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essential role of the initial 
activation signal in isotype 
selection upon deletion of a 
transcriptionally committed 
promoter
Joana M. Santos  , chloé oudinet, Lisa Schöne, Audrey Dauba & Ahmed Amine Khamlichi  *

class switch recombination (cSR), which targets exclusively the constant region of the immunoglobulin 
heavy chain (IgH) locus, plays an important role in humoral immunity by generating different antibody 
effector functions. The IgH constant locus contains multiple genes controlled by isotype (i) promoters 
induced by extracellular signals that activate specific I promoters, leading to B cell commitment. 
However, it is unknown whether after initial commitment to one promoter, non-responsive i promoters 
are irreversibly silent or if they can be activated after exposure to their specific inducers. Here, we 
studied the murine cell line CH12, which is committed to produce IgA in response to TGF-β. We show 
that, although other promoters than iα are transcriptionally inactive, they are not irreversibly silent. 
following deletion of the committed iα promoter by CRISPR/Cas9, other I promoters display a complex 
transcriptional pattern largely dependent on the initial committing signal.

Humoral immunity relies on a vast repertoire of B cell antigen receptors generated through different processes 
along B cell development1,2. At the immunoglobulin heavy chain (IgH) locus, the variable region undergoes V(D)
J recombination in developing B cells leading to the assembly of the variable gene segments (V(D)J)3–5. The 
constant region undergoes class switch recombination (CSR), enabling IgM-expressing B cells to switch to other 
isotypes (IgG, IgE, IgA)6–8.

The IgH constant region contains multiple constant (CH) genes whose transcription initiates at isotype-specific 
promoters, called I promoters6. The I promoters are largely controlled by the super-enhancer 3′RR (3′ Regulatory 
Region), composed of four enhancers (hs3a, hs1-2, hs3b and hs4), located downstream of the IgH locus9.

Transcription from I promoters is induced upon antigen encounter and signaling from other immune cell 
types6. I-derived transcription elongates across highly repetitive sequences, called switch (S) sequences, and gen-
erates secondary structures facilitating recruitment of the enzyme AID (e.g.10–12). AID initiates DNA cleavage 
at the universal donor Sµ region and the activated downstream S region. Ligation of the two S regions brings 
the downstream constant region into proximity of the rearranged VDJ gene segment, ultimately leading to the 
expression of a new isotype6,7.

Seminal studies showed that B cells activated by a given signal are transcriptionally committed towards the 
activated isotype(s) prior to recombination to that particular isotype(s)13–15. This pre-switch “transcriptional 
commitment” model has since been confirmed by various mutational studies targeting I promoters (e.g.16–19). 
However, it is unknown whether initially non-activated I promoters are irreversibly silent or if they can be acti-
vated when committed B cells are subsequently exposed to inducers promoting their activation.

By using the IgA-committed B cell line CH12, we show that non-committed I promoters are not irreversibly 
silent. Following deletion of the committed Iα promoter, activation of the I promoter responding to the initial 
activating cytokine is favored.
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Results
CRISPR/Cas9-mediated deletion of the Iα promoter in the CH12F3-2 cell line. The murine cell 
line CH12 is derived from the CH12.LX lymphoma cell line. This cell line is transcriptionally committed to the Iα 
promoter, which has basal activity even in the absence of stimulation, and activated CH12 cells switch exclusively 
to IgA20,21. Throughout this study, we used the sub-clone CH12F3-222 (hereafter called CH12 line or cells).

To investigate the effect of deleting the committed Iα promoter on activation of upstream I promoters and 
CSR, we designed two CRISPR/Cas9 guide RNAs specifically targeting the Iα promoter/exon (Fig. 1A). Because 
in CH12, the non-productive allele has already undergone Sµ/Sα recombination22,23 (Supplementary Fig. S1A), 
which deleted all I promoters except for the Eµ/Iµ enhancer/promoter (Fig. 1A), the gRNAs target exclusively the 
productive allele. PCR screening and sequencing identified eight clones with the desired deletion (Supplementary 
Fig. S1A–D).

