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Abstract  31 

Hydrogen as an atomic impurity in mantle minerals is recurrently proposed as a key element impacting 32 

significantly on many mantle properties and processes such as melting temperature and mechanical 33 

strength. Nevertheless, interpretation based on the natural samples remains weak as we do not have yet 34 

a robust world-wild database for hydrogen concentrations in mantle minerals and rocks. Here, we report 35 

the first hydrogen concentrations in nominally anhydrous minerals from a rare selection of ultramafic 36 

rocks and minerals embedded in Mesoproterozoic Wajrakarur kimberlites (Eastern Dharwar craton, 37 

India). Based on key chemical elements, we demonstrate that olivine, pyroxenes and garnet from the 38 

Dharwar craton are of mantle origin. We quantify the hydrogen concentrations using Fourier transform 39 

infrared spectroscopy (FTIR) and mineral-specific FTIR calibrations. Calculated hydrogen 40 

concentrations are, in average, 18 ppm wt H2O in olivine, 70 ppm wt H2O in orthopyroxene and 207 41 

ppm wt H2O in clinopyroxene. Garnet has highly variable hydrogen concentration ranging from 0 to 42 

258 ppm wt H2O, probably influenced by nano-scale inclusions. The average of clean garnet spectra 43 

yields 14.5 ppm wt H2O. The reconstructed hydrogen bulk concentrations of Dharwar peridotites yields 44 

40#$%&' ppm wt H2O. This value is two to five times lower than the estimated hydrogen concentration in 45 

the lithospheric mantle, and agree well with the lower range of hydrogen bulk concentration from the 46 

current data base for the upper mantle minerals transported by kimberlites from other cratons (e.g., South 47 

Africa, Siberia). The low hydrogen concentration in mantle minerals, together with petrological and 48 

geochemical evidence of carbonated silicate melt metasomatism in Dharwar cratonic lithospheric 49 

mantle, suggest that these xenoliths are possibly related to proto-kimberlite melts with low water activity 50 

prior to being transported to the surface by the Mesoproterozoic Wajrakarur kimberlites.  These 51 

observations, valid to a depth of ~165-km, suggest that cratonic lithosphere beneath the Dharwar craton 52 

may not be particularly indicative of an abnormal hydrogen-rich southern Indian lithosphere in the late 53 

Archean and that hydroxylic weakening in olivine would induced a negligible effect on the mantle 54 

viscosity of Indian subcontinent. 55 

 56 

Keywords: Peridotite xenolith; Wajrakarur kimberlite; Eastern Dharwar craton; hydrogen;  FTIR  57 
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1. Introduction  58 

Hydrogen (H) can be embedded within the crystallographic lattice of nominally 59 

anhydrous minerals (NAMs, such as olivine, pyroxenes, and garnet) as extrinsic points defects 60 

(e.g., Beran and Zemman, 1969; Beran and Libowitzky, 2006). Hydrogen incorporation, even 61 

at a low concentration level (expressed in part per million of water by weight in this study) is 62 

known to enhance many physical and chemical properties of mantle minerals and rocks. For 63 

example, a small amount of H can increase electrical conductivity (Karato, 1990; Yoshino et 64 

al., 2006; Poe et al., 2010; Novella et al., 2017; Sun et al., 2019; Fei and Katsura, 2020) or 65 

increase ionic diffusion of major elements in mantle minerals (e.g., Costa and Chakraborty 66 

2008; Demouchy et al., 2007). Furthermore, the incorporation of H was also proposed to 67 

weaken the strength of single crystal and polycrystalline olivine (e.g., Mackwell et al., 1985; 68 

Hirth and Kohlstedt, 2003; Demouchy et al., 2012; Tielke et al., 2017). As a consequence, 69 

distribution of H in the upper mantle minerals is repetitively proposed as a major parameter in 70 

geodynamic models (e.g., Regenauer-Lieb and Kohl, 2003; Regenauer-Lieb et al., 2006; 71 

Albarède, 2009; Peslier et al., 2010; Masuti et al., 2016).  72 

Laboratory experiments have been crucial to understand the primary mechanisms of 73 

incorporation of H in mantle silicates at point defects scale and also to quantify the ‘water 74 

solubility’ in mantle minerals as a function of thermodynamic parameters (e.g., Bali et al., 2008; 75 

Férot and Bolfan-Casanova, 2012; Gaetani et al., 2014; Keppler and Bolfan-Casanova, 2006; 76 

