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Abstract

We develop an analytical framework for predicting the fitness of hybrid genotypes, based on Fisher’s geometric
model. We first show that all of the model parameters have a simple geometrical and biological interpretation.
Hybrid fitness decomposes into intrinsic effects of hybridity and heterozygosity, and extrinsic measures of the
(local) adaptedness of the parental lines; and all of these correspond to distances in a phenotypic space. We also
show how these quantities change over the course of divergence, with convergence to a characteristic pattern of
intrinsic isolation. Using individual-based simulations, we then show that the predictions apply to a wide range
of population genetic regimes, and divergence conditions, including allopatry and parapatry, local adaptation and
drift. We next connect our results to the quantitative genetics of line crosses in variable or patchy environments.
This relates the geometrical distances to quantities that can be estimated from cross data, and provides a simple
interpretation of the “composite effects” in the quantitative genetics partition. Finally, we develop extensions to the
model, involving selectively-induced disequilibria, and variable phenotypic dominance. The geometry of fitness

landscapes provides a unifying framework for understanding speciation, and wider patterns of hybrid fitness.
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Introduction

When genetically distinct populations meet and mate, their divergent alleles are brought together in new combina-
tions. The fitness of these novel genotypes will influence the outcome of the hybridization, and might be a source
of information about the divergence history of the populations (e.g., Demuth and Wade, 2005; Dobzhansky, 1937;
Fraisse et al., 2016; Gavrilets, 2004; Lynch, 1991; Rosas et al., 2010; Rundle and Whitlock, 2001; Welch, 2004;
Yamaguchi and Otto, 2019).

To predict and interpret data from hybrids, various approaches have been used. One approach uses fitness
landscapes (Dobzhansky, 1937; Gavrilets, 2004; Hill, 1982; Orr, 1995). Here, strong insights can come from
simple models, with a few, biologically meaningful parameters; but such models often apply to a limited range of
cases, and can be difficult to fit to data. A second approach uses quantitative genetics, applying to line crosses,
statistical tools that were developed for single populations (Cockerham, 1980; Demuth and Wade, 2005; Hill,
1982; Lynch, 1991; Lynch and Walsh, 1998; Rundle and Whitlock, 2001, Chs. 9-10). This approach is fully
general and widely applied, but the key quantities - the “composite effects” - can be difficult to interpret (with
single populations, by contrast, a large body of theory can help us to understand the variance components; Barton,
2017, Hill et al., 2008; Méki-Tanila and Hill, 2014; Walsh and Lynch, 2018).

Previous authors have gained fresh insights by combining these approaches (Demuth and Wade, 2005; Lynch,
1991; Yamaguchi and Otto, 2019). Here, following these authors, we draw an explicit connection between the
quantitative genetics of line crosses (Hill, 1982; Rundle and Whitlock, 2001), and a class of fitness landscapes
based on Fisher’s geometric model (Fisher, 1930, Ch. 2).

Fisher’s geometric model has been widely used to study single populations (Orr, 1998b; Hartl and Taubes,
1998; Walsh and Lynch, 2018, Ch. 27), and hybridization, and it can account for a large number of empirical
patterns (Barton, 2001; Chevin et al., 2014; Fraisse et al., 2016; Mani and Clarke, 1990; Rosas et al., 2010; Simon
et al., 2018; Thompson et al., 2019; Yamaguchi and Otto, 2019). But despite these successes, some serious doubts
remain. First, the model assumes that fitness is determined by a few quantitative traits, each with additive genetics.
This assumption is less restrictive than it seems, because the “traits” need not be identified with standard quantita-
tive traits (such as height or weight), but might emerge as an approximation to a variety of more complex phenotypic
models, including many-to-one mappings (Fraisse and Welch, 2019; Martin, 2014; Schiffman and Ralph, 2017).
Nevertheless, additivity leads to some questionable predictions, especially for the initial F1 cross (Fraisse et al.,
2016). Second, while Fisher’s model is closely linked with quantitative genetics (Barton, 1989; Orr, 1998b; Rock-
man, 2012; Fisher, 1930, Ch. 2), a formal connection cannot be made without analytical approximations (Simon
et al., 2018), and it is not clear how widely these approximations apply.

For these reasons, the current paper is in three parts. In Part I, we introduce the analytical predictions of Fisher’s
model, focusing on the geometrical and biological meanings of its parameters. We also compare the approximations
to individual-based simulations, including a wide range of assumptions about environmental change, population
demography, and the population genetic regime. In Part II, we connect Fisher’s model to quantitative genetics,
showing how the composite effects correspond neatly to the model parameters. We then express results for standard
line crosses in different environments, unifying results from previous studies (Chevin et al., 2014; Hatfield and
Schluter, 1999; Lynch, 1991; Rundle and Whitlock, 2001; Simon et al., 2018; Wright, 1922; Yamaguchi and Otto,
2019). Finally, in Part III, we introduce two extensions to the model, involving selectively induced associations

between heterospecific alleles, and phenotypic dominance. These extensions address cases where the simplest
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model gives misleading or implausible predictions. We end by discussing some implications of our results for
understanding the process of speciation.

Model and Results

1 Fisher’s geometric model and hybridization

1.1 Basics

We consider hybrids between two diploid parental lines P1 and P2, which differ by d substitutions. For simplicity,
we will assume that the genetic variation within each parental line, is negligible compared to the divergence be-
tween them, although in principle, all analyses could be extended to include within-line variation (e.g. Roze and
Blanckaert, 2014; Lynch and Walsh, 1998, Ch. 9).

Hybrids will contain some combination of alleles from the two parental lines. We characterize hybrid genotypes
in terms of their heterozygosity, p12, and hybrid index, & (see Figure 1). The heterozygosity is the proportion of
the d divergent sites where the hybrid carries one allele from each line; the hybrid index is the total proportion of
the divergent alleles which come from line P2. As such, / ranges from O for a pure P1 genotype, to 1 for a pure P2
genotype. We will also use the notation p; and p; to refer to the proportion of divergent sites that are homozygous
for alleles from P1 and P2, such that p; + p> + p1p = 1, and

1
hEP2+§P12 (N

(Simon et al., 2018; Turelli and Orr, 2000). Our overall aim is to determine how the distribution of hybrid fitnesses

depends on / and p;.

1.2 Fisher’s model as a fitness landscape

Under Fisher’s geometric model, all genotypes are associated with the values of n continuously varying phenotypic
traits. To begin with, we assume that the phenotypic effects of all d substitutions act additively on each trait. In this
case, the value of trait i for any given hybrid genotype can be written as
1
Zi=2zp1i+ Z m;j+ Z >Mij ()
JE€ hom =

where zp; ; denotes the value of trait 7 in parental line P1, Jj,, denotes the subset of d X p; loci that are homozygous
for the P2 allele, and Jj,,; denotes the non-overlapping subset of d X py loci that are heterozygous. The m;; describe
the effects on trait i of introducing the P2 allele at locus j (whether derived or ancestral) into a P1 background. In
the P2 genotype, by definition, all substitutions are present in homozygous state, and so its phenotype can be written
as:

d
Zp2,i = Zp1,i t+ Z mj; )
=1

All of these quantities are illustrated in Figure 1. Next, we must decide how trait values determine fitness. We will

assume that the fitness of a genotype depends on the distance of its phenotype from some optimal phenotype, as
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determined by the environment. We use the following weighted distance measure

n
2 _ 2
lz—oll; =) Ai(zi—o0i) “4)
i=1
where 0 = (01,02, ...,0y,) is the vector of optimal values, and 2; is the strength of selection on trait i in the current

environment. (This metric is equivalent to the “breakdown score” of Turelli and Orr, 2000, and Simon et al., 2018.)
Equation 4 implies that selection is independent on all traits. However, if correlated selection can be approximated
by a multivariate Gaussian function, then, without loss of generality, we can always change the axes, and define n
new traits, under independent selection (Martin and Lenormand, 2006a; Waxman and Welch, 2005). Furthermore,
if the distribution of the fixed effects, the m;;, is also sufficiently close to multivariate normality, including arbitrary
covariances, then we can choose new traits, under independent selection, which have unit variances and no covari-
ances. As such, the A; capture both differences in selection, and differences in the typical sizes of factors fixed
(Martin and Lenormand, 2006a; see also Appendix 1 for a full derivation).