FACS analyses showed that in response to LIT (LPS + IL4 + TGFβ), CH12 cells undergo robust CSR to IgA to 
levels higher than in activated splenic B cells (Fig. 1B). As expected, none of the Iα-deleted clones switches to IgA 
(Fig. 1B,C). We checked on three random mutant clones that no trans-splicing occurred between the VDJ exon of 
the productive allele and the Cα region of the non-productive allele (Supplementary Fig. S1E).

Switch transcription and CSR in activated CH12 cells and deletion clones. To determine if CSR 
occurs in the absence of the committed Iα promoter, we first tested switching under stimulation conditions 
known to induce switching in primary B cells; LPS stimulation induces CSR to IgG3 and IgG2b, LPS + IL4 to 
IgG1 and IgE, LPS + IFNγ to IgG2a, and LIT to IgG2b and IgA.

FACS analysis revealed that, in contrast to activated splenic B cells, in CH12 as well as in all Iα-deleted clones, 
LPS, LPS + IFNγ and LPS + IL4 failed to induce CSR to IgG3, IgG2a and IgG1, respectively. None of these stimuli 
induced CSR to IgA, as expected (Fig. 2A–C, Supplementary Figs. S2 and S3). These results were confirmed in 
three random clones by RT-qPCR quantification of post-switch transcripts24 (Supplementary Fig. S4).

Quantification of pre-switch transcripts in unstimulated (UNS) cells revealed that transcripts levels were 
higher in deletion clones than in CH12, except for Sγ2a (Fig. 2D–F, Supplementary Fig. S5). Moreover, with the 
exception of Sε transcripts, whose levels increased in activated Iα-deleted clones (Fig. 2F), switch transcripts were 
not further induced following stimulation (Fig. 2D–F).

We conclude that deletion of the committed Iα promoter up-regulates most non-committed I promoters.

A

B C

0

2

4

6

10

15

20

25

30 ****

ns ns ns ns ns ns ns ns

CH12 cl.1 cl.2 cl.3 cl.4 cl.5 cl.6 cl.7 cl.8

%
Ig

A

UNS
LIT 1.3% 26.7%

0.1% 0.8%

B2
20

IgA

UNS LIT

CH12

Clone 1

V   D J                   Eµ   Iµ     Sµ      Cµ       Cδ Iγ3    Sγ3     Cγ3         Iγ1    Sγ1     Cγ1       Iγ2b Sγ2b   Cγ2b    Iγ2a  Sγ2a  Cγ2a        Iε Sε Cε Iα    Sα       Cα          3’RR

Produc�ve allele
(Igµ heavy chain) 

TGFβIFNγ IL4LPS/TGFβLPS IL4

D J                       Eµ   Iµ      Sµ/Sα         Cα          3’RR

Excluded allele 

gRNA1 gRNA2

Figure 1. Deletion of Iα promoter/exon inhibits CSR to IgA. (A) Schematic structure of the IgH locus 
in CH12F3-2 line. The non-expressed allele is a partially rearranged DJH allele that underwent Sµ/Sα 
recombination, thus deleting all upstream inducible I promoters. The mitogen and cytokines inducing the 
different I promoters are indicated on top. The sites flanking Iα promoter/exon targeted by the gRNAs are 
indicated with arrows. The Eµ/Iµ enhancer/promoter between the variable and the constant regions, and the 
3′RR super-enhancer downstream of the locus are shown. (B) Flow cytometry analysis of Iα-deleted clones. The 
8 clones obtained by CRIPR/Cas9 were analyzed by FACS for IgA surface expression. The parental CH12 line 
was used as a control prior to (UNS) and following LIT (LPS + IL4 + TGFβ) stimulation. LIT-activated splenic 
B cells were also included as a control (n = 3). (C) Representative FACS plot obtained with CH12 cells and an 
Iα-deleted clone (n° 1), before and following LIT stimulation.
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the iγ2b promoter is induced in response to LIT but not LPS stimulation in CH12. In primary 
B cells, CSR to IgG2b is induced in response to LPS or LIT. We asked if CSR to IgG2b in CH12 cells is induced by 
either stimulus or only in response to the inducer of the committed isotype (i.e. LIT).

