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Stability Analysis of Time-Varying Systems with Harmonic Oscillations
Using IQC Frequency Domain Multipliers

Jorge Ayala-Cuevas1, Fabrı́cio Saggin1, Anton Korniienko1 and Gérard Scorletti1

Abstract— This paper considers stability analysis of uncertain
and time-varying systems containing harmonic oscillations of
the form cosine and sine simultaneously. The analysis is
performed by investigating the stability of a feedback in-
terconnection through Integral Quadratic Constraints (IQC)
approach. A new class of IQC multipliers, derived in frequency
domain, is proposed to deal with simultaneous cosine and
sine harmonic oscillations. The proposed multiplier reduces the
conservatism with respect to other multipliers by exploiting
frequency and phase shift information. A multiplier param-
eterization admitting real state-space realization is proposed.
Such a parameterization allows to perform stability analysis
through a finite-dimensional LMI optimization problem with a
reduced number of decision variables.

I. INTRODUCTION

Systems operating with modulated signals are found
in many engineering fields such as electrical engineering,
telecommunications and microelectronics. Some of them
operates in feedback loop as, for example, MEMS vibratory
gyroscopes [1]. They use two mechanical resonators (modes)
to measure the angular rate of an object. If one mode (drive
mode) vibrates, Coriolis effect arises in the presence of
angular movement, transferring the vibrations to the second
mode (sense mode). Vibrations in the sense mode are then
measured to obtain an image of the angular rate. The quality
of the measure (precision, SNR) depends on the constancy
of the frequency and amplitude of the oscillations. Hence,
drive mode is operated in closed-loop to ensure that its dis-
placement tracks a sinusoidal reference signal of frequency
close to the natural frequency of the resonator.

MEMS vibratory gyroscopes are systems operating natu-
rally with modulated signals at relatively high frequencies.
From implementation reasons, sometimes it can be con-
venient to consider a baseband controller implementation
[2]. In such case, instead of ensuring the output to follow
the reference signal, the controller maintains the phase and
amplitude of the output harmonic signals, demanding to
track only constant references. This approach is possible
thanks to synchronous demodulators in the feedback loop
[3]. If we consider synchronous demodulation with ideal low-
pass filters, the controller can be computed through a linear
control design problem [4]. If non-ideal filters are taking into
account, the system can be modeled as the interconnection
of a Linear Time-Invariant (LTI) system with an operator
containing cosine and sine functions of same frequency
simultaneously. Then, we need to analyse the effect of
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such harmonic oscillations on the feedback system stability.
Robustness analysis framework offers appropriate tools to
establish analysis tests with complete guarantees and reduced
conservatism. In addition, MEMS sensors are particularly
sensitive to different phenomena, resulting in systems which
tend to be naturally uncertain. Therefore, the considered tool
has to be modular, allowing the combination of the harmonic
time-varying elements with other uncertainties.

Systems containing time-varying harmonic oscillations be-
long to the larger class of Linear Periodically Time-Varying
(LPTV) systems. There exists several stability analysis re-
sults for LPTV systems based on Floquet theory [5], [6].
However, Floquet theory is generally used to test nominal
stability, with no consideration of uncertainty. Analysis of
uncertain LPTV systems dates from the 90’s. Some ap-
proaches use the ν-gap metric [7] which considers only a
particular type of unstructured uncertainty. Other approaches
employs the lifting technique to obtain an equivalent discrete-
time but time-invariant uncertain system [8], which can be
analyzed using techniques for LTI uncertain systems, such as
µ-analysis [9]. Unfortunately, the equivalent system demands
to solve high-dimensional problems.