Finally, fitness is a decreasing function of distance (Simon et al., 2018; Turelli and Moyle, 2007). This could
take a form such as

Inw=—allz—ol 5)

where k denotes the curvature of the fitness landscape, i.e. how quickly fitness declines with the distance from the
optimum (Fraisse et al., 2016; Fraisse and Welch, 2019; Peck et al., 1997; Tenaillon et al., 2007). In the remainder
of the paper, following common practice (Demuth and Wade, 2005; Turelli and Moyle, 2007; Turelli and Orr,
2000), we will not work with fitness directly. Instead, we follow (Simon et al., 2018), and use the following scaled

squared distance (or scaled transformed fitness):

2

»_ lz—oll3
=4—= 6
TN A ©)

The denominator in eq. 6 can be understood in various ways. First, it is simply a convenient scaling to remove
nuisance parameters, so that the results depend on a handful of simple geometric quantities. Second, when the
parental lines are close to the optimum, applying the scaling is equivalent to dividing all fitness measures by the
measures for some reference class of hybrid (Hill, 1982; Simon et al., 2018; Yamaguchi and Otto, 2019; Lynch and
Walsh, 1998, Ch. 9). Third, the denominator can itself be written as a “reference distance”:

di_flxl- _ H*/‘_”Hi %)

(where 1 is the unit vector). Equation 7 is the amount of phenotypic change that would be expected for a single
population that wandered away from its ancestral state via an undirected random walk of d steps, where the step
size is given by the A;.

For brevity in what follows, “distance” will refer to scaled quantities such as eq. 6, and we return to the

interpretation of the scaling below.
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1.3 The Brownian bridge approximation

Equations 2-3 suggest an approximation that can help us to understand hybrid fitnesses. In this section, we describe
this approximation in geometric terms, and discuss its biological interpretation in the following section. If each
hybrid genotype contains an effectively random sets of alleles, we can treat the m;; as random variables that are
statistically independent on each trait. This means that, if we consider a hybrid genotype with a given level of

heterozygosity and hybridity, its expected distance from the optimum is

2\ ZA,‘V&I‘ (Zi) le'Ez (Zi — 0,‘)
E(P) =4 i +4 T (®)
=V+M 9)

where the means and variances are defined over all hybrid genotypes with the same heterozygosity and hybrid
index. To derive the quantities V and M, we will now assume that the m;; on each trait are the increments of a
Brownian bridge, i.e., a random walk constrained at each end by the parental phenotypes, and split into d steps
(Revuz and Yor, 1999; Simon et al., 2018). This approximation relies on the fact that alleles are placed into hybrids
in an effectively random combinations, but it does not require that the true process of divergence resembled a
random walk. The approximation also depends on the additivity and normality of the m;;; but if the divergence,
d, is sufficiently large, then the summations in eq. 2 lead to central-limit-type behaviour, and so to approximate
normality, in a wider range of cases (Barton et al., 2017, section 3.2).

Simon et al. (2018) presented this Brownian bridge approximation, and in Appendix 1, we rederive the same

result with less haste. For the term V, which captures the variation in hybrid phenotypes, we show that

V =4p>(1 —p2)+pi2(l — p12) —4p2p12 (10)

=4h(1 —h) —pi2 (11)

where the three terms in eq. 10, come from variation in the effects of homozygous P2 alleles, variation in the effects
of heterozygous alleles, and a negative covariance term (because a given allele cannot appear in both homozygous
and heterozygous state in the same genome). Note that the scaling of eq. 6 was chosen so that 1 >V > 0.

For the term M, we note that the expected hybrid phenotype will lie on the line connecting the parental pheno-
types. M will therefore depend on the distance of the parental phenotypes from the optimum, and from each other.

In particular, we find

M = (1—h)?rio+1Pr3g +2h(1 — h)riorop (12)

=ro+ (h—3) (B0 —rio) —h(1—h)ri, (13)
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Equation 12 depends on three geometrical quantities, which are illustrated in Figure 2a. These quantities are the

scaled squared distance to the optimum of two parental phenotypes:

2 2
2 _ llzer—oll 2 _ Nz —oll3

lo=4—""5", 0 =4——75" (14)
v, v,

and p, which is the “cosine similarity” of the vectors connecting these phenotypes to the optimum. p can vary
between 1, when these vectors point in the same direction, and -1, when they point in opposite directions (see also
eq. 43). In equation 13, we use the cosine rule (r, = 1, + 3o — 2ri0r20p), to give the same result in terms of the

scaled distance between the parental phenotypes

|zp1 — zp2 3

var
A

2
r12=4

(Figure 2a) where we have also used the notation 1%, = 1 (1}, +r3,) for the mean distance from the optimum of

the parental phenotypes.
1.4 Biological interpretation

Let us now consider a group of hybrids that might vary in their values of 4 and pj>. Combining results above, the

expected distance of these hybrids from the optimum is

E (rz) :rzo
+ <}_l— %) (V%O—”lo)
— P12
+ (R(1 —h) — Var (h)) (4—1],) (16)

where p1 is the mean level of heterozygosity in hybrids of interest, and / and Var (k) are the mean and variance
of their hybrid indexes (Simon et al. 2018). All four of the terms in eq. 16 have a clear biological interpretation.
First, and simplest, r?o is the mean transformed fitness of the parental lines; it tells us that hybrids will be fitter, on
average, if their parents are fitter, on average. The second term depends on the difference in the parental fitnesses:
(h— 1) (3o —135); it tells us that hybrids will be fitter if they contain more alleles from the fitter parent. The third
term, — P2, is an intrinsic benefit of heterozygosity; it states that, for any given value of &, hybrids are fitter when
they are more heterozygous. This is a form of heterosis (Frankel, 1983). The effect is “intrinsic” because, unlike
the two previous terms, it does not depend on the position of the environmental optimum. The final term captures
the intrinsic effects of hybridity. Because it depends on /(1 — i) — Var (h), its contribution is smallest when hybrids
are close to the parental types, either because / is close to 0 or 1, or because Var (4) is close to its maximal value:
h(1 —h). This effect is also “intrinsic”, because it depends on the distance r2,, whose value is not affected by the
position of the optimum (Figure 2a). The sign of this term changes with the size of r%z. When r%z < 4, hybridity

brings a net fitness cost. This reflects the breaking up of coadapted gene complexes in the parental lines (Lynch,
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1991; Simon et al., 2018; Wallace, 1991). When r%z > 4, hybridity brings a net benefit. This reflects the potential

benefits of transgressive variation in hybrids (Yakimowski and Rieseberg, 2014).