FACS analysis revealed that, unlike primary B cells, LPS stimulation did not induce CSR to IgG2b in either 
CH12 or Iα-deleted clones (Fig. 3A). While in response to LIT, CH12 cells also failed to switch to IgG2b, 
Iα-deleted cells underwent significant switching to IgG2b (Fig. 3B). Although they varied from clone to clone, 
the levels of CSR to IgG2b in mutant clones were always lower compared to CSR to IgA in CH12 cells (Figs. 1B,C 
and 3B). Accordingly, Iµ-Cγ2b transcripts levels increased following LIT stimulation only (Supplementary 
Fig. S6). Moreover, higher levels of Sγ2b pre-switch transcripts were detected in LIT-stimulated clones compared 
to LPS-stimulated counterparts (Fig. 3C–E). Surprisingly, unlike primary B cells where LPS induces Sγ2b tran-
scription, LPS repressed Sγ2b transcription in CH12 line as well as in all Iα-deleted clones (Fig. 3C).

This data shows that Sγ2b transcription and subsequent CSR to IgG2b are induced in Iα-deleted clones, but 
only in response to the inducer of the committed isotype (LIT).

Differential induction of switch transcription and CSR in the presence of TGF-β. The unexpected 
finding that IgG2b only responds to LIT stimulation suggested to us that the Iγ2b promoter responds differently 
in the CH12 line versus primary B cells. Given that high switching levels to IgA can be achieved when activating 
CH12 cells with anti-CD40 + IL4 + TGFβ (CIT)21,22, we wondered if and how this stimulus would impact CSR 
to IgG2b.

In CH12, cells switched at higher levels to IgA under CIT than LIT (Figs. 1B and 4) and a low percentage of 
cells switched to IgG2b in the presence of CIT (Figs. 3B and 4). Similarly, In Iα-deleted clones, switching to IgG2b 
was considerably higher with CIT than with LIT (Fig. 4). Given the effect of CIT on CSR to IgG2b, we analyzed 
CSR to other isotypes in CIT-treated cells. We found that switching to IgG3 occurred at varying efficiencies but 
that switching levels were higher in response to CIT than to LIT (Fig. 4). Switching to IgG1 occurred only with 
CIT while CSR to IgG2a was undetectable regardless of the stimulation (Fig. 4).

We then asked if the increment in switching with CIT, as compared to LIT, was accompanied by an increase 
in switch transcription. While Sγ2b pre-switch transcripts levels increased upon CIT stimulation in CH12 cells, 
there were no differences in transcript levels between LIT and CIT in deletion clones, whereas in splenic B cells, 
Sγ2b transcripts levels were higher with LIT (Fig. 5A). Surprisingly, while FACS detected higher CSR to IgA with 
CIT, Sα transcripts levels in CH12 cells were higher with LIT than with CIT, but there was no difference in acti-
vated splenic B cells (Fig. 5B). Iα-deleted clones, as expected, did not produce Sα transcripts.