Integral Quadratic Constrains (IQC) approach has shown
to be an attractive tool for the analysis of a large class of
systems. This is due to its flexibility when dealing with sev-
eral uncertainties, time-varying elements and non-linearities,
as well as the possibility to obtain tests in the form of
convex optimization problems, see [10] and [11]. The work
of [12] proposed two approaches for the analysis of LPTV
systems. The first approach uses a Fourier series expansion
and represents the systems as a Linear Fractional Represen-
tation (LFR) whose “uncertain bloc” contains the harmonic
functions and uncertainties; however, information about the
harmonic frequency is not exploded. In fact, the authors
argue that this approach offered more conservative results
due to the lack of good IQCs for the harmonics. The second
approach keeps the harmonics in the nominal system and de-
rives periodic multipliers to establish an infinite-dimensional
analysis test. In both cases, time-domain multipliers are
derived. Then, [13] proposed a cutting-plane algorithm to
solve the problem of the second approach of [12], and this
work is extended to the study of forced periodic systems
in [14]. The work of [10] includes a frequency domain
multiplier for the analysis of the feedback interconnection of
an LTI system and a repeated cosine gain. Nevertheless, no
parameterization admitting a suitable state-space realization
has been proposed for this type of multiplier, remaining
unexploited in a tractable stability analysis test.



The present work proposes a new class of multipliers that
extends the the multiplier of [10] to the case of harmonic
operators containing cosine and sine simultaneously. Such
multiplier reduces conservatism of stability analysis with
respect to other available multipliers. We also propose a pa-
rameterization for this multiplier which, by admitting a real
state-space realization, allows to obtain tractable conditions
in the form of Linear Matrix Inequality (LMI) constraints
with real matrices and compact number of decision variables.
The formalization of the system and problem under consider-
ation are presented in Section II. The proposed multiplier is
introduced in Section III. An appropriate parameterization
for the multiplier is presented in Section IV. The main
stability result for the considered system is given in Section
V. Finally, an application case is introduced in Section VI.

Notations: j =
√
−1. ŷ is the Fourier transform of y. ȳ

denotes the complex conjugate of y. AT is the transpose of
A. A∗ is the Hermitian conjugate of A. σ̄(A) is the maximal
singular value of A. In is the identity matrix in Rn×n. I and 0
in matrices denote the identity and zero matrices respectively
of dimensions given by the context. diag(A1, ...An) is the
diagonal concatenation of matrices A1 until An. A� 0 (A� 0)
means that A is positive definite (semidefinite); and A ≺ 0
(A � 0) means that A is negative definite (semidefinite). ⊗
denotes the Kronecker product. L n

2 is the space of square
integrable Rn-valued functions. L n

2e is the space of Rn-
valued functions whose truncation is square integrable. G :
L

nq
2e →L

np
2e is an operator taking any input q∈L

nq
2e into the

output p = G(q) ∈L
np

2e . In the case of linear operators, the
output is p = Gq. RL m×n

∞ is the space of real-rational and
proper transfer function matrices of dimension m×n without
poles on the extended imaginary axis. RH m×n

∞ ⊂RL m×n
∞

consists of transfer function matrices without poles on the
closed right-half complex plane. In the case of cumbersome
quadratic forms, we use ? to abbreviate the notation (i.e. for
G containing several elements, G∗MG is written [?]∗MG).
The state-space realizations of transfer functions matrices,

i.e. G(s), are denoted G∼ (A,B,C,D) or G∼
[

A B
C D

]
.

II. PROBLEM FORMULATION
Let us consider dynamic systems represented by an in-

terconnection (G,∆) of a so called “nominal system” G,
and an operator ∆ containing the “problematic elements” of
the system (uncertainties, time-varying, non-linearities). The
interconnection (G,∆) is defined by the following equations:

q = Gp+qin, p = ∆(q), (1)

where qin ∈ L
nq

2e represents an exogenous input, G ∈
RH

np×nq
∞ is a stable LTI system, ∆ : L

nq
2e → L

np
2e is a

bounded and causal operator belonging to a specific set ∆∆∆ that
defines the nature and structure of the problematic elements.
Synchronous demodulation operation can be modeled as a
system represented by the interconnection (1) with ∆(q) =
θ(t,ω0)q(t) where θ is

θ(t,ω0) =

[
cos(ω0t)Inq1

0
0 sin(ω0t)Inq2

]
(2)

with p = [p1 p2]
T , q = [q1 q2]

T , nq1 = nq2, np1 = np2 and
ω0 being the frequency of the harmonic oscillations. The
objective of this paper is then stated as follows:

Problem 1. Given the system defined by the interconnection
(1), with ∆(q) = θ(t,ω0)q(t) defined by (2), test the stability
of the feedback interconnection.