1.4.1 Conditions for hybrid advantage

Results above imply that hybrids can sometimes be fitter than the parental lines. In particular, hybrids will be closer
to the optimum, on average, than the average parental type, whenever 7.20 —E (rz) > 0.
To understand the conditions for hybrid advantage, it is simplest to consider balanced hybrids, with equal

contributions from the two parental lines. With 2 = 1/2, eq. 16, yields

2
ro—E () :1—2—(1—1712)» h=1/2 a7

It follows that homozygous balanced hybrids (with pj2 = 0), will enjoy a fitness advantage whenever r2, > 4.
Fully heterozygous hybrids (with p1» = 1), will enjoy an advantage whenever r%z > 0, i.e. whenever the parents
are phenotypically distinct. In general, the level of hybrid advantage increases with heterozygosity, and with r]22,
whatever the position of the optimum. The importance of environmental conditions is clearer from the relative

hybrid advantage:

2 2
fom2\1) f(r ) :8(1—;(1—P12)>7 h=1/2 (18)
o V)

Here, a new quantity, 0 > € > 1, describes the position of the optimum, and is defined by
2
z%z%(l—pA) (19)
where p is defined above (Figure 2a), and A = (2r10720)/ (13 + 30 ), parameterises the difference in the distances
of the two parents to the optimum. The quantity € is illustrated in Figure 2b.

From eq. 18, the potential for hybrid advantage decomposes neatly into a property of the parental lines (r%z),
and a property of the optimum (€). Advantage is maximized at € = 1, when the parental lines are equally mal-
adapted to current conditions (A = 1), and maladapted in opposite directions in phenotypic space (p = —1). In
this case, the optimum coincides with the phenotype of the midparent (denoted P in Figure 2b). This restates a
result of Yamaguchi and Otto (2019), and also follows intuitively: intermediate hybrid phenotypes will best match

intermediate environments (Moore, 1977).

1.4.2 Hybrid fitness and the process of divergence

Results above show that the outcomes of hybridization depend strongly on the value of r%z. So what exactly does
this quantity measure? By definition, r%z depends on the amount of phenotypic change that accrued during the
genomic divergence between the parental lines; and this is scaled by the expectations under a random walk with
the same distribution of effect sizes (eq. 15). For this reason, as shown in Figure 3, the value of 7%, contains some
information about the actual mode of divergence between the populations.

For example, if r%z > 4, then the parents show more phenotypic divergence than expected under a random walk.
This implies that the d substitutions, which connect the parental phenotypes, form a chain with relatively little

meandering or changing of direction. Indeed it follows from the geometry that r%z has a maximum at 4d, when all
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of the substitutions cause identical changes in the same direction (see Appendix 2 for full details). Such a pattern
is unlikely to arise without selection, and so an observation of rfz > 4 suggests that the parental lines diverged
via positive selection, either acting in one population alone, or in both populations, but in opposite directions in
phenotypic space. This is illustrated in Figure 3a.

Similarly, an observation of r%z ~ 4 is expected if the parental phenotypes really did diverge by random-walk-
like evolution (Figure 3b). One way this might occur is if parental lines fixed mutations regardless of their fitness
costs, e.g. under severe inbreeding. It is notable that the intrinsic effects of hybridity vanish when r%z ~ 4 (eq. 16).
This agrees with the empirical observation that heterozygosity, rather than hybridity, is the major determinant of
fitness in crosses between inbred lines (Neal, 1935; Simon et al., 2018; Wright, 1922).

Finally, if r%2 < 4, then populations have accrued less phenotypic divergence than would be expected under a
random walk. This could occur in two quite distinct ways. First, stabilizing selection might maintain the phenotype
at a (more-or-less) stationary optimum, while still allowing for divergence at the genomic level, perhaps by nearly
neutral evolution (Barton, 1989; Hartl and Taubes, 1998). This process is closely related to “system drift” (Rosas
et al., 2010; Schiffman and Ralph, 2017), and is illustrated in Figure 3c. Alternatively, divergence could involve
adaptation to a moving optimum, but without leading to a straight path of substitutions connecting P1 and P2 (Mani
and Clarke, 1990; Walsh and Lynch, 2018, Ch. 12). In the simplest case, this could arise if the two populations
adapted, independently, to identical environmental change, because the chain of substitutions would then change
direction as it passed through the common ancestor. A more complex example, involving an oscillating optimum,
is illustrated in Figure 3d. In both cases, the result is a chain of substitutions whose start and end points are closer
together than would be expected under a random walk, such that r}, < 4.

Importantly, over large periods of time, at least one of these two processes - system drift, or complex environ-
mental change - is very likely to occur. So at very large divergences, it becomes increasingly likely that r%z ~0
will hold, with the loss of any potential for hybrid advantage. In fact, it follows directly from eqgs. 14-15 that all of
the key distances shown in Figure 2a will tend to vanish at large divergences, and we have the limit:

lim E (r*) = 4h(1 —h) — 4Var (h) — p1> (20)
—»00

Biologically, eq. 20 implies that, as populations diverge genetically, both extrinsic fitness effects, and any
intrinsic benefits of hybridity, will tend to become less and less important. The model predicts convergence to a
characteristic pattern of intrinsic isolation between the parental lines, where a fixed cost of hybridity is mitigated

by a fixed benefit of heterozygosity.

1.5 Individual-based simulations

To illustrate the points above, and test the robustness of our approximations, we used individual-based simulations
of Fisher’s model. In particular, we simulated the divergence between pairs of populations, followed by hybridiza-
tion in the ancestral environment. We simulated under 27 = 128 different combinations of population-genetic
parameters (Table 1). These parameters were chosen to encompass a range of conditions, including varying levels
of standing variation, recombination, distributions of mutant effects, and other properties of the fitness landscape.
Justifications of our parameter choices, and full details of all simulations, are given in Appendix 3.

For each of the 128 parameter combinations, we simulated 15 distinct scenarios of population demography,
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and environmental change. The purpose of the scenarios was to generate predictably different patterns of genomic
divergence (Figure 3), and predictably different patterns of hybrid fitness in the ancestral environment (Figure 2b).

Figure 4 describes these divergence scenarios, and plots the realized values of the key quantities r%z and €
(see egs. 15, 18 and 19). First, let us consider the results for scenarios 1-4. In these scenarios, the divergence
between the populations involved local adaptation, with optima that moved in opposite directions, with respect to
the ancestral habitat (see top right-hand panel). As Figure 4 shows, the adaptive divergence in these simulations
led to some very high values of r%z, conducive to hybrid advantage. The r%z values are highest when the divergence
took place in the face of ongoing gene flow (scenarios 1-2). This is because the gene flow tended to keep the
overall genomic divergence low (Yeaman and Whitlock, 2011), such that paths of substitutions resemble Figure
3a more than Figure 3c. The r%z values are also higher when the optima moved in single jump (scenarios 1-3),
than when it moved back and forth via smooth cycles (scenario 4). This reflects the meandering in the chains of
substitutions when environmental conditions fluctuate (compare Figure 3d to Figure 3a). For all four scenarios,
values of € were close to their maximal value of 1, implying that the optimum in the ancestral habitat - which was
exactly intermediate between the two new optima - was ideally placed to maximize hybrid advantage (Figure 2b).
There was also some variation in &, either because the cycling optima returned to their ancestral state (scenario
4), or because high levels of maladaptive gene flow moved the parental populations away from their local optima
(scenario 1).