Figure 2. Iα-deleted clones fail to undergo CSR following specific stimulation. (A–C) CH12 cells, three Iα-
deleted clones, and splenic B cells were activated by LPS (A), LPS + IFNγ (B) or LPS + IL4 (C) and stained for 
IgG3, IgG2a and IgG1, respectively. Representative plots are shown for unstimulated (UNS) and activated CH12 
cells, Iα-deleted clones (clone 5) and primary B cells. (D–F) RT-qPCR quantification of pre-switch transcripts 
(Sx transcripts) in unstimulated and day 2 activated splenic B cells, CH12 cells or clones 5, 6 and 8 in response 
to LPS (Sγ3) (D), to LPS + IFNγ (Sγ2a) (E), or to LPS + IL4 (Sγ1 and Sε) (F) (n = 3).
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Although there was increased CSR to IgG3 with CIT and no switching to IgG2a, regardless of stimulation, 
Sγ2a (with the exception of clone 5) and Sγ3 transcripts levels were comparable between LIT- and CIT-activated 
deletion clones (Fig. 5C,D).
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Figure 3. CSR to IgG2b is partially restored in response to TGF-β but not to LPS stimulation. (A,B) CH12 
cells, three Iα-deleted clones (2, 3, and 5) and splenic B cells were activated by LPS (A) or LIT (B) for 4 days, 
and stained for IgG2b. Representative plots are shown for unstimulated (UNS), activated CH12 cells, Iα-deleted 
clones (clone 5) and primary B cells. (C,D) RT-qPCR quantification of Sγ2b pre-switch transcripts levels in 
unstimulated clones 5, 6 and 8 and in response to LPS (C) or to LIT (D) (day 2). (E) Comparison of Sγ2b pre-
switch transcripts levels in Iα-deleted clones 5, 6 and 8, following LPS and LIT stimulation (n = 3).
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Figure 4. Differential induction of CSR in response to LIT and CIT. CH12 cells and three Iα-deleted clones (3, 
5 and 8) were activated by LIT or CIT for 4 days, and stained for the indicated isotypes. Representative plots are 
shown for activated CH12 cells and Iα-deleted clones (clone 5) (n ≥ 3).
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In CH12 cells and in deletion clones, LIT repressed Sε, but not Sγ1 transcription, except for clone 8 in which 
Sγ1 transcripts increased. CIT induced Sγ1 and Sε transcription (Fig. 5E,F and Supplementary Fig. S7). In splenic 
B cells, CIT was just as efficient as LPS + IL4 (LI) in inducing Sγ1 and Sε transcription, and the levels were higher 
than with LIT (Fig. 5E,F).

Thus, in the absence of the committed Iα promoter, CSR to IgG2a does not take place, and while switching 
to IgG1 occurs with CIT only, switching to IgG2b and IgG3 occurs in response to both CIT and LIT. However, 
switching was constantly higher in response to CIT. Surprisingly, switching efficiency did not always correlate 
with switch transcripts levels.

Lack of correlation between Aicda transcripts levels and CSR efficiency. Since the enzyme AID is 
absolutely required to initiate CSR, we wondered if the lack of correlation between switch transcription and CSR 
in some cases is due to lower expression of the Aicda gene, encoding AID.

We found that Aicda transcripts levels were higher in CH12 cells and derived clones compared to primary B 
cells, both in unstimulated and stimulated conditions (Fig. 6). LI (LPS + IL4) did not induce Aicda transcription 
in CH12 and Iα-deleted clones, but only in primary B cells (Fig. 6). In contrast to LI, LIT and CIT efficiently 
induced Aicda gene in all cells (Fig. 6).

Therefore, while absence of switching to Sε in CH12 and deletion clones following LI stimulation correlates 
with the lack of induction of Aicda gene, the same is not true for the differences in CSR to IgG2b and IgA in the 
presence of LIT and CIT.

Increased transcription of hs1-2 enhancer in response to LIT but not CIT. Enhancer RNAs 
(eRNAs) are produced at the 3′RR following activation of splenic B cells and are a hallmark of 3′RR activity25–27. 
We then wondered if the non-correlation between switch transcription and CSR, in the cases where there is simi-
lar activation of Aicda, could be explained by differences in the transcriptional activity of the 3′RR. In order to test 
this, we quantified hs3a, hs1-2 and hs3b transcripts levels.

eRNAs levels were comparable between unstimulated CH12 cells and deletion clones, and were higher than 
in splenic B cells (Fig. 7). For both CH12 cells and deletion clones, while hs3a and hs3b eRNAs levels did not 
significantly vary with LIT and CIT (despite some clonal variation) (Fig. 7), there was a consistent trend towards 
increased hs1-2 transcription with LIT (Fig. 7).