As previously mentioned, robustness analysis tools seem
to be appropriate to perform the stability analysis of such
a system, more specifically, IQC approach is considered in
this work. In robust stability analysis, the main objective
is to evaluate whether or not the feedback interconnection
(G,∆) remains stable for all ∆ ∈ ∆∆∆. Let us first define
some preliminary concepts. The interconnection (G,∆) is
well-posed if, for every input qin ∈ L

nq
2e , the equations of

(1) admit a unique solution q on L2e; this means that
(I −∆G) has a causal inverse. The interconnection (G,∆)
is stable if it is well-posed and if (I−∆G)−1 is bounded.
The interconnection (G,∆) is robustly stable if it is stable
for all ∆ ∈ ∆∆∆. The IQC approach proposed in [10] allows
to verify stability of the interconnection (1) by studying G
and ∆ separately using Integral Quadratic Constrains (IQCs).
The idea behind is to capture the main features of ∆ by
constraining input-output energetic relations.

Definition 1. Considering p = ∆(q), ∆ is said to satisfy the
IQC defined by the multiplier Π (∆ ∈ IQC(Π)) if, for all
q ∈L

nq
2 ,∫

∞

−∞

[
?
?

]∗ [
Π11( jω) Π12( jω)
Π12( jω)∗ Π22( jω)

][
q̂( jω)
p̂( jω)

]
dω ≥ 0.

(3)

In general Π can be any linear, bounded Hermitian-valued
operator. To evaluate robustness property, we construct a
whole set of multipliers ΠΠΠ such that the IQC (3) holds for all
Π ∈ΠΠΠ and for all ∆ ∈∆∆∆. We then state the following result
concerning stability analysis.

Theorem 1. Consider the interconnection (G,∆) of (1)
with G ∈RH

nq×np
∞ and ∆ a bounded and causal operator

belonging to a ”star-shaped” set ∆∆∆, i. e. if ∆ ∈ ∆∆∆⇒ ∀ τ ∈
[0,1] τ∆ ∈∆∆∆.

Assume that
1) for all ∆ ∈∆∆∆ the interconnection (1) is well-posed;
2) for all ∆∈∆∆∆ and for all Π∈ΠΠΠ the IQC (3) is satisfied.

Then, the interconnection (1) is robustly stable if there exists
a Π∈ΠΠΠ and ε > 0 satisfying the frequency domain inequality[

G( jω)
I

]∗
Π( jω)

[
G( jω)

I

]
� −εI ∀ω ∈ R. (4)

Despite the importance of the previous result, as presented,
this is an infinite-dimensional problem since there are an
infinite number of multipliers satisfying (3); moreover, the
inequality must be satisfied for all ω ∈R. To deal with these
aspects, we first constraint the multipliers to be rational func-
tions Π∈RL ∞ of finite dimension that accept a suitable pa-
rameterization so that we obtain a frequency-dependent con-
straint on a limited set of parameters. Here, we consider sets



of multipliers parameterized as ΠΠΠ = {Π = Φ∗MΦ| M ∈MMM},
with MMM being a set of real symmetric matrices M = MT and
Φ ∈ RH

•×np
∞ a given transfer function matrix. Secondly,

with H = Φ

[
G
I

]
we exploit the Kalman-Yakubovich-Popov

(KYP) lemma [15] in order to obtain an LMI constraint that
satisfies (4) for all ω ∈ R.

Lemma 1. Let H ∈RL •×•
∞ admit the minimal realization

(A,B,C,D) with A ∈ Rnh×nh , and let be M = MT ∈ R•×•.
Then the following two statements are equivalent

1) H( jω)∗MH( jω)≺ 0 ∀ ω ∈ R.
2) There exists a matrix P = PT ∈ Rnh×nh such that ?

?
?

