq[t, θq].
Thus F (t− θ)q−`−1(t− θ) ∈ Fq[t, θq]. By Lemma 3.2 there exists G ∈ Fq[t, θq] such
that F (t− θ)q−`−1 = (t− θ)q−1G, i.e. F = (t− θ)`G as required. �

We now give explicit formulas for Anderson-Thakur polynomials Hn with n ≤ q2.
By direct calculations we deduce from (2.1)

• for 1 ≤ n ≤ q, we have Hn(t) = 1,
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• for q + 1 ≤ n ≤ q2, we put k = bn−1q c and get

Hn(t) =

k∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)k−j(tq − θq)j .(3.2)

For example, if q + 1 ≤ n ≤ 2q, then

Hn(t) = (tq − t) + n(tq − θq).

Furthermore, we prove the following results (see also [14, Proposition 4.10]).

Lemma 3.4. Let n ∈ N such that n = `(q − 1) with 1 ≤ ` ≤ q − 1. Then

Hn = H`(q−1) = (−1)`
(t− θq)` − (tq − θq)`

tq − t
.

Proof. Since 1 ≤ ` ≤ q − 1, we get n = `(q − 1) ≤ q2, and

bn− 1

q
c = b`(q − 1)− 1

q
c = b`− `+ 1

q
c = `− 1.

We use (3.2) to obtain

Hn(t) =

`−1∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)k−j(tq − θq)j

=

`−1∑
j=0

(
(`(q − 1)− 1)− jq + j

j

)
(tq − t)`−j−1(tq − θq)j

=

`−1∑
j=0

(
(`− 1− j)q + q − `− 1 + j

j

)
(tq − t)`−j−1(tq − θq)j

=

`−1∑
j=0

(
q − `− 1 + j

j

)
(tq − t)`−j−1(tq − θq)j

=

`−1∑
j=0

(−1)j
(
`

j

)
(tq − t)`−j−1(tq − θq)j

= (−1)`
(t− θq)` − (tq − θq)`

tq − t
.

Here the fourth equality holds by Lucas’ theorem (see Lemma 3.1), and the last
equality follows from the binomial expansion of (t − θq)` = ((tq − θq) − (tq − t))`.
The proof is finished. �

Lemma 3.5. We put n = q(q − 1). Then

Hn = Hq(q−1) = (tq − t)q−2.

Proof. We have

bn− 1

q
c = bq(q − 1)− 1

q
c = q − 2.
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We use (3.2) to obtain

Hn(t) =

q−2∑
j=0

(
(n− 1)− jq + j

j

)
(tq − t)q−2−j(tq − θq)j

=

q−2∑
j=0

(
(q(q − 1)− 1)− jq + j

j

)
(tq − t)q−2−j(tq − θq)j

=

q−2∑
j=0

(
(q − 1− j)q + j − 1

j

)
(tq − t)q−2−j(tq − θq)j

= (tq − t)q−2.

Here the last equality follows from the fact that for all 1 ≤ j ≤ q − 2, by Lucas’
theorem (see Lemma 3.1),(

(q − 1− j)q + j − 1

j

)
=

(
j − 1

j

)
= 0.

The proof is finished. �

3.3. The non-Eulerian case: (q − 1) - w.

The proof in this case is divided into three steps. By Theorem 2.5 and Remark
2.6 there exist c, d ∈ Fq[t] with c 6= 0 such that there exist δ1, δ2 ∈ K[t] verifying

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w,

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2 .

Step 1. We first compute the Anderson-Thakur polynomials.

• Since 1 < s1 < w ≤ q2, by (3.2) we get explicit formulas for Hs1 , Hw ∈
Fq[t, θ]. Further,

degθHs1 ≤ qb
s1 − 1

q
c,(3.3)

degθHw ≤ qb
w − 1

q
c.

• We know that 1 ≤ `2 < q by (3.1). By Lemma 3.4 we have

Hs2 = H`2(q−1) = (−1)`2
(t− θq)`2 − (tq − θq)`2

tq − t
.

Step 2. We solve the second equation

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2

for suitable c ∈ Fq[t]. By the above explicit formula for Hs2 it is clear that we can
take

c = tq − t,

δ2 = (−1)`2(t− θ)`2q = (θ − t)`2q.
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Step 3. We put n1 = b qwq−1c. We now solve the equation

δ1 = δ
(−1)
1 (t− θ)w + fδ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w(3.4)

where

• δ1 ∈ Fq[θ, t], δ1 6= 0 and degθ δ1 ≤ n1 by (2.5),
• f, d ∈ Fq[t] with f 6= 0.