Figure 5. Differential induction of switch transcription in response to LIT and CIT. (A–F) RT-qPCR 
quantification of Sγ2b (A), Sα (B), Sγ2a (C), Sγ3 (D), Sγ1 (E), and Sε (F) pre-switch transcripts levels in CH12 
cells and Iα-deleted clones 3, 5 and 8 following LIT or CIT stimulation. Transcripts levels in splenic B cells 
activated with LIT and CIT for Sγ2b (A) and Sα (B), and with LPS + IL4 (LI), LIT and CIT for Sγ1 and Sε (E,F) 
are boxed (n ≥ 3).
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While enhanced transcription of hs1-2 in response to LIT correlates with low levels of Sγ1 and Sε transcripts, 
high levels of Sγ2b and Sα transcription were detected in the presence of LIT. Therefore, increased transcription 
of hs1-2 enhancer cannot alone explain the dissociation between switch transcription and CSR.

Discussion
The CH12 cell line is widely used to study various aspects of CSR (e.g.11,12,22,23,28). However, transcriptional activ-
ity of its I promoters had not yet been studied. We investigated the transcriptional status of the non-committed 
I promoters and CSR levels in the presence or absence of the initially committed Iα promoter, following various 
stimulations classically used for primary B cells and/or CH12.

Treatment of the parental CH12 line with LPS, LI or LPS + IFNγ did not activate any of the I promoters. 
However, the block was not irreversible because, upon deletion of the committed Iα promoter, switch transcripts 
levels of all isotypes (with the possible exception of Sγ2a) increased in unstimulated cells. This indicates that sim-
ple deletion of the committed promoter enabled other I promoters to acquire a relatively open chromatin state.

Upon stimulation of Iα-deleted clones, the I promoters displayed different responses. For instance, while Iγ1 
was induced by CIT only, Iε was induced by LI and, more strongly, by CIT, but was repressed by LIT. Because 
both LIT and CIT contain TGF-β, strong induction of Iε and of Iγ1 only in the presence of CIT was surprising. 
It has been shown that, in splenic B cells, TGFβ induces the Id2 repressor, which antagonizes binding of basic 
helix-loop-helix E2A and PAX5 transcription factors, precluding activation of the Iε promoter (E2A in the case 
of Iγ1)29. We found that Sγ1 and Sε transcripts levels were reduced in splenic B cells activated with LIT, compared 
to CIT. Together, these findings indicate that TGFβ impacts Sγ1 and Sε transcription in the presence of LPS, but 
not of anti-CD40. This suggests that signaling through CD40 somehow circumvents TGFβ-induced Id2-mediated 
suppression of transcription factors activity. The Toll-like receptor 4 (TLR4, which binds LPS) and CD40 prefer-
entially trigger the classical and the alternative NF-κB signaling pathways, respectively30,31. Nonetheless, LPS can 
activate both pathways through binding to both TLR4 and surface IgM32,33. Given that all I promoters (except Iµ) 
and the 3′RR have NF-κB binding sites6,9,34, this suggests that the cross-talks between TGFβ and LPS pathways on 
one hand, and TGFβ and CD40 ligand pathways on the other hand, have more complex transcriptional outcomes 
than previously thought.

CIT induced higher levels of CSR than LIT, but there was not always a correlation between increased CSR and 
switch transcription as illustrated by increased Sα transcription in CH12 cells in the presence of LIT, and similar 
Sγ2b transcript levels in deletion clones under the two stimulations. This suggested that other mechanisms might 
be involved. We investigated transcription of Aicda gene under different stimulations. We showed that LIT and 
CIT, but not LI, efficiently induced Aicda in CH12 cells and deletion clones. Nonetheless, there was not always a 
correlation between switching efficiency and Aicda induction. On one hand, the failure to switch to Sε in response 
to LI could be due to non-induction of Aicda, but also to low levels of Sε transcripts, or to a conjunction of both. 
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On the other hand, CIT induced higher levels of CSR to IgA in CH12 cells, and to IgG2b in deletion clones, than 
LIT but this did not correlate with a substantial increase in Aicda gene induction. Therefore, AID levels per se 
cannot explain the large difference in switching efficiency in response to CIT versus LIT. We suggest that factors 
acting downstream of AID may be more strongly induced by CIT than LIT.