T  0 P 0
P 0 0
0 0 M

 I 0
A B
C D

≺ 0 (5)

In this context, the chosen set of multipliers ΠΠΠ plays a
central role on the conservatism of the stability result. It is
necessary to find a suitable parameterization of Π in order
to obtain tractable conditions in the form of LMI constrains.
We aim to test stability of system (1) when the operator ∆

is composed of the harmonic time-varying elements given in
(2). To do so, the result of Theorem 1 is exploited. Therefore,
we define the set

∆∆∆ = {∆ : ∆(q) = τθ(t,ω0)q(t),τ ∈ [0,1]} (6)

Theorem 1 provides stability conditions with respect to all
∆ ∈ IQC(Π) for all Π ∈ΠΠΠ. In order to reduce conservatism
of the analysis results for the considered ∆, a suitable set ΠΠΠ

is proposed in following section.

III. COUPLED HARMONIC MULTIPLIER

Several IQC multipliers can be used to characterize the
operator defined by (2). The next theorem proposes a new
class of multipliers that are specially derived for harmonic
time-varying elements.

Theorem 2. For ∆(q) = θ(t,ω0)q(t), with θ(t,ω0) defined
in (2), the IQC (3) holds with Π belonging to the following
set of multipliers

ΠΠΠ=

{
Π : Π( jω) =

[
X̃D+( jω)+ X̃D−( jω) 0

0 −2XD( jω)

]}
(7)

with XD( jω) being Hermitian-valued and positive definite,

X̃D+( jω) =

[
I 0
0 − jI

]
XD( j(ω +ω0))

[
I 0
0 jI

]
,

X̃D−( jω) =

[
I 0
0 jI

]
XD( j(ω−ω0))

[
I 0
0 − jI

]
.

Proof. The input-output relation of the operator θ of (2) can
be rewritten in its exponential form

p1(t) =
1
2
(
e jω0t + e− jω0t)q1(t)

p2(t) =
1
2

j
(
e− jω0t − e jω0t)q2(t)

(8)

Let us use a hierarchical approach by defining the

sub components pup = θupqup = e jω0t
[

Inq1
0

0 − jInq2

]
qup

and plow = θlowqlow = e− jω0t
[

Inq1
0

0 jInq2

]
qlow, so p =

1
2 (pup + plow). This configuration of θ is shown on Figure
1. Let us consider θup with qup and pup its input and

[
Inq1

0
0 − jInq2

]

[
Inq1

0
0 jInq2

]

e jω0t

e− jω0t

1
2

θ

θlow

θupθup

q p

qup

qlow

pup

plow

Fig. 1. Exponential form of θ

output signals respectively as shown in Figure 2 a). Here,
we analyze the input-output relation of θup in the frequency
domain. The operator θup is equivalent to θ̃up = T−1T θup,

θup T T−1

T̃1 θup T−1

θupqup pup

qup
p̃up pup

qup
q̃up p̃up pup

a)

b)

c)

Fig. 2. Equivalent representation of θup

as presented in Figure 2 b), with T ( jω) ∈ Cnq×nq any
invertible complex matrix. In turn, this is equivalent to
θ̄ = T−1θupT̃1 as shown in 2 c), with T̃1( jω) given by

T̃1 :=
[

I 0
0 jI

]
T ( j(ω−ω0))

[
I 0
0 − jI

]
(9)

In time domain we have σ̄(θup) ≤ 1, which implies, for
p̃up = θupq̃up,∫

∞

0
p̃up(t)T p̃up(t)dt ≤

∫
∞

0
q̃up(t)T q̃up(t)dt (10)

which, considering Parseval’s equality, is equivalent to∫
∞

−∞

̂̃pup( jω)∗̂̃pup( jω)dω ≤
∫

∞

−∞

̂̃qup( jω)∗̂̃qup( jω)dω (11)

We know that ̂̃qup( jω) = T̃1( jω)q̂up( jω) and ̂̃pup =
T̃ ( jω)p̂up( jω), which leads to the inequality∫

∞

−∞

p̂up( jω)∗T ( jω)∗T ( jω)p̂up( jω)dω ≤∫
∞

−∞

q̂up( jω)∗T̃1( jω)∗T̃1( jω)q̂up( jω)dω

(12)



Let us define XD( jω) = T ( jω)∗T ( jω), so that XD( jω) =
XD( jω)∗ � 0. Similarly for XD+ = T ( j(ω +ω0))

∗T ( j(ω +
ω0)) and XD− = T ( j(ω−ω0))