Scenarios 5-6 resemble scenarios 3-4, except that population P1 evolved, while population P2 remained in their
common ancestral state (see second right-hand panel). As expected, this had little effect on r%z values, but reduced
€ from around 1 to exactly 1/2. This is because the ancestral optimum no longer maximized hybrid advantage.
In the ancestral habitat, hybrids were often fitter than parental line P1, but never fitter than the optimal P2 (Figure
2b). Very similar results were obtained for scenarios 7-8. Here, populations adapted to moving optima on different
traits (see third right-hand panel). In these cases, the value of € ~ 1/2 reflected the fact that hybrids could gain a
fitness advantage over both parental lines, but less so than in an intermediate habitat (Figure 2b).

In scenarios 9-10, results were qualitatively different. Here, the populations adapted, independently, to identical
environmental change (see fourth right-hand panel). As a result, the parental phenotypes were very close to each
other (such that r%z < 1), and the ancestral optimum was poorly placed to generate hybrid advantage (€ ~ 0).

The next group of scenarios, 11-13, involved stable environmental conditions, so that all of the divergence
accumulated via genetic drift in allopatry (bottom right-hand panel). Here, values of € varied greatly, reflecting the
fact that parental populations deviated from their shared optimum in independent, random directions. High values
of r%z were obtained only in one case: when the population size was very small (scenario 11). In this case, selection
was often ineffective, at least initially, so that the population phenotypes wandered away from their optimal values
(see Figure 3b, and lighter lines in the lower right-hand panel of Figure 4). By contrast, for scenarios 12-13,
parental phenotypes remained close to their shared optimum at all times (see darker lines in lower right-hand panel
of Figure 4), and this kept values of r7, consistently low.

Finally, for scenarios 14-15, we reanalysed the simulations from scenarios 3-4, but scored hybrids in a “benign
environment” (Hatfield and Schluter, 1999). This means that fitness was affected only by the n — 1 phenotypic traits
that had not been subject to diversifying selection. As such, the fitness effects in hybrids reflect the pleiotropic
effects of adaptive substitutions (Thompson, 2019), and results closely resemble those under “system drift”.

Figure 4 confirms that there are consistent differences between hybridization scenarios, which reflect both the

history of divergence (captured in 77,) and the current environmental conditions (captured in €). Nevertheless, as
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shown in Figure 5a-b, the Brownian bridge approximation applied well to all of the simulations reported above.
Figure 5a shows results for hybrids that were formed by randomly assembling combinations of homozygous alleles
from the parental lines, in different proportions (i.e., with different values of /). Results show that 2 —M is well
predicted by eq. 11 for all simulations. In many of these simulations, the distribution of fixed effects was highly
non-normal (see Figure S1 for details), but the Brownian bridge approximation applied nonetheless. Figure 5b
illustrates another feature common to all of the simulations: M tended to vanish if the genomic divergence grew
large. With large d, the outcome of hybridization was always predicted by eq. 20, regardless of the divergence

scenario, or the current position of the optimum.

2 Fisher’s model and the quantitative genetics of line crosses

In this second part of the paper, we show how the distances in phenotypic space, which govern the fitness of
hybrids, relate to measurable quantities. To do this, we will consider controlled crosses, including the initial F1
(P1xP2), the F2 (random mating among the F1), and backcrosses of the F1 to the parental lines. These crosses
vary in the key quantities pj», # and Var (h), and the last of these also depends on the levels of segregation and
recombination (Lynch and Walsh, 1998, Ch. 9). In particular, if ¢ is the mean rate of recombination among pairs of
loci, then Var (h) ~ (1 —2¢)/4 among F1 gametes (Zeng et al., 1990; Lynch and Walsh, 1998, Ch. 9); and so, with
random union of gametes, Var () will be half of this value for the F2, and a quarter of this value for backcrosses.
Furthermore, ¢ ~ 0.5 for many species (Lynch and Walsh, 1998, Ch. 9), and in those cases, Var (/) can often be

neglected.

2.1 The composite effects under Fisher’s model

Let us begin by following Hill (1982; see also (Lynch, 1991; Lynch and Walsh, 1998, Ch. 9)), and writing the

expected value of a trait in a hybrid as

w=po+60s{on}+ 65 {a} +0u {61} + 67 {6} + 050 {an &1 } + ... 21

where 05 = 1 —2h and 6y = 251> — 1. The curly brackets contain the “composite effects”, which are defined
in Table 2 (and noting that, in this standard notation, {;0;} describes an interaction term, and not a product).
Equation 21 includes only pairwise effects, but the model might also be expanded to include higher-order terms.

If we neglect Var (h), then both eqs. 16 and 21 are polynomials in 7 and 5, and so we can apply eq. 21 to the
transformed hybrid fitness, setting 4t = E (rz), and solve for the composite effects. The results, found in Table 2
(column “single environment”), show that Fisher’s model predicts three non-zero composite effects. Their values
reflect the biological distinctions discussed above. In particular, the additive effect, {a; } = 1 (1} — 13, captures
the benefits of carrying alleles from the fitter parent, while the dominance effect, {0, } = —%, captures the intrinsic
benefits of heterozygosity. The pairwise epistatic effect, {a, } = %r%z — 1, balances the intrinsic costs and benefits
of hybridity.

Rundle and Whitlock (2001) presented a useful extension of eq. 21 for traits scored in two environments.
Introducing an indicator variable, I, which is 0 for individuals scored in “environment A”, and 1 for individuals

scored in “environment B”, and defining 8z = 2/ — 1, their model contains the additional terms:
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pap =i+ Op {€} + O£ 0s {1 €} 4 00y {16} + ... (22)

Fisher’s geometric model is trivially extended in the same way, by adding a second environment, with a distinct
optimum. This is illustrated in Figure 2c. Again, we can solve for the composite effects, and these are shown in
Table 2 (column “two environments”). Results show that adding a second environment leaves the dominance and
epistatic effects unchanged, confirming that they represent the intrinsic effects of heterozygosity and hybridity. Of
the remaining quantities, the additive effect, {; }, is now averaged across environments (rf — ”%. = %(rf AT r% At
r7g — r35)), while the main environmental effect, {€}, is simply the difference in fitness between environments,
averaged across the parental lines (r?B — r_2A = %(r%B - r% At r%B — r% A))-

Finally, the additive-by-environment interaction is

{one} = :11 [(V%B - "%A) - ("%B —”%A)] (23)

= Iriprapp’ (24)

Here, —1 < p* < 1 is the cosine similarity of the vector linking the parental phenotypes, and the vector linking the
two optima (Figure 2c): {o; €} will be large when the difference between the phenotypes of P1 and P2 resembles
the difference between optima A and B. Indeed, the predicted values of {¢; }, {€} and {0 €} are equivalent to the
quantities described by (Blanquart et al., 2013) for measuring the extent of local adaptation (see their eqs. 1-2),
but applied to fitness values that have been transformed and scaled (eq. 6). As shown in Appendix 4, the same
framework is also extendable to hybrids that are formed in patchy ecotones, or in habitats that are ecologically
intermediate between A and B.