Transcriptional activity of the 3′RR could also account for the complex transcriptional pattern of I promoters. 
Given that unstimulated CH12 cells and deletion clones expressed similar eRNAs levels, deletion of the commit-
ted promoter did not affect 3′RR activity. Additionally, eRNAs levels in CH12 were higher compared to primary B 
cells, and were insensitive to CIT. This suggests that eRNAs have reached a level sufficient for activation of specific 
I promoters. In this regard, it should be noted that the CH12 line has already switched on the non-expressed 
allele, i.e., it has experienced activation that induced the 3′RR on both alleles (Fig. 8).

Remarkably, hs1-2 transcription could be further induced by LIT, and this correlated with low levels of Sγ1 
and Sε transcripts. This pattern is consistent with a model in which Iγ1 and Iε promoters compete with highly 
transcribed 3′RR enhancers for transcription factors27. However, the activation patterns of Iγ2b (similarly 
induced by LIT and CIT) and Iα (induced by LIT but not by CIT) suggest different or additional mechanisms. 
Various non-mutually exclusive mechanisms could be involved including local factors specific to I promoters 
(combinatorial effect of transcription factors, cis-acting elements…), preferential interactions of individual 3′RR 
enhancers with I promoters35,36, and physical proximity to the 3′RR. The finding that heightened transcription of 
hs1-2 enhancer with LIT correlates with reduced CSR to IgG2b and IgA may indicate that hs1-2 enhancer com-
petes with Sγ2b and Sα for AID. Recruitment of AID by super-enhancers has been demonstrated37,38 and there is 
some evidence that AID could target the 3′RR25.

A remarkable finding of this study concerns the switch levels to IgG2b in deletion clones that are considerably 
higher in response to CIT than to LIT. This was unexpected, and as mentioned, cannot be due to higher switch 
transcripts levels or to 3′RR eRNAs or AID levels, but may suggest that activation of the initial B cell clone (that 
gave rise to CH12 line) took place in the context of a T-dependent response, which activated the CD40 pathway. 
Moreover, the CH12 line has already undergone switching on the excluded allele and may therefore represent an 
advanced state of commitment. Importantly, in the absence of the committed promoter, particularly in the pres-
ence of CIT, Sγ2b transcription is more strongly induced than in primary B cells, and, of all isotypes, the highest 
levels of switching occur towards IgG2b specifically. Thus, in terms of both transcription and switching, the γ2b 
isotype appears to be the preferential target of CIT, i.e. the likely initial committing signal. We have recently 
shown that in the majority of TGFβ-activated splenic B cells, the Iγ2b and Iα promoters compete for the 3′RR39. 
Although we cannot ascertain if commitment to the Iα promoter in the original CH12 line took place following 
co-activation of Iγ2b and Iα or single activation of Iα, the CSR pattern in deletion clones raises the possibility that 
commitment to the Iα promoter has rewired the CSR machinery so that, even after deletion of Iα, it targets Iγ2b 
and there is optimal switching in response to the initial signal (Fig. 8). Whether this coincides with CIT-induced 
formation of specialized nuclear compartments such as transcription factories40 that would facilitate Iγ2b-3′RR 
interactions and recruitment of AID remains to be explored.

Figure 8. Model of the natural history of the CH12 line. Initial activation of the original B cell clone likely 
took place in the context of a T-dependent response involving TGF-β and CD40. This led to commitment to Iα 
promoter and induction of 3′RR transcription on both alleles, and subsequent switching on the non-expressed 
allele. The CSR machinery retained somehow memory of the initial activating signal (CIT). The Iα promoter 
and the 3′RR remain active in the committed CH12 line. Upon deletion of the committed Iα promoter, Iγ2b 
normally induced with either LPS or TGF-β, is only induced in response to TGF-β, but the highest switching 
levels to IgG2b are preferentially achieved with the initial signal (CIT).

https://doi.org/10.1038/s41598-019-54929-x


8Scientific RepoRtS |         (2019) 9:18543  | https://doi.org/10.1038/s41598-019-54929-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

In conclusion, we showed that initial commitment to the Iα promoter in CH12 cells blocks transcriptional 
activation of other promoters. However, the block is not irreversible. Commitment to a particular isotype appears 
to target the CSR machinery towards a pathway in which the stimulating cytokine plays a key role so that in the 
absence of the committed promoter, activation of the I promoter responding to the initial signal is favored. It 
would be interesting to explore if the same is true for primary B cells.