∗T ( j(ω−ω0)). We have also
that

X̃D− = T̃1( jω)∗T̃1( jω) =

[
I 0
0 − jI

]
XD−

[
I 0
0 jI

]
(13)

which yields to the inequality∫
∞

−∞

p̂up( jω)∗XD( jω)p̂up( jω)dω ≤∫
∞

−∞

q̂up( jω)∗X̃D−( jω)q̂up( jω)dω

(14)

Using a similar procedure, we obtain the following in-
equality for the lower branch∫

∞

−∞

p̂low( jω)∗XD( jω)p̂low( jω)dω ≤∫
∞

−∞

q̂low( jω)∗X̃D+( jω)q̂low( jω)dω

(15)

We can add the inequalities (14) and (15) and exploit the
following arguments
• qup = qlow = q and 2p = pup + plow.
•
∫

∞

−∞
p̂∗XD p̂dω is a convex function of p̂, then we can

easily show that 1
2
∫

∞

−∞
(p̂up + p̂low)XD(p̂up + p̂low)dω ≤∫

∞

−∞
(p̂upXD p̂up + p̂lowXD p̂low)dω .

leading to an IQC defined by the multiplier Π of (7) (θ ∈
IQC(Π)).

Alternative multipliers can be obtained by noting that
θ(t,ω0) belongs to other larger sets, for instance
• ∆∆∆ = {∆ : ∆(q)(t) = diag(θ1(t)Inq1

,θ2(t)Inq2
)q(t)}, with

|θ1(t)| ≤ 1 and |θ2(t)| ≤ 1 being bounded arbitrary time-
varying parameters. In such case, ΠΠΠ of (7) is defined
with X̃D+ = X̃D− = XD = diag(XD1,XD2)∈Rnq×nq (nq =
np) with XD = XT

D � 0, leading to

Π =

[
XD 0
0 −XD

]
(16)

which is (without consideration of G-scaling [10]) the
multiplier generally used for arbitrary time-varying pa-
rameters. In the sequel this multiplier is referred to as
General Time-Varying Multiplier.

• ∆∆∆ = {∆ : ∆(q)(t) = diag(cos(ω0t + ϕ1)Inq1
,cos(ω0t +

ϕ2)Inq2
)q(t)} is the set containing two uncou-

pled harmonic oscillations, with ϕ1 and ϕ2 be-
ing arbitrary phase shifts. Hence, ΠΠΠ of (7) is
defined with X̃D+ = XD+ = diag(XD1+,XD2+) =
diag(XD1( j(ω +ω0)),XD2( j(ω +ω0))), X̃D− = XD− =
diag(XD1−,XD2−) = diag(XD1( j(ω − ω0)),XD2( j(ω −
ω0))) and XD = diag(XD1( jω),XD2( jω)), leading to

Π( jω) =

[
XD+( jω)+XD−( jω) 0

0 −2XD( jω)

]
(17)

In the sequel this multiplier is referred to as Separated
Harmonic Multiplier.

The General Time-Varying Multiplier defined in (16) takes
into account the bounded nature of θ(t,ω0), but not the fact

that θ(t,ω0) is an harmonic function at the frequency ω0.
In the other side, Separated Harmonic Multiplier in (17)
considers the harmonic nature of θ(t,ω0), but it does not
take into account the π/2 phase shift between cosine and
sine functions. The Coupled Harmonic Multiplier presented
in Theorem 2 exploits the bounds, frequency and phase
shift characterizing θ(t,ω0). Section VI presents an example
showing how important is to consider this information.

IV. PARAMETERIZATION

Multipliers need an appropriate parameterization to be
exploitable in the form of finite-dimensional LMI optimiza-
tion problems. For example, in the case of traditional D,G
scaling, parameterization of an Hermitian positive definite
matrix is well known. However, such parameterization is not
always obvious to obtain, especially when particular multi-
plier structures arise as in the current case. The following
lemma proposes a parameterization for the multiplier of (7),
defining the subset ΠΠΠ⊂ΠΠΠ .