2.2 Local adaptation and ecological isolation

While {a;€} is a possible measure of local adaptation, it does not describe the extent of ecological isolation
between the parental lines. For example, { o €} might be very high, even if P1 were fitter than P2 in both habitats
(Blanquart et al., 2013; Kawecki and Ebert, 2004). However, we do have a measure of isolation in an important
special case. If the two parental lines are well adapted to different local optima, then r%z describes the distance
between these optima, as well as the distance between the parental phenotypes. As a consequence, results for
hybrids depend on rfz alone, and this is shown in Table 2 (column “local adaptation”).

With local adaptation of this kind, large values of r%z imply pure ecological isolation (where P2 and P1 are kept
distinct solely by environment-dependent selection against their divergent alleles), while small values imply pure
intrinsic isolation (where hybrids are less fit than the parents in both habitats). By changing the value of r%z we
can interpolate between these two extremes, and this is shown in Supplementary Figure S2. With local adaptation,
r1, is both a measure of the amount of meandering in the chain of fixed differences, and a measure of the relative
strengths of ecological isolation versus intrinsic isolation.

To illustrate this, Figure 6 shows results from a single simulation run. In this run, parental populations adapted
in allopatry, to distinct optima. The adaptation involved fixing ~50 substitutions, and after this, the populations
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continued to diverge via system drift. We consider hybridization between these populations in five distinct environ-
ments (Figure 6a), tracking both the composite effects over the complete course of the divergence (Figure 6b-e),
and the fitness of crosses generated by standard amphimixis, at two time points (Figure 6f-0).

As is clear from Figure 6b-e, several of the composite effects change in similar ways, reflecting their common
dependence on r%z. In the earliest stages of divergence, r%z values were high, reflecting the adaptation of the
parental lines to distant, and distinct optima. After 100 substitutions, this was manifest in the clear signatures of
ecological isolation in the parental habitats (Figure 6f-g). In the environment to which P1 is adapted, hybrids tended
to be fitter when they carry more P1 alleles, and vice versa (Rundle and Whitlock, 2001). For the same reason, in
an ecologically intermediate habitat, there was a clear signal of bounded hybrid advantage (Figure 6¢). Hybrids
tended to have the favoured intermediate phenotype (Moore, 1977; Yamaguchi and Otto, 2019). Hybrid advantage,
at a lower level, also occurred in the ancestral habitat (Figure 6i); but this had nothing to do with the habitat being
ancestral, and the same patterns were observed in an entirely novel habitat, characterized by similar values of ’”%0’
r3, and 12, (Figure 6j).

As the genomic divergence increased, 12, decreased, and so all of these differences between environments
were greatly reduced (Figure 6b-e). In the example shown, after ~2000 substitutions, hybrid fitnesses were already
converging towards the characteristic pattern of intrinsic isolation (Figure 6k-o), with the fixed cost of hybridity,
{an} ~ —1, and the fixed benefit of heterozygosity {8} = —3 (eq. 20).

The results shown in Figure 6 assume free recombination between all loci, but comparable results apply with
limited recombination (Supplementary Figure S3). Convergence to the characteristic pattern of intrinsic isolation
occurs whatever the mode of divergence (Supplementary Figures S4-S5).

3 Two extensions

In this third and final part of the paper, we highlight two ways in which the model gives misleading or implausible

predictions, and show how these limitations might be overcome.

3.1 Later crosses, and the Bulmer effect

Results above rely heavily on heterospecific alleles appearing in random combinations, but with later generation
hybrids, selection on the earlier generation hybrids can induce non-random associations between alleles in their
gametes. This can increase the fitness of their offspring, without changing allele frequencies in the population
as a whole (Bulmer, 1971; Walsh and Lynch, 2018, Ch. 16). For example, with random union of gametes, the
distributions of # and p1, will often remain unchanged between the F2 and F3 generations, and so equations 16 and
21 make the same predictions for both. However, selection on the F2 parents can upset this expectation.

To see this, let us consider the case of free recombination (¢ = 1/2), and optimal parental lines (r.o = 0). With

these assumptions, the variance in trait values (the z;) among F3 offspring is

1
Var (zp3) = 3 [Var (z;r2) + Var (z; paser) )| (25)

where z; 2 and z; gy (se) are the trait values for the total F2 population, and for the subset of selected parents (see
Walsh and Lynch, 2018, Ch. 16, assuming complete heritability). In the extreme case, if only optimal F2 reproduce,

then Var (Z,’7F2(Sel)) =0and Var(z;p3) = %Var (ziF2). Because the trait variance halves, we have the general bounds
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I E(?) <1 26
2 = 4h(1—h)—4Var(h)— p1a — (26)

where the upper bound comes from eq. 20, and the lower bound applies if only optimal individuals reproduce.

Later crosses will fall somewhere between these bounds, depending on the strength of selection acting on the
earlier generation hybrids. This is illustrated in Figure 7a-b. We chose two simulation runs where populations
diverged despite a fixed optimum, via system drift. If we generated an F3 cross using a random selection of F2
parents, then the upper bound of eq. 26 applies well (see blue lines in Figure 7). If we selected parents with a
probability proportional to their fitness (eq. 5), the same results continued to apply for later crosses, but only when
the fitness function was quadratic (k = 2), so that there was very little inter-individual variation in fitness (Figure
7a). When we imposed a “table-like” fitness function (k = 6; Fraisse et al., 2016), equivalent to strong truncation
selection, and implying high variation in parental fitness, then results were closer to the lower bound of eq. 26 (see
red lines in Figure 7b). These patterns continued unchanged for other late generation crosses, including the F4 and
F5, and also applied to repeated backcrosses to the P1 line (Figure 7a-b).

3.2 Phenotypic dominance

The most implausible prediction of Fisher’s model is embodied in eq. 20. This equation predicts that fully heterozy-
gous hybrids will always be as fit as their parents, because, when pj, = 1 and h = 1 /2, the benefits of heterozygosity
exactly cancel the costs of hybridity (Barton, 2001; Fraisse et al., 2016; Schiffman and Ralph, 2017).

This prediction is worrying because - with strictly biparental inheritance and expression - the initial F1 cross
will be fully heterozygous. While many intrinsically isolated species do produce fit F1 (Fraisse et al., 2016; Price
and Bouvier, 2002; Wallace, 1991), F1 fitness tends to decline as the parents become very genetically divergent,
even in environments where both parents are well adapted (Bateson, 1978; Edmands, 2002; Endler, 1977; Fraisse
et al., 2016; Price and Bouvier, 2002; Waser, 1993). The model also struggles to explain a second widespread
pattern in the F1: when some loci have uniparental inheritance or expression, the reciprocal F1 often have very
different fitnesses, even if the parents are both well adapted (Bolnick and Near, 2005; Bouchemousse et al., 2016;
Brandvain et al., 2014; Escobar et al., 2008; Fraisse et al., 2016; Sato et al., 2014; Turelli and Moyle, 2007).
Fisher’s model can only account for these asymmetries if the global heterozygote is suboptimal (see Fraisse et al.,
2016 for details).