Material and Methods
cell culture. CH12 and primary splenic B cells (from 129Sv1 mouse strain) were cultured in RPMI media 
supplemented with 10% heat inactivated serum, 10 mM HEPES, 1 mM sodium pyruvate, 100 U/mL Penicillin, 
100 U/mL Streptomycin, 50 μM β-mercaptoethanol, 1x non-essential amino acids.

CH12 cells were stimulated for 2 or 4 days at a density of 105 cells/ml, in the presence of 50 µg/ml of LPS 
(Sigma) (LPS stimulation); 50 µg/ml LPS and 20 ng/ml IFN-γ (R&D) (IFN-γ stimulation); 50 µg/ml LPS and 
25 ng/ml IL4 (eBiosciences) (IL4 stimulation); 50 µg/ml LPS, 10 ng/ml IL4, and 2 ng/ml TGFβ (R&D) (LIT stim-
ulation); 1 µg/ml anti-CD40 (eBiosciences), 10 ng/ml IL4, and 2 ng/ml TGFβ (CIT stimulation). Purification and 
stimulation of primary splenic B cells were as described (ref. 40).

Molecular cloning. The gRNAs oligonucleotides were phosphorylated with T4 Polynucleotide Kinase 
(Thermo Scientific) and annealed. Afterwards, they were ligated with BsaI or BbsI digested pX333 plasmid 
(Addgene). Confirmed cloning products were used as template to PCR amplify the gRNA cassette with prim-
ers gRNA-MluIFw and gRNA-MluIRev, and the PCR fragment was cloned into MluI digested CMV-Cas9-GFP 
plasmid (Sigma). Correct cloning was diagnosed by restriction digestion and sequencing. All primers are listed 
in Table S1.

CH12 cells transfection. 2 × 106 cells were transfected with 2 µg of CMV-Cas9-GFP-gRNA by electropo-
ration using program O-006 of the Amaxa Nucleofector II (Lonza) and Amaxa Cell Line Nucleofector kit V. 
Transfected cells were cultured at 37 °C for 24 h. GFP-positive cells were single-sorted into 96-well plates, cul-
tured for seven days and then PCR tested for the presence of the deletion with the appropriate primers and 
GoTaq Polymerase (Promega), according to the manufacturer’s instructions. Deletion clones were checked by 
sequencing.

Rt-qpcR. Total RNAs were collected from non-stimulated or stimulated cells at day 2 or day 4 post-treatment 
using a commercial kit (Zymo Research). Total RNAs were reverse-transcribed (Invitrogen) and qPCR was per-
formed using Sso Fast Eva Green (BioRad), according to the manufacturer’s instructions. Actin transcripts levels 
were used for normalization and the results are shown as percentage of actin. (-RT) controls were tested for all 
samples.

flow cytometry. At day 4 post-stimulation, cells were washed and stained with anti-B220 APC (BioLegend) 
and either anti-IgG3-FITC (BD-Pharmingen), anti-IgG1-FITC (BioLegend), anti-IgG2b-PE (BioLegend), 
anti-IgG2a-PE (BioLegend) or anti-IgA-FITC (BD-Pharmingen). Data were obtained on 3 × 104 viable cells by 
using a Coulter XL apparatus (Beckman Coulter).

Statistical analysis. Results are expressed as mean ± SD (GraphPad Prism), and overall differences between 
values from WT and mutant mice were evaluated by a two-tailed t test. The difference between means is signifi-
cant if p < 0.05 (*), very significant if p < 0.01 (**), and extremely significant if p < 0.001 (***).

Data availability
Materials, data and associated protocols are promptly available to readers.
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