Kohlstedt et al., 1996; Mierdel et al., 2007; Mierdel and Keppler, 2004; Padrón-Navarta and 77 

Hermann, 2017). Although, it has long been known that almost all natural NAMs contain 78 

variable amounts of H in their structures (Beran and Libowitzky, 2006; Litasov et al., 2007; 79 

Skogby, 2006). Furthermore, the systematic characterization and quantification of H 80 

concentrations in upper mantle minerals from mantle peridotites of different geological settings 81 

have been explored in the last two decades (see Peslier, 2010; Demouchy and Bolfan-Casanova, 82 
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2016 for reviews). Mantle xenoliths and large phenocrysts hosted by kimberlites in cratonic 83 

settings have received most of the attention regarding their H concentrations (e.g., Bell and 84 

Rossman, 1992a; 1992b; Bell et al., 2004; Grant et al., 2007; Peslier et al., 2008, 2010, 2012; 85 

Baptiste et al., 2012), with undeniable popularity for the Kaapvaal craton, South Africa. Several 86 

studies are also available for the Siberia craton (Matsyuk et al., 1998; Matsuyk and Langer, 87 

2004; Koch-Mueller et al., 2006; Schmädicke et al., 2013; Doucet et al., 2014; Taylor et al., 88 

2016, Jean et al., 2016). The literature has reported astonishing NAMs inclusions in diamonds, 89 

which also permit to further constrain the H concentration in the Earth’s upper mantle (e.g., 90 

Kurosawa et al., 1997; Matsyuk and Langer, 2004; Novella et al., 2015; Taylor et al., 2016; 91 

Jean et al., 2016).  92 

To date, available literature data only reports four H concentrations in nominally anhydrous 93 

mineral specimens from the Indian subcontinent: (1) one garnet from an unknown geological 94 

setting in Maldener et al., 2003 (sample # RAJA, Prp42Alm54Sps2Grs2, 14 ppm wt H2O ); (2) 95 

large gem-quality metamorphic diopsides from Jaipur (Rajasthan) recurrently used for diffusion 96 

experiments (i.e., sample # CIT. 11221 in Skogby et al., 1990 ; Skogby and Rossman, 1989; 97 

Carpenter Woods et al., 2000; Ferriss et al., 2016); (3) an augite from Kangan area, Andhra 98 

Pradesh (i.e., sample # GRR 1660, Skogby et al., 1990), and (4) two metamorphic enstatites 99 

(i.e., samples GRR1650a,b; Skogby et al., 1990). Nevertheless, none of these nominally 100 

anhydrous mineral specimens have a confirmed mantle origin, thus no statement can be 101 

proposed regarding the hydrogenation state and strength of the continental mantle lithosphere 102 

of any part of Indian subcontinent. 103 

Here, we report the first detailed measurements of H concentrations, major and key 104 

minor and trace element concentrations in NAMs (olivine, orthopyroxene, clinopyroxene and 105 

garnet) from spinel- and garnet-bearing peridotite xenoliths and olivine grains embedded in 106 

kimberlites from the Wajrakarur kimberlite field in the Eastern Dharwar craton, India. 107 
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Moreover, we also report H contents in several fresh garnet and clinopyroxene single crystals 108 

which were separated from Wajrakarur kimberlite-hosted peridotite xenoliths. Our main aim is 109 

therefore to quantify the H content in mantle NAMs beneath the Eastern Dharwar craton. 110 

 111 

2. Material and Methods 112 

Previous studies by Ganguly and Bhattacharya (1987) and Nehru and Reddy (1989) 113 

already described the petrography of peridotitic mantle xenoliths hosted by Proterozoic 114 

Wajrakarur kimberlites from the Eastern Dharwar craton and calculated the equilibrium 115 

pressures and temperatures of these samples. The more recent study by Pattnaik et al. (2020) 116 

focused on trace element compositions of olivine, garnet, clinopyroxene, orthopyroxene, spinel 117 

and ilmenite of a larger selection of ultramafic xenoliths from the same area. Here we mainly 118 

focus on the quantification of H in NAMs from selected peridotite mantle xenoliths and mantle 119 

minerals hosted in Group-II kimberlites (orangeites) from the Wajrakarur kimberlite field in 120 

the Eastern Dharwar craton, India. Please note that Group-II kimberlites (orangeites) are 121 

recently being classified as a variety of lamproite (Pearson et al., 2019). The geological context 122 

of the Dharwar craton and Wajrakarur kimberlite field is briefly presented below.  123 