In this section, we show that these features of Fisher’s model are improved by adding phenotypic dominance

(Manna et al., 2011). To see this, let us replace eq. 2 with

Zi =2p1,i+ Z m;j+ Z (5mij+ &) 27)

JE€Jhom JEJher

where 0;; is the deviation from semi-dominance on trait i, caused by introducing the P2 allele at locus j in het-
erozygous form. We now assume that the J;; can be treated as the increments of a new, and independent Brownian
bridge, linking the midparental value of trait i, to the trait value of the global heterozygote (see the phenotypes
labelled P and H in Figure 2d). In Appendix 1, we show that this assumption leads to

E(r*) =V +Vs+M+M;s (28)
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where V and M are the additive results (eqs. 10-13), and V5 and Mg are the new contributions from variable

dominance. In Appendix 1, we show that these new contributions are:

Vs =4vp1a(1— p12) (29)

M5 =p12 (o — 50)
—pi2(1 = p2)rim
—pi2(h=3) (B4 —rty) (30)

In equation 29, a new parameter, v, describes the scaled variance of the J;;. Equation 30 depends on a number
of scaled distances, and these are illustrated in Figure 2d. The corresponding changes in the composite effects
are listed in Table 2 (column “phenotypic dominance”). Table 2 shows that phenotypic dominance adds two new
composite effects: {8} and {0}, and alters the value of a third, {5; }, so that it is no longer a constant.

Equations 29 and 30 are both proportional to pj» and so they alter predictions only for heterozygous hybrids.
The predictions are altered in two ways. First, a non-zero value of {¢; ) } (which corresponds to the third term in
eq. 30), now allows for “directional dominance”. For example, in Figure 2d, the global heterozygote, H, is much
closer to the P2 phenotype than to the P1 phenotype (rn < 1), which implies that P2 alleles are dominant on aver-
age. This sort of asymmetry allows Fisher’s model to account for “dominance drive” in hybrid zones, where alleles
can spread due to their dominance relations alone (Barton, 1992; Mallet and Barton, 1989). Second, by allowing
the phenotype of the global heterozygote, H, to differ from the midparental phenotype, P, phenotypic dominance
alters the effects of heterozygosity in hybrids. While these effects are intrinsic and beneficial under the additive
model, with phenotypic dominance the effects can vary over time and space. Most importantly, heterozygosity
will tend to become deleterious at large divergences. This is because the global heterozygote - unlike the parental
genotypes - may never be exposed to natural selection, and cannot, in any case, breed true. As such, its phenotype
can continue to wander away from the optimum as divergence increases, even if effective stabilizing selection acts
on the parental phenotypes. The result is that the distance rlz{o, unlike r%o, has no tendency to vanish as divergence
increases.

To test the predictions of eqs. 28-30, we repeated our complete set of simulations (Figure 4; Table 1), but
now including variable phenotypic dominance. To do this, the heterozygous effect of each new mutation on each
trait, was generated by multiplying its homozygous effect by a uniformly-distributed random number. Results are
summarised in Figure Sc-f, and in more detail in Supplementary Figure S6.

Figure 5c corresponds to Figure S5a, and shows that earlier results continue to hold for homozygous hy-
brids. Figure Se shows equivalent results for heterozygous hybrids, i.e., random assemblies of P2 alleles, added
in heterozygous state to a P1 background. In this case, because h = pi,/2, we have the prediction V 4 V5 =
(1 +4v)p12(1 — p12). In most cases, results agree with this prediction, after setting v = 1/12, which matches the
variance of the uniform distribution, used to generate the heterozygous effects of new mutations (see the black line
in Figure 5e). However, the parameter v applies to fixed effects, and not to new mutations. As such, there are clear
differences between the values of v realised in different parameter regimes and divergence scenarios, although usu-
ally heterozygous hybrids are less fit than would be predicted under an additive model, with v = 0 (see the dotted

white line in Figure 5e; and Figure S6 for more details).
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Results relevant to the F1 are shown in Figure 5d and 5f. These panels confirm that when divergence has
increased, and the parental distances have declined towards zero (Figure 5d), the phenotype of the global heterozy-
gote can remain a non-negligible distance from the optimum (Figure 5f). This implies that optimal but divergent
parents will generate an unfit F1. This is confirmed in Figure 7c-d. Here, results closely match the additive results
shown in Figure 7a-b, except for the F1, which is noticeably less fit. Similar results for a complete set of crosses
are shown in supplementary Figure S7.

Discussion

Using fitness landscapes based on Fisher’s geometric model, we have developed analytical predictions for the
fitness of hybrids between divergent lines. These predictions apply to a wide range of evolutionary and ecological
scenarios (e.g. Figure 4), and involve a small number of quantities with an intuitive biological meaning. For
example, with the simplest model (additive phenotypes, and a single optimum), results depend solely on three
distances: 12, 13, and r2, (Figure 2a), and so we can classify scenarios according to the values of these distances.

Next, we drew a formal connection between Fisher’s model, and the quantitative genetics of line crosses (De-
muth and Wade, 2005; Hill, 1982; Lynch, 1991; Rundle and Whitlock, 2001; Yamaguchi and Otto, 2019). We
showed that the key distances are closely related to the composite effects, and so can be estimated from cross data.
This claim comes with an important caveat. The results in Table 2 apply not to raw fitness values, but to values
that have been suitably transformed and scaled; in our notation, they apply to > and not to w (see egs. 5-6). Data
transforms are an inherent part of quantitative genetics (Lynch and Walsh, 1998, Ch. 11), but there is also the
need to estimate the “reference distance”, which is the scaling factor in eq. 6. This extra parameter is relatively
easy to estimate from a diverse collection of hybrids (see Simon et al., 2018), but not from a limited number of
controlled crosses (Yamaguchi and Otto, 2019). We ducked this issue in Figure 6, by estimating eq. 7 directly from
the simulated fixed effects (see Appendix 1). This is a real limitation, but there are many special cases where the
distances can be estimated from fitness values that are transformed but unscaled (i.e., from the numerator of eq. 6).
For example, with two locally-adapted populations (Table 2), the key distance 3, can be estimated from a ratio of

composite effects:

2 4{a e}
7 Tae) - 2{o)

so that the scaling factor cancels. Simon et al. (2018) give other, similar examples.

(€29)

In a third and final part of this work, we explored two extensions to Fisher’s model. The first extension involved
disequilibria between heterospecific alleles, generated by selection on early generation hybrids (as opposed to
selection during the divergence). These effects are weak in some parameter regimes (Figure 7a), but observations of
strong incompatibilities, involving small genomic regions, suggests that they might be important in nature (Barton,
2001; Fraisse et al., 2016; Coyne and Orr, 2004, Ch. 8). Accordingly, we provided a simple result, which applies
with strong, truncation-like selection (eq. 26; Figure 7b). However, this approach will be difficult to apply to
entire hybrid swarms, when some, but not all hybrids have strong selectively-induced disequilibria (Allendorf et
al., 2001; Jiggins and Mallet, 2000; Simon et al., 2018; Vernesi et al., 2003). Even greater challenges will arise
when selection changes allele frequencies (Walsh and Lynch, 2018, Ch. 16 and 24). In both cases, the distributions
of h and p;, will not be sufficient to predict hybrid fitnesses.

In the second extension, we incorporated phenotypic dominance into Fisher’s model. Our simple treatment
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ignored a known feature of fitness dominance: the differences in the typical dominance relations of large- and small-
effect changes (Fraisse et al., 2016; Manna et al., 2011; Wright, 1929). Nevertheless, our treatment removed the
most implausible prediction of the additive model, concerning the high fitness of the F1. By reducing the beneficial
effects of heterozygosity, the introduction of dominance allows for low fitness F1 between highly divergent, but
equally fit parental lines (Fraisse et al., 2016; Figure 7c-d). This extension also shows how Fisher’s model can
incorporate other modelling approaches as special cases (Simon et al., 2018). For example, when the parental
lines have high fitness, eq. 28 is identical to eq. A37 of Simon et al. (2018), which was derived from a model of
Dobzhansky-Muller incompatibilities, with variable dominance relations (Turelli and Orr, 2000).