Note that by Remark 2.6 we need an extra polynomial f ∈ Fq[t].
Since the right-hand side of (3.4) is divisible by (t − θ)w, it implies that δ1 is

also divisible by (t− θ)w. Since degθ δ1 ≤ n1, we write

δ1 = F (t− θ)w, F ∈ Fq[t, θ], degθ(F ) ≤ n1 − w.

Replacing this expression in (3.4) and twisting one time yields

(3.5) F (1) = F (t− θ)w + f(θ − t)`2qHs1 + dHw.

It follows that δ1 = F (t− θ)w ∈ Fq[t, θq].
We claim that

degθ F (t− θ)w ≤ degθ(f(θ − t)`2qHs1 + dHw).

Otherwise degθ F (t−θ)w > degθ(f(θ−t)`2qHs1 +dHw). It follows that degθ F
(1) =

degθ(F (t− θ)w). We deduce degθ F = w/(q − 1), which implies that q − 1 divides
w. We obtain then a contradiction.

We write

s1 = `1q + k1 + 1

with 0 ≤ k1 ≤ q − 1. Then

w = s1 + `2(q − 1) = (`1 + `2)q + k1 + 1− `2.

By (3.3) degθHs1 ≤ `1q and degθHw ≤ (`1 + `2)q. It follows that

degθ F (t− θ)w ≤ degθ(f(θ − t)`2qHs1 + dHw) ≤ (`1 + `2)q.

In particular, w ≤ (`1 + `2)q. Thus

(3.6) k1 + 1 ≤ `2

Therefore, `1 ≥ 1 since s1 = `1q + k1 + 1 > `2.

On the other hand, degθ F (t−θ)w ≥ w = (`1+`2)q+k1+1−`2 > (`1+`2)q+1−q.
Then the polynomial δ1 = F (t− θ)w ∈ Fq[t, θq] satisfies

(`1 + `2)q + 1− q < degθ F (t− θ)w ≤ (`1 + `2)q.

By Lemma 3.3 we conclude that

δ1 = F (t− θ)w = g(t− θ)(`1+`2)q

for some g ∈ Fq[t].
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Replacing this equality in (3.5) and using explicit formulas for Hs1 and Hw given
in (3.2) yields

g(t− θq)`2−(k1+1)

= g(t− θ)(`1+`2)q + f(θq − tq)`2
`1∑
j=0

(
(`1q + k1)− jq + j

j

)
(tq − t)`1−j(tq − θq)j

+ d

`1+`2−1∑
j=0

(
((`1 + `2)q + k1 − `2)− jq + j

j

)
(tq − t)`1+`2−1−j(tq − θq)j

We set

X := (t− θ)q = tq − θq

and rewrite the above equality as

g(X − (tq − t))`2−(k1+1)

= gX`1+`2 + (−1)`2fX`2

`1∑
j=0

(
`1q + k1 − jq + j

j

)
(tq − t)`1−jXj

+ d

`1+`2−1∑
j=0

(
(`1 + `2)q + k1 − `2 − jq + j

j

)
(tq − t)`1+`2−1−jXj .

Comparing the coefficients of X`2 yields

0 = (−1)`2f(tq − t)`1 + d

(
(`1 + `2)q + k1 − `2 − `2q + `2

`2

)
(tq − t)`1−1

= (−1)`2f(tq − t)`1 + d

(
`1q + k1

`2

)
(tq − t)`1−1

= (−1)`2f(tq − t)`1 .

Here the last equality holds by Lucas’ theorem (see Lemma 3.1) since `2 < q by
(3.1) and the fact that k1 + 1 ≤ `2 by (3.6). Thus f = 0.

Next comparing the coefficients of X`1+`2 yields

0 = g + (−1)`2
(
`1q + k1 − `1q + `1

`1

)
f.

Since f = 0, it follows that g = 0, which is a contradiction.

3.4. The Eulerian case: (q − 1) | w.

Since (q−1) | w and s2 = `2(q−1) for some `2 ∈ N, it follows that s1 = `1(q−1)
for some `1 ∈ N. Since s1 + s2 ≤ q2, we get `1 + `2 ≤ q + 1.