Lemma 2. For ∆(q) = θ(t,ω0)q(t), with θ(t,ω0) defined in
(2), the IQC (3) holds with Π belonging to the subset ΠΠΠ of
(7)

ΠΠΠ =

Π : Π( jω) =

 ?
?
?

∗ M̃D

 Ψ̃++ Ψ̃− 0
− j(Ψ̃+− Ψ̃−) 0

0 Ψ

 ,

(18)

Ψ̃+ := Ψ( j(ω +ω0))

[
I 0
0 jI

]
,

Ψ̃− := Ψ( j(ω−ω0))

[
I 0
0 − jI

]
,

M̃D = diag( 1
2 MD,

1
2 MD,−2MD), if MD ∈MDMDMD, where MDMDMD ={

MD : MD = MT
D ,Ψ

∗MDΨ� 0 ∀ ω
}

and Ψ ∈ RH
(v+1)×np
∞

is a given fixed-basis function of order v.

Proof. Considering the parameterization XD( jω) =

Ψ( jω)∗MDΨ( jω), with MD = MT
D and Ψ ∈ RH

•×nq
∞ ,

we obtain

XD( j(ω +ω0)) = Ψ( j(ω +ω0))
∗MD Ψ( j(ω +ω0))︸ ︷︷ ︸

Ψ+

XD( j(ω−ω0)) = Ψ( j(ω−ω0))
∗MD Ψ( j(ω−ω0))︸ ︷︷ ︸

Ψ−

(19)

Then, we denote Ψ̃+ = Ψ+

[
I 0
0 jI

]
and Ψ̃− =

Ψ−

[
I 0
0 − jI

]
. Hence, the upper-left block of the multi-

plier Π of (7) is expressed as follows

X̃D++ X̃D− = Ψ̃
∗
+MDΨ̃++ Ψ̃

∗
−MDΨ̃− (20)

which can be rewritten as

X̃D++ X̃D− =
1
2
[
Ψ̃++ Ψ̃−

]∗MD
[
Ψ̃++ Ψ̃−

]
+

1
2
[
− j(Ψ̃++ Ψ̃−)

]∗MD
[
− j(Ψ̃++ Ψ̃−)

]
(21)



Then, combining this factorization with that of XD, we can
easily obtain the final factorization (18) of Π.

Here, we will consider the following basis Ψ: we set
the denominator of Ψ as the scalar function d(s) = sv +
dv−1sv−1 + ...+ d0 with roots in the open left-half complex
plane C−. Then Ψ( jω) is represented by N( jω)/d( jω).
Let us fix a basis for N defined by the vector function
B : C → C(v+1) as B(s) = [1 s · · · sv]T . Then Ψ can be
obtained as

Ψ( jω) =

(
B( jω)

d( jω)
⊗ Inq

)
. (22)

V. STABILITY ANALYSIS TEST
In order to obtain of an efficient finite-dimensional stabil-

ity tests through Lemma 1, it is necessary to find a suitable
state-space realization for the elements of (18), with Ψ

parameterized as in (22). Let us then introduce the following
auxiliary lemma.

Lemma 3. Let be Ψ ∈ RH
ny×nu
∞ admitting the minimal

realization (AΨ,BΨ,CΨ,DΨ) with AΨ ∈ Rn×n, BΨ ∈ Rn×nu ,
Cny×n

Ψ
, Dny×nu

Ψ
, then, with BΨ = [BΨ,1 BΨ,2] and DΨ =

[DΨ,1 DΨ,2], [
Ψ̃++ Ψ̃−

− j(Ψ̃+− Ψ̃−)

]
(23)

admits the state-space realization
AΨ ω0I BΨ,1 0
−ω0I AΨ 0 BΨ,2
2CΨ 0 2DΨ,1 0

0 2CΨ 0 2DΨ,2

 (24)

Proof. With Ψ(s) =CΨ(sIn−AΨ)
−1BΨ+DΨ, a shift +ω0 of

the frequency response gives Ψ(s+ jω0) =CΨ(sIn+ jω0In−
AΨ)

−1BΨ + DΨ and, similarly, Ψ(s − jω0) = CΨ(sIn −
jω0In−AΨ)