The process of divergence and the outcome of hybridisation

Because it is a well-studied model of evolutionary divergence, Fisher’s model is especially useful for investigating
the connections between the divergence process and the outcome of hybridisation.

One set of connections has been explored extensively in previous work. Compared to drift, positive selection
will lead to divergence that is more rapid and more resistant to the swamping effects of gene flow, and tend to
fix effects that are larger and more variable in size (Débarre et al., 2015; Dittmar et al., 2016; Griswold, 2006;
Matuszewski et al., 2014, 2015; Orr, 1998b; Rockman, 2012; Thompson et al., 2019; Yamaguchi and Otto, 2019;
Yeaman and Whitlock, 2011). Larger changes will often have a greater influence on hybrid fitness (Chevin et
al., 2014; Fraisse et al., 2016; Yamaguchi and Otto, 2019). Together, these facts will tend to implicate natural
selection, rather than drift, in any hybrid problems that appear early in the divergence process (Jiggins and Mallet,
2000; Yamaguchi and Otto, 2019; Coyne and Orr, 2004, Ch. 11). In the results presented here, these effects of
selection are all incorporated into the reference distance (eqs. 6-7), with selection tending to lead to larger values
of d and larger values of the A;.

The present work has focused on a different set of connections between divergence and hybridisation, and
these are captured by the scaled distance r%Q. This distance can be called “intrinsic”, because it is a property of the
parental lines, which does not depend on the current position of the optimum. For this reason, 7, describes the
possible outcomes of hybridisation in a variety of environmental conditions (Figure 6, Figure S2). For example,
when parental lines are well adapted to different habitats, a high value of 77, implies that the isolation between the
lines will be purely ecological. In an intermediate habitat, or wherever the parents are poorly adapted, lines with a
high 2, are more likely to generate hybrid advantage beyond the F1. In this way, 1/r}, provides a natural measure
of “coadaptation” among the parental alleles (Wallace, 1991). This is also clear from the fact that r%z determines
{0}, the additive-by-additive epistatic effect (Table 2; Lynch, 1991).

As well as describing the outcomes of hybridisation, 3, contains some information about the mode of diver-
gence between the parental lines. This information is not about epistasis: the value of {a,} tells us nothing at
all about the role of epistatic genetic variance during divergence (Barton, 2017; Demuth and Wade, 2005; Lynch,
1991; Welch, 2004). Instead, we have shown that 3, measures the consistency in the “directions” of the divergent
alleles in trait space, and compares this consistency to expectations under a random walk. As such, high values of
r%z imply that substitutions had effects in the same direction more often than expected (Figure 3). This definition
shows that 72, is closely connected to standard tests for natural selection on quantitative traits, such as the QTL
sign test (Orr, 1998a), or the Qst-Fst comparison (Spitze, 1993; Whitlock and Guillaume, 2009). Indeed, we have
confirmed that adaptive divergence, especially in parapatry, is most likely to lead to high values of rfz (Figure 4).

Together, these results clarify what hybrid fitness can and cannot tell us about the mode of parental divergence.
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On one hand, some patterns of hybrid fitness - those associated with high r%z - are reliable indicators of selectively
driven divergence, and especially of local adaptation maintained in the face of gene flow. On the other hand, patterns
associated with low r2, can arise in a variety of ways, including via adaptive divergence, especially in allopatry
(e.g. Figure 3d). (These limitations are closely related to the low power of the QTL sign test: Rice and Townsend,
2012; Walsh and Lynch, 2018). Furthermore, unless there is substantial gene flow, any signature of selection will
be transient. Over time, the model predicts convergence to an identical pattern of intrinsic reproductive isolation,

whatever the mode of divergence (Figures 3-5).
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Figure 1

Fisher’s geometric model and hybridization. Each genotype is associated with the values of n quantitative traits
(illustrated with n = 2), and so mutations and substitutions are vectors of change in this n-dimensional space.
Fitness depends on the distance of the phenotype from an optimum. Shown are two parental lines, P1 and P2,
which differ by d = 7 substitutions. The arrows represent the effects of each substitution in heterozygous and
homozygous state. They are defined relative to the P1 genotype, regardless of whether the alleles are derived or
ancestral (the m;; in eq. 2 are the components of these vectors). Also shown is a hybrid genotype. In this hybrid,
1/7 of the divergent sites contains an allele from each line (p;» = 1/7), and two further P2 alleles are present as

homozygotes (one ancestral and one derived), yielding a hybrid index of 7 =2.5/7.
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Figure 2

The predictions of Fisher’s geometric model for hybrids, depend on a small number of geometric quantities. These
are defined in some multi-dimensional trait space, but are estimable, in principle. (a) With additive phenotypes, and
a single environmental optimum, predictions depend on the scaled distance of the two parental phenotypes from
the optimum (rj0 and rp0), and the angle between the vectors linking these phenotypes to the optimum. The cosine
of this angle, p, measures the extent to which the parental populations are maladapted to the environment in similar
ways. Results can also be given in terms of the scaled distance of the parental phenotypes from each other (ry2), and
this does not depend on the position of the optimum. (b) For balanced hybrids (with 2 = 1/2), results depend solely
on ri2, and a quantity &, which quantifies the potential of the current environment to generate hybrid advantage.
The maximum value of € = 1 is obtained with an intermediate optimum matching the midparental phenotype P,
which corresponds to the average phenotype of balanced hybrids. Lower values of € correspond to optima placed
on circles of increasing diameter. (c) With two environments, A and B, characterized by different optima, one
measure of local adaptation is p*: the cosine similarity between the vectors linking the optima, and the parental
phenotypes. When the two parental phenotypes are very close to the two optima, scaled hybrid fitness depends only
on rp. (d) With variable phenotypic dominance, results depend on the phenotype of the global heterozygote, H,
which is equivalent to the F1 cross under strictly biparental inheritance and expression. A consequence of variable
dominance is that H may differ from the midparental phenotype, P. In the example shown, H is closer to the P2

phenotype than the P1 phenotype, this implies directional dominance, with P1 alleles being recessive on average.
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Figure 3