The Archean Dharwar craton represents a classical granite-greenstone terrane which is 124 

overlaid on a basement of tonalite-trondhjemite-granodiorite gneisses (Naqvi and Rogers, 125 

1987). The Dharwar craton is bounded in the east by the Proterozoic Eastern Ghats Mobile Belt, 126 

in the northeast by the Archean Bastar craton and in the northwest by the cretaceous-tertiary 127 

Deccan traps. The Dharwar craton is divided into the Eastern Dharwar craton (EDC) and the 128 

Western Dharwar craton (WDC) by the Chitradurga boundary fold, which is considered as a 129 

distinct shear zone (Chadwick et al., 2000; Ramakrishnan and Vaidyanadhan, 2010).  130 

 The kimberlite pipes in the Dharwar craton are mainly confined to the Eastern part and 131 

are distributed in three fields as illustrated in Figure 1: Wajrakarur kimberlite field (~80 × 70 132 
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km), situated in the southern part of the EDC, approximately at 400 km east of Goa and 200 km 133 

north of Bangalore (Anantapur district, Andhra Pradesh); the Narayanpet kimberlite field in the 134 

northern part of the EDC, and at last the Raichur kimberlite field located between the other 135 

fields. In the Wajrakarur field, there are more than 30 individual pipes spread over four distinct 136 

clusters: Wajrakarur-Lattavaram, Chigicherla, Kalyandurg and Timmasamudram (Nayak and 137 

Kudari, 1999). Kimberlites from the Wajrakarur field are poorly diamondiferous, while the 138 

other fields are diamond-free (Ravi et al., 2013). Ages based on 40Ar/39Ar and U–Pb isotope 139 

systems on separate grains of phlogopite and crustal perovskite indicate that kimberlite 140 

emplacement occurred around 1.1 Ga (Gopalan and Kumar, 2008; Osborne et al., 2011; 141 

Chalapathi Rao et al., 2014; see also study on major and trace element compositions of 142 

clinopyroxenes and garnets in Shaikh et al., 2020). 143 

The magmatic intrusions in the Wajrakarur field are mostly kimberlites, while some are 144 

lamproites or orangeites, and ultramafic lamprophyres (Smith et al., 2013). A detailed account 145 

of the mode of occurrence and features of the individual pipes of Wajrakarur kimberlite field is 146 

given by Neelkantam (2001), Ravi et al. (2009) and Fareeduddin and Mitchell (2012). The 147 

magmatic rocks contain peridotites, eclogites and crustal xenoliths as well as megacrysts 148 

(Ganguly and Bhattacharya, 1987; Nehru and Reddy, 1989; Karmalkar et al., 2009). In the 149 

Kalyandurg cluster eclogites dominate the mantle xenolith population (95%).  150 

 151 

2.1. Samples description  152 

 The studied samples are olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and 153 

garnet (grt) from two fresh mantle xenoliths: one spinel (±garnet)-lherzolite (sample P3/5/1) 154 

and one garnet-lherzolite (sample P3/6/1); and mantle olivines within a kimberlitic matrix 155 

(sample P3/6/3), all from pipe 3 (Fig. 1). We also selected 10 garnets and 15 diopsides fresh 156 

single grains, which were hand-separated from crushed xenoliths from different pipes of the 157 
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Wajrakarur kimberlite field (pipes 1, 3, 6, 7 and 10; Fig. 1).  Unfortunately, satisfying grains of 158 

olivines and orthopyroxenes could not be recovered from crushed peridotites. 159 

All the samples are from the Wajrakarur-Lattavaram cluster (Fig. 1) and the samples 160 

description is summarized in Table 1. The mineral modal compositions were calculated using 161 

a free image processing software ImageJ v.152 for two lherzolites (samples P3/5/1 and P3/6/1) 162 

and yield: Ol77Opx15Cpx7Sp1 (garnet<<0.5) for sample P3/5/1, and Ol74Opx13Cpx9Grt4 for 163 

sample P3/6/1. Modal compositions of these two samples are reported in Table 1. Equilibrium 164 

temperatures were calculated using the classical two-pyroxenes geothermometer by Brey and 165 

Köhler (1990) for a hypothetical initial pressure of 4 GPa. It yields 3.0 GPa of pressure and a 166 

temperature of 940 °C for sample P3/5/1; 4.5 GPa of pressure and a temperature of 1050 °C for 167 

sample P3/6/1 and; 5.5 GPa of pressure and a temperature of 1270 °C for sample P3/6/3 (Table 168 