As before, the proof in this case is also divided into three steps. By Theorem 2.5
and Remark 2.6 there exist c ∈ Fq[t] with c 6= 0 such that there exist δ1, δ2 ∈ K[t]
verifying

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w,

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2 .
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Step 1. We compute the Anderson-Thakur polynomials. By Lemma 3.4 and the
fact that `2 < q by (3.1) we have

Hs2 = H`2(q−1) = (−1)`2
(t− θq)`2 − (tq − θq)`2q

tq − t
.

Step 2. We solve the equation

δ2 = δ
(−1)
2 (t− θ)s2 + cH(−1)

s2 (t− θ)s2

for suitable c ∈ Fq[t]. As before, by the above explicit formula for Hs2 it is clear
that we can take

c = tq − t,

δ2 = (−1)`2(t− θ)`2q = (θ − t)`2q.

Step 3. We put n1 = b qwq−1c = (`1 + `2)q. We have to solve the equation

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 fH(−1)

s1 (t− θ)w(3.7)

where

• δ1 ∈ Fq[θ, t], δ1 6= 0 and degθ δ1 ≤ n1 by (2.5),
• f ∈ Fq[t] with f 6= 0.

We see that δ1 is divisible by (t− θ)w. Since degθ δ1 ≤ n1, we can write

δ1 = F (t− θ)w, F ∈ Fq[t, θ], degθ(F ) ≤ n1 − w.

Replacing this expression in (3.7) and twisting one time yields

(3.8) F (1) = F (t− θ)w + f(θ − t)`2qHs1(tq − t).

It follows that δ1 = F (t− θ)w ∈ Fq[t, θq].
We distinguish four subcases.

3.4.1. Subcase 1: `1 + `2 < q.

Since `1 < `1 + `2 < q, then by Lemma 3.4,

Hs1 = H`1(q−1) = (−1)`1
(t− θq)`1 − (tq − θq)`1

tq − t
.

We know w = (q− 1)(`1 + `2) ≤ degθ δ1 ≤ n1 = q(`1 + `2) and δ1 = F (t− θ)w ∈
Fq[t, θq]. By Lemma 3.3 we deduce that δ1 = g(t− θ)q(`1+`2) with g ∈ Fq[t]. Thus
F = g(t− θ)`1+`2 . Replacing it in (3.8) we get

g(t− θq)`1+`2 = g(t− θ)q(`1+`2) + f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

If f 6= 0, then we obtain a contradiction since the right-hand side is divisible by
θ − t but not the left-hand side.
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3.4.2. Subcase 2: `1 + `2 = q with 1 ≤ `2 < q.

We have supposed that `2 < s1 = `1(q − 1) (see §3.1). Thus 1 ≤ `2 ≤ q − 2.

Since `1q − `2 < q, then by Lemma 3.4,

Hs1 = H`1(q−1) = (−1)`1
(t− θq)`1 − (tq − θq)`1

tq − t
.

Since w = (q − 1)(`1 + `2) = (q − 1)q and δ1 = F (t − θ)w ∈ Fq[t, θq], it follows
that F ∈ Fq[t, θq] and degθ F ≤ q. By (3.8),

F (1) = F (t− θ)q(q−1) + f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

The right-hand side is divisible by (θ− t)`2q. Thus F is divisible by (tq−θ)`2 . Since
F ∈ Fq[t, θq] and degθ F ≤ q, we get F = g(tq − θ)q with g ∈ Fq[t]. Hence

g(tq − θq)q = g(tq − θ)q(t− θ)q(q−1) + f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

Thus

g(tq − tq
2

)(t− θ)q(q−1) = f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

Since 1 ≤ `2 ≤ q − 2, we get g = f = 0, which is a contradiction.

3.4.3. Subcase 3: `1 + `2 = q + 1 with 1 < `2 < q.

Since `1 = (q + 1)− `2 < q, then by Lemma 3.4,

Hs1 = H`1(q−1) = (−1)`1
(t− θq)`1 − (tq − θq)`1

tq − t
.

Since `1 + `2 = q+ 1, it follows that w = (q−1)(`1 + `2) = q2−1. We know that

δ1 = F (t− θ)w ∈ Fq[t, θq]. By Lemma 3.3 we get δ1 = G(t− θ)q2 with G ∈ Fq[t, θq]
and degθ G ≤ q. Thus F = G(t− θ).