−1BΨ+DΨ. Let us then introduce the state-space
equations of Ψ̃+ and Ψ̃−

ẋ+ = (AΨ− jω0I)x++BΨ

[
I 0
0 jI

]
u︸ ︷︷ ︸

ũ+

(25)

y+ =CΨx++DΨũ+ (26)

ẋ− = (AΨ + jω0I)x−+BΨ

[
I 0
0 − jI

]
u︸ ︷︷ ︸

ũ−

(27)

y− =CΨx−+DΨũ− (28)

We observe that Equation (25) is the complex conjugate of
Equation (27). With x+(0) = 0 and x−(0) = 0, we have that
x+ = x̄−. We note that x+ = xRe + jxIm and x− = xRe− jxIm,
and we put the state-space vector x= [xT

Re xT
Im]

T . In this form,
with BΨ = [BΨ,1 BΨ,2] and DΨ = [DΨ,1 DΨ,2], the output y++
y− is given by 2CΨxRe +[2DΨ,1 0]u and the output − j(y++
y−) by 2CΨxIm+[0 2DΨ,2]u. Thus, the complete system (23)
has the state-space representation (24).

Given the previous parameterization, we can state the main
result of this paper, solving Problem 1.

Theorem 3. Consider the interconnection (1) with G ∈
RH

np×nq
∞ admitting the state-space realization (A,B,C =

[CT
1 CT

2 ]
T ,D = [DT

1 DT
2 ]

T ) and ∆∆∆ = {∆ : ∆(q) = θ(t,ω0)q(t)}
with θ(t,ω0) defined in (2). Consider the set of multi-
pliers (18) with MDMDMD =

{
MD : MD = MT

D , Ψ∗MDΨ� 0 ∀ ω
}

and Ψ with minimal state-space realization (AΨ,BΨ =
[BΨ,1 BΨ,2],CΨ,DΨ = [DΨ,1 DΨ,2]).

Then, the interconnection (1) is stable if there exists MD ∈
MDMDMD, P = PT and ε > 0 such that ?

?
?

T  0 P 0
P 0 0
0 0 M̃D

 I 0
Ã B̃
C̃ D̃

�−εI (29)

with M̃D = diag( 1
2 MD,

1
2 MD,−2MD), and

Ã =


AΨ ω0I 0 BΨ,1C1
−ω0I AΨ 0 BΨ,2C2

0 0 AΨ 0
0 0 0 A

, B̃ =


BΨ,1D1
BΨ,2D2

BΨ

B

,

C̃ =

2CΨ 0 0 2DΨ,1C1
0 2CΨ 0 2DΨ,2C2
0 0 CΨ 0

, D̃ =

2DΨ,1D1
2DΨ,2D2

DΨ

 .
Proof. Stability is tested using Theorem 1. First, please
observe that if (29) is satisfied, then D̃T MDD̃ ≺ −εI. It in
turn implies DT MDmD≺MDm, with MDm ∈Rnq×nq being the
lower-right minor of MD (also symmetric). The last condition
ensures (I −D∆) is invertible and, since ∆ is defined by
continuous varying gain θ in (2), (I −G∆) has a causal
inverse. As a consequence, the interconnection (G,∆) is well-
posed for any ∆ ∈∆∆∆ defined by (6).

From Lemma 2, we know that θ(t,ω0) ∈ IQC(Π) with
Π ∈ΠΠΠ defined by (18). By construction of Π in Theorem 2
(see proof, Equation (10)), it is also the case for τθ ,∀ τ ∈
[0,1]. By applying Theorem 1 with parameterization (18) of
Lemma 2 and the state-space realization (24) of Lemma 3,
the stability is ensured if

H( jω)∗M̃DH( jω)� −εI ∀ω ∈ R (30)

with

H =

 Ψ̃++ Ψ̃− 0
− j(Ψ̃+− Ψ̃−) 0

0 Ψ

[ G
I

]
∼
[

Ã B̃
C̃ D̃

]
(31)

Condition (30) is equivalent to condition (29) by Lemma 1.