The scaled distance r%z plays a key role in determining patterns of hybrid fitness, and it can vary systematically with
the mode of divergence between the parents. The variation depends on the chain of d substitutions that differentiate
the parental lines, and compares their trajectory to a random walk with the same number of steps, and distribution
of effect sizes. (a) When the substitutions form a more-or-less direct path between the parental phenotypes, the
observed phenotypic difference will be greater than would be predicted under a comparable random walk; this
implies that r%z > 4. (b) when the true path of divergence really did resemble a random walk, then r%Z ~4is
expected. This might happen if stabilizing selection on the phenotype was ineffective, or if the optimum value
wandered erratically. Systematically smaller values of r%z are predicted under two conditions. Either (c) genomic
divergence continued, despite effective stabilizing selection on the phenotype, leading to “system drift”. Or (d)
populations successfully tracked environmental optima, but without leading to a straight path of substitutions. If
both lines are well-adapted under either of these last two scenarios, 12, < 4 indicates coadaptation among the

divergent alleles.
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Figure 4

Individual-based simulations of population divergence under Fisher’s geometric model. We simulated 15 distinct
divergence scenarios, summarized in the left-hand panel. These scenarios differed in the rate of gene flow during
divergence (captured in the expected number of migrants, Nm), and the pattern of environmental change. In partic-
ular, optima moved in a single abrupt jump (“J”” and triangular points), in smooth repeating cycles (“C” and circular
points), or remained stationary throughout the simulation (“-”” and square points). Patterns of environmental change
also varied between the scenarios as indicated by colour, and illustrated in the right-hand panels. The two central
columns show the realized values of two important determinants of hybrid fitness; with points and intervals showing
the median and complete range of 128 simulations runs, each with the different set of population genetic param-
eters (see Table 1). The second column shows r%zz the scaled difference between the parental phenotypes (Figure
2b), whose value can reflect the process of divergence (Figure 3). The vertical dotted line shows the value r%z =4,
above which homozygous hybrids have an expected fitness advantage over their parents. The third panel shows
€; this describes the position of the optimum in a given habitat, such that expected hybrid fitness increases with €
(Figure 2b). Values shown here are for the ancestral habitat, which matches the common ancestral phenotype of the
diverging populations. For allopatric simulations (scenarios 3-15) runs terminated after one of the populations had
fixed 500 substitutions, such that d < 1000. For these runs, simulated values of 72, can be compared to the possible
maximum log,,(4d) ~ 3.6. For parapatric simulations (scenarios 1-2), runs terminated after 50/U generations, and
mutations were treated as “fixed” if allele frequencies differed by more than 50% between the demes; 11 runs, for
which d < 10, were excluded. Full details of the simulations are found in Appendix 3.
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Figure 5

The Brownian bridge approximation (eqs. 8-13) compared to individual-based simulations. (a) Predictions for
V (eq. 11), apply well to all divergence scenarios and population genetic parameter regimes. The lines plotted
are the mean of r> — M, across 10,000 homozygous hybrids, created from id P2 alleles, and (1 — h)d P1 alleles,
chosen at random. Results are shown for all of the simulations reported in Figure 4, and use the same colour
scheme. (b) For all divergence scenarios, M tends to decline over time, as long as genetic divergence increases
(eq. 20). Results are shown for balanced hybrids (2 = 1/2), with an illustrative set of parameters (k = 6, n = 2,
NU =1, Ns = —0.1, bottom-up mutations, and free recombination). Similar results were obtained for all parameter
regimes, except for a subset of simulations of divergence in parapatry, where divergence levels reached a quasi-
equilibrium value, instead of increasing steadily. (c)-(f) Adding variable phenotypic dominance to the model yields
qualitatively different results for heterozygous hybrids (eqs. 28-30). (c) The Brownian bridge approximation
continues to apply to homozygous hybrids, but (e) a second Brownian bridge applies to heterozygous alleles placed
in a P1 background. The white dotted line shows the prediction of p12(1 — p2) that applies under additivity; while
the black line shows the prediction of (14 4v)pi2(1 — p12) with v =1/12. (f) M + Mg declines over time for
homozygous hybrids, but (f) not for heterozygous hybrids. For balanced hybrids, with & = 1/2, this reflects the
difference between the midparent (with pj = 0, M + M = 1%, — {71, = r3) and the global heterozygote (with
=1, M+Ms= rIZ{O). In most cases, the parental phenotypes (and therefore the midparent) are directly subject
to selection, while the global heterozygote is not. Results imply that - with phenotypic dominance - F1 fitness can

be low at high divergences.
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Figure 6

Hybridization with local adaptation under Fisher’s geometrical model. Panel (a) shows a cartoon of the divergence
process that was simulated, with two populations adapting to abruptly shifting optima, and then continuing to
accumulate divergence in allopatry. In the common ancestral population, the initial values of all traits were set
to zero, but the optimal value of one of the traits was set to one, choosing a different trait for each population
(i.e., “scenario 7” from Figure 4). Panels b-e show the change, with increasing divergence, in the composite
effects (Table 2), as measured with respect to both parental environments (panel b), or in other single environments
(panels c-e). The remaining panels show results for simulated hybrids, plotting > on a reversed axis, such that fitter
genotypes are higher up on the plots. Points show simulated values for the three fixed genotypes (the parental lines,
P1 and P2, and the F1 = P1 x P2). Points with error bars show mean and 95% quantiles for 10,000 recombinant
hybrids, from the reciprocal backcrosses: BC(P1) = F1 x P1 and BC(P2) = F1 x P2; and the F2 = F1 x F1. The
dark point at the centre of each plot shows results for homozygous hybrids, derived as from automictic selfing
among F1 gametes. As such the three central crosses (F1, F2 and “Fn”, are all balanced hybrids, with 7 = %,
but have maximally different heterozygosities, p1p =1, % and 0). All points are compared to analytical predictions
(blue and red lines). These use eq. 16, with the measured values of 7|0 and o and the assumption that p = —1 (for
the “intermediate” environment) or p = O (all other cases). We note that these predictions relied on our knowing
the scaling factor (eq. 7) which can be measured directly from simulated data, but not from real-world data (see
Appendix 1 and Discussion). Finally, hybrids were scored in the early stages of divergence (d = 100; red lines,
panels f-j), where the signal of local adaptation is strong, and at later times (d = 2000; blue lines, panels k-o0),
where the composite effects tend to decline, with convergence towards a characteristic pattern of intrinsic isolation
(eq. 20). Divergence was simulated with the following parameters: N = 1000, N§ = —10,2NU =1,n=2, k=2,
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free recombination, and “bottom-up” mutations (see Table 1).
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(a) Quadratic selection (k=2) (b) "Table-like" selection (k=6)
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Figure 7

Hybrid fitness for later-generation crosses, showing the effects of selection acting on the earlier hybrids. Plots

show the squared distance from the optimum, 2

, On a reverse axis, so that higher points are fitter. After the initial
F1 cross, we simulated either random union of gametes among the hybrids (F2-F5), or repeated backcrossing to
parental line P1 (BC1-BC4). For the later crosses, we chose parents either wholly at random (black points and
lines), or with a probability proportional to their fitness (asterisks and red points and lines). In each case, results
for 10,000 simulated hybrids (mean and 95% quantiles), are compared to analytical predictions from eq. 16 (blue
lines), assuming optimal parental phenotypes (r o = 0). This is equivalent to the upper bound of eq. 26. When
the variance in parental fitness was low (panel (a)), selection had little effect. When variance was high (panel
(b)), results for the later generations approach predictions for extreme truncation selection, such that only optimal
parents reproduce (red lines; lower bound of eq 26). Panels (c)-(d) show equivalent results, when populations were
simulated with variable phenotypic dominance. The clearest consequence is that the F1 are suboptimal, even when
the parental lines are optimal (blue and red lines used eqgs. 29 and 30 with the observed ”1%10’ and v = 1/12, from
the variance of a uniform distribution). All panels used simulations with the following parameters: N = 1000,
N§= —0.1,2NU = 1, n =2, free recombination, “bottom-up” mutations, stationary optima matching the ancestral
state; hybrids were formed as soon as one of the diverging populations had fixed 1000 substitutions.
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Table 2: Composite effects under Fisher’s geometric model
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