By (3.8),

G(1)(t− θq) = G(t− θ)q
2

+ f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

The right-hand side is divisible by (t − θ)`2q. It implies that G is divisible by
(tq − θ)`2 . Since G ∈ Fq[t, θq] and degθ G ≤ q, then G = g(tq − θ)q with g ∈ Fq[t].
Hence

g(tq − θq)q(t− θq) = g(tq − θ)q(t− θ)q
2

+ f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

We get

g(tq − θq)q(t− tq
2

) = f(θ − t)`2q(−1)`1((t− θq)`1 − (t− θ)`1q).

Since 1 < `2 < q, comparing the power of (t − θ) yields g = f = 0, which is a
contradiction.
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3.4.4. Subcase 4: `1 = q and `2 = 1.

The arguments are similar to those of Case 3 except the explicit formula for Hs1 .
By Lemma 3.5 we have

Hs1 = Hq(q−1) = (tq − t)q−2.

Since w = (q − 1)(`1 + `2) = q2 − 1 and δ1 = F (t − θ)w ∈ Fq[t, θq], it follows that

δ1 = G(t− θ)q2 with G ∈ Fq[t, θq] and degθ G ≤ q. Thus F = G(t− θ). By (3.8),

G(1)(t− θq) = G(t− θ)q
2

+ f(θ − t)q(tq − t)q−1.

The right-hand side is divisible by (t− θ)q. It follows that G is divisible by (tq− θ).
Since G ∈ Fq[t, θq] and degθ G ≤ q, G = g(tq − θ)q with g ∈ Fq[t]. Hence

g(tq − θq)q(t− θq) = g(tq − θ)q(t− θ)q
2

+ f(θ − t)q(tq − t)q−1.

We get

g(tq − θq)q(t− tq
2

) = f(θ − t)q(tq − t)q−1.

Comparing the power of (t− θ) yields g = f = 0, which is a contradiction.

To summarize, in all cases we obtain a contradiction. Then the proof of Theorem
1.3 is finished.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4.

Let s = (s1, s2, s3) ∈ N3 with s1 + s2 + s3 ≤ q2 such that ζA(s) is zeta-like.
Corollary 2.4 implies that ζA(s2, s3) is Eulerian. By Theorem 1.3 either (s2, s3) =
(q − 1, (q − 1)2) or (s2, s3) = (q − 1, q(q − 1)).

If (s2, s3) = (q − 1, q(q − 1)), then s1 ≤ q2 − s2 − s3 = 1. Thus s1 = 1. It turns
out that ζA(1, q − 1, q(q − 1) is zeta-like (see [19, Theorem 3.2]), and we are done.

To conclude, we have to show that for all 1 ≤ s1 ≤ q, ζA(s1, s2, s3) where
s2 = q − 1 and s3 = (q − 1)2 is not zeta-like. Suppose that it is not the case, i.e.
ζA(s1, s2, s3) is zeta-like where 1 ≤ s1 ≤ q, s2 = q − 1 and s3 = (q − 1)2. Thus

w = s1 + s2 + s3 = s1 + q(q − 1).

Lemma 4.1. With the above notation, we have Hs1 = 1 and

Hw(t) =

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−j(tq − θq)j .(4.1)

Proof. Since 1 ≤ s1 ≤ q, Hs1 = 1, and it is clear that bw−1q c = b s1+q(q−1)−1q c =

q − 1. Thus by (3.2) we get

Hw(t) =

q−1∑
j=0

(
(w − 1)− jq + j

j

)
(tq − t)q−1−j(tq − θq)j

=

q−1∑
j=0

(
(s1 + q(q − 1)− 1)− jq + j

j

)
(tq − t)q−1−j(tq − θq)j .
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By Lucas’ theorem (see Lemma 3.1), for all 0 ≤ j ≤ q − 1,(
(s1 + q(q − 1)− 1)− jq + j

j

)
=

(
s1 − 1 + j

j

)
.

Since 1 ≤ s1 ≤ q, this term is equal to 0 if q − s1 + 1 ≤ j ≤ q − 1. Thus

Hw(t) =

q−1∑
j=0

(
(s1 + q(q − 1)− 1)− jq + j

j

)
(tq − t)q−1−j(tq − θq)j

=

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−j(tq − θq)j .