VI. APPLICATION CASE
This work is being developed in the framework of the

NEXT4MEMS project dedicated to the development of con-
trol solutions for high performance MEMS inertial sensors.
Here, we present a real application case from this project to
test the proposed analysis tool. We consider a closed-loop
controlled MEMS resonator with synchronous demodulation
in the loop. This system can be modeled as the interconnec-
tion (1) with G containing the resonator, the controller and
demodulation non-ideal filters, and

∆(q) = θ(t,2ωexc)q =

[
cos(2ωexct)I2 0

0 sin(2ωexct)I2

]
q

jorge
Texte surligné 



TABLE I
COMPARISON OF MULTIPLIERS WITH RESPECT TO ω?

c

Multiplier Critical frequency Computation time
(rad/s) (s)

General TV Unfeasible —-
Separated Harmonic Unfeasible —-
Coupled Harmonic 68.6 50.173

TABLE II
COMPARISON OF MULTIPLIERS WITH RESPECT TO MAXIMAL SIZE

Multiplier Maximal size Computation time
α (s)

General TV 0.0412 1.32
Separated Harmonic 0.4305 16.63
Coupled Harmonic 19.67 21.57

with ωexc being the excitation frequency or frequency of
modulation/demodulation, which is close to the natural fre-
quency of the resonator (see the details in [4]). The controller
was designed to ensure the stability and tracking performance
in the nominal case, that is, when ideal synchronous demod-
ulation is considered. The purpose here is to analyse the sta-
bility in the non-ideal case represented by the interconnection
(G,θ) . Typically, the instability arises when the cut-off fre-
quency ωc of low-pass filters in synchronous demodulation
block is close to the bandwidth of the feedback controlled
system. Hence, we will test the proposed stability analysis
approach by searching for the smallest cut-off frequency ω?

c
for which the system is guaranteed to be stable. Such analysis
tool can be helpful to properly choose the low-pass filter cut-
off frequency that ensures the closed-loop stability. Three
classes of the multipliers were used to analyze the stability
of the system (state-space matrices of G can be found in [4]):
General Time-Varying Multipliers (16), Separated Harmonic
Multipliers (17), and the Coupled Harmonic Multiplier of
(7). Then we search an upper bound over the uncertainty
of ωc, which leads us to the the smallest ω?

c for which the
system is ensured to be stable.

The results are presented in Table I. They allow to compare
the conservatism of each multiplier. Using General Time-
Varying multipliers and Separated Harmonic Multipliers is
not possible to asses stability of the system for any cut-off
frequency ωc. In the case of the Coupled Harmonic Mul-
tiplier, we obtain a minimal cut-off frequency of 68.6 rad/s
with a computation time of the LMI optimization problem of
50.173 seconds. This critical cut-off frequency is close to the
obtained simulation values (around 65 rad/s), which confirms
the relevance of the results. In order to reinforce the previous
comparison, we set a cut-off frequency ωc at some value
(500 rad/s) at which the system is guaranteed to be stable.
Now, we consider ∆(q) =αθ(t,2ωexc)q(t) and we search the
maximal α for which the considered system is ensured to be
stable by testing it with the different multipliers. In this case,
it must exist a solution α for each multiplier since an α = 0
implies to test the nominal stability of G, which is already
guaranteed. The obtained results are summarized in Table II,
showing the significant difference in the size of ∆ allowed
by each multiplier.

VII. CONCLUSIONS AND FUTURE WORKS

We present a new class of multipliers for the analysis
of uncertain systems containing cosine and sine harmonic
oscillations simultaneously. Stability analysis is performed
using IQC approach. The proposed multiplier exploits not
only the information related to the bounds of time-varying
elements, but also the oscillation frequency and the π/2
phase between sine and cosine. A parameterization is pro-
posed to obtain a finite-dimensional set of multipliers. We
have shown that the proposed parameterization admits a
real state-space parametrization, making possible the use of
KYP Lemma to obtain a finite dimensional LMI optimization
problem. The proposed class of multipliers is compared with
other available multipliers through an application case. Such
example illustrates the reduction of conservatism.

Some perspectives are projected for the presented multi-
pliers. In one side, we will further investigate the reduction
of conservatism by introducing the non-diagonal elements of
the multiplier. In the other side, it is possible to derive similar
classes of multipliers that can be extended to the analysis of
systems containing rotation matrices.
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