The proof is finished. �

By Theorem 2.5 and Remark 2.6 there exist c, d ∈ Fq[t] with c 6= 0 such that
there exist δ1, δ2, δ3 ∈ K[t] verifying

δ1 = δ
(−1)
1 (t− θ)w + δ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w,

δ2 = δ
(−1)
2 (t− θ)s2+s3 + δ

(−1)
3 H(−1)

s2 (t− θ)s2+s3 ,

δ3 = δ
(−1)
3 (t− θ)s3 + cH(−1)

s3 (t− θ)s3 .

As before, if q − 1 | w, then we can suppose that d = 0 (see Theorem 2.5) and
divide the proof into three steps.

Step 1. We first compute the Anderson-Thakur polynomials. By Lemma 3.4,

Hs2 = Hq−1 = 1,

Hs3 = H(q−1)2 =
(t− θq)q−1 − (tq − θq)q−1

tq − t
.

Step 2. We solve the equations

δ2 = δ
(−1)
2 (t− θ)s2+s3 + δ

(−1)
3 H(−1)

s2 (t− θ)s2+s3 ,

δ3 = δ
(−1)
3 (t− θ)s3 + cH(−1)

s3 (t− θ)s3 .

for suitable c ∈ Fq[t]. By the above explicit formula for Hs2 and Hs3 it is clear that
we can take

c = (tq − t)q+1,

δ3 = (tq − t)q(t− θ)(q−1)q,

δ2 = −(tq − θ)q(t− θ)(q−1)q.

Step 3. We put n1 = b qwq−1c = b qs1q−1c+ q2 and recall that 1 ≤ s1 ≤ q. We have to

solve the equation

(4.2) δ1 = δ
(−1)
1 (t− θ)w + fδ

(−1)
2 H(−1)

s1 (t− θ)w + dH(−1)
w (t− θ)w.

where

• δ1 ∈ Fq[θ, t], δ1 6= 0 and degθ δ1 ≤ n1 by (2.5),
• f, d ∈ Fq[t] with f 6= 0.
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We see that δ1 is divisible by (t− θ)w. Since degθ δ1 ≤ n1, we write

δ1 = F (t− θ)w

for some F ∈ Fq[t, θ] with degθ(F ) ≤ n1 − w = b s1q−1c+ q.

Replacing this expression in (4.2) and twisting one time yields

(4.3) F (1) = F (t− θ)w − f(tq − θ)q(t− θ)(q−1)qHs1 + dHw.

It follows that δ1 = F (t− θ)w ∈ Fq[t, θq]. By Lemma 3.3 we get F = G(t− θ)q−s1
with G ∈ Fq[t, θq]. In particular,

degθ G ≤ degθ F − (q − s1) ≤ b s1
q − 1

c+ q − (q − s1) = s1 + b s1
q − 1

c.

We distinguish three subcases.

Subcase 1: 1 ≤ s1 < q − 1.

In this case, since degθ G ≤ s1 + b s1q−1c < q and G ∈ Fq[t, θq], it follows that

G = g ∈ Fq[t]. Further, Hw is given as in (4.1). Putting all together into (4.3) we
obtain

g(t− θq)q−s1 = g(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q

+ d

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−j(tq − θq)j .

We set

X := (t− θ)q = tq − θq

and rewrite the above equality as

g(X − (tq − t))q−s1

= gXq − f(tq
2

− tq +X)Xq−1 + d

q−s1∑
j=0

(
s1 − 1 + j

j

)
(tq − t)q−1−jXj .

We compare the coefficients of Xq yields g = f .

• If 1 < s1 ≤ q − 1, then comparing the coefficients of Xq−1 yields f = 0,
which is a contradiction.

• Otherwise s1 = 1, then by replacing g = f in the above equation we obtain

f(X − (tq − t))q−1 = −f(tq
2

− tq)Xq−1 + d

q−1∑
j=0

(tq − t)q−1−jXj .

We compare the constant coefficients and get d = f . Then using d = f

and looking at the coefficients of Xq−1 yields f = −f(tq
2 − tq) + d =

−f(tq
2 − tq) + f . Thus f = 0, and we also get a contradiction.

Subcase 2: s1 = q − 1.

In this case, F = G(t − θ) with degθ G ≤ s1 + b s1q−1c = q and G ∈ Fq[t, θq].
Further, we know that q − 1 | w, then we can suppose that d = 0 in Eq. (4.3) (see
Theorem 2.5). Putting all together into (4.3) yields

G(1)(t− θq) = G(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q.
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The right-hand side is divisible by (t − θ)(q−1)q. It implies that G is divisible by
(tq − θ)q−1. Since G ∈ Fq[t, θq] and degθ G ≤ q, then G = g(tq − θ)q with g ∈ Fq[t].
Hence

g(tq − θq)q(t− θq) = g(tq − θ)q(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q.

We get

g(tq − θq)q(t− tq
2

) = −f(tq − θ)q(t− θ)(q−1)q.

Comparing the power of (t− θ) yields f = g = 0, which is a contradiction.

Subcase 3: s1 = q.

In this case, we know that F = G ∈ Fq[t, θq] with degθ F ≤ s1 + b s1q−1c = q + 1.

Thus we can write F = a+ θqb with a, b ∈ Fq[t]. Further, by (4.1) we get

Hw = Hq2 = (tq − t)q−1.

Putting all together into (4.3) yields

a+ θq
2

b = (a+ θqb)(t− θ)q
2

− f(tq − θ)q(t− θ)(q−1)q + d(tq − t)q−1.

Comparing the coefficients of θq
2+q yields b = 0. Then we use b = 0 and compare the

coefficients of θ(q−1)q to get 0 = −f(tq
2− tq). Thus f = 0, which is a contradiction.

To summarize, in all cases we obtain a contradiction. Then the proof of Theorem
1.4 is finished.

5. Proof of Theorem 1.5

In this short section we present a proof of Theorem 1.5.

It suffices to prove that there is no zeta-like MZV’s of weight at most q2 and depth
at least 4. Suppose that it is not the case. Then there exists s = (s1, . . . , sr) ∈ Nr
with s1 + · · ·+ sr ≤ q2 and r ≥ 4 such that ζA(s) is zeta-like. Corollary 2.4 implies
that ζA(sr−2, sr−1, sr) is Eulerian. By Theorem 1.4 this is impossible. Thus the
proof of Theorem 1.5 is complete.

6. Final remarks

We end this paper with some remarks.

Remark 6.1. We refer the reader to [12, 18, 19] for numerous numerical data
concerning zeta-like and Eulerian MZV’s in positive characteristic.

Remark 6.2. In this paper we have succeeded in determining completely all zeta-
like MZV’s of weight at most q2. Thus it is tempting to ask whether we could go
further.

• Eulerian MZV’s are at least conjecturally understood (see for example [12,
§6.2]).

• However, one should be aware that there are plenty of zeta-like MZV’s of
weight greater than q2 (see for example [13, 14, 18]). At the moment, it
seems very difficult to formulate a conjecture in a reasonable way to include
all these examples. We hope to work on this question in a future work.
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t-motives. In G. Böckle, D. Goss, U. Hartl, and M. Papanikolas, editors, t-motives: Hodge

structures, transcendence and other motivic aspects”, EMS Series of Congress Reports, pages
3–30. European Mathematical Society, 2020.

[9] J. Burgos Gil and J. Fresan. Multiple zeta values: from numbers to motives. to appear, Clay

Mathematics Proceedings.
[10] L. Carlitz. On certain functions connected with polynomials in Galois field. Duke Math. J.,

1(2):137–168, 1935.

[11] C.-Y. Chang. Linear independence of monomials of multizeta values in positive characteristic.
Compos. Math., 150(11):1789–1808, 2014.

[12] C.-Y. Chang, M. Papanikolas, and J. Yu. An effective criterion for Eulerian multizeta values
in positive characteristic. J. Eur. Math. Soc. (JEMS), 21(2):405–440, 2019.

[13] H.-J. Chen. Anderson-Thakur polynomials and multizeta values in positive characteristic.

Asian J. Math., 21(6):1135–1152, 2017.
[14] H.-J. Chen and Y.-L. Kuan. On depth 2 zeta-like families. J. Number Theory, 184:411–427,

2018.

[15] D. Goss. Basic Structures of function field arithmetic, volume 35 of Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1996.

[16] A. Granville. Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo

prime powers. In Organic mathematics (Burnaby, BC, 1995), volume 20 of CMS Conf. Proc.,
pages 253–276. Amer. Math. Soc., Providence, RI, 1997.

[17] U. Hartl and A. K. Juschka. Pink’s theory of Hodge structures and the Hodge conjectures over
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