1). Furthermore, following recommendations by Nimis and Grutter (2010), two-pyroxenes 169 

thermometer by Taylor (1998) was also used to calculate the equilibration temperatures (TTA) 170 

with an assumed initial pressure of 3 GPa for spinel peridotites and 5 GPa for garnet peridotites. 171 

The estimated equilibration temperatures for theses peridotite give lower temperature ranging 172 

from 710 to 1179 °C. Furthermore, garnet-orthopyroxene geobarometer based on aluminum 173 

exchange was taken into consideration by Nickel and Green (1985) for calculating the 174 

equilibration pressures with TTA values set as the initial temperatures, which yield a pressure 175 

range of 2.5-5.0 GPa. 176 

The peridotite xenoliths are coarse-grained, with olivine grain size between 2 and 7 mm, 177 

orthopyroxene grain size up to 3 mm, clinopyroxenes have grain size between 2 and 7 mm, 178 

garnets have grain size below 2 mm, and spinel below 1 mm, as illustrated in Fig. 2. The olivines 179 

and orthopyroxenes do not show undulose extinction or specific features of plastic deformation. 180 

Nevertheless, the rock sections are commonly fractured (Fig. 2), probably due to rapid ascent 181 

toward the surface. The clinopyroxenes are of irregular shape and mainly intergranular and thus 182 
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are likely formed after the olivines and orthopyroxenes. Garnets have subhedral to anhedral 183 

shape with no apparent chemical zoning and some garnets are embedded in clinopyroxene. 184 

Spinels are intergranular with typical holly-leaf shape. 185 

 186 

2.2. Electron probe micro-analyzer   187 

The chemical compositions of the mantle-derived minerals were analyzed using a 188 

Cameca SX-100 electron probe micro-analyzer (EPMA) wavelength dispersive spectroscopy 189 

(WDS) at Department of Geology and Geophysics, Indian Institute of Technology (IIT) 190 

Kharagpur (India). Analytical procedures were performed with a 15 kV accelerating voltage 191 

and 20 nA probe current on regular 30-µm thin sections. The measuring peak and background 192 

times were 20 s and 10 s, respectively. The oxides and silicates standards used for the EPMA 193 

calibration were orthoclase (Si, K), rutile (Ti), chromite (Cr), corundum (Al), hematite (Fe), 194 

rhodonite (Mn), periclase (Mg), diopside (Ca), jadeite (Na). The number of point analyses per 195 

mineral grain range from 3 to 25 (further analytical details are given in Pattnaik et al., 2020). 196 

Homogeneity was checked by comparing core to rim composition. Mg# was calculated as equal 197 

to 100×Mg/(Mg+Fe) in atomic ratio, whereas Cr# in spinel was calculated as 100×Cr/(Cr+Al). 198 

The typical EPMA results are reported in Table 2. 199 

 200 

2.3. Laser ablation inductively coupled plasma mass spectrometer  201 

Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 202 

measurements for minor and trace elements in olivine, clinopyroxene, and garnet were carried 203 

out using a Thermo Fisher Scientific ICAP-Q quadrupole ICP-MS combined to a New Wave 204 

193 ArF Excimer laser ablation system at Department of Geology and Geophysics, IIT 205 

Kharagpur, India. The laser was used with an energy density of 5 J/cm2 at a frequency of 5 Hz 206 

and using a spot size of 50 µm. The ICP-MS was perfected for maximum sensitivity for Li and 207 
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Th using the NIST 612 as a reference glass. The oxide production rate was monitored using 208 

232Th16O and was below 1.0-1.2 %. The analyses were performed in time-resolved mode with 209 

each analysis consisting of 35 seconds of background measurement with the laser turned off 210 

followed by 45 seconds peak signal measurement while the laser was ablating the sample. 211 

External standardization was obtained by the bracketing group of two measurements of NIST 212 

612. The data quality was monitored by measuring the NIST 610 reference glass as unknown 213 

interspersed with the measurements of the samples. The raw data were reduced using the 214 

GLITTER® software, with SiO2 as an internal standard from electron microprobe analyses for 215 

olivine and pyroxenes, and CaO for garnet, and carefully inspected against heterogeneities in 216 

the analyzed volume. Analyses were performed on a thin polished section for the rock slabs and 217 

epoxy mounts for the mineral separates. Only unaltered and crack-free mineral grain areas were 218 

analyzed. For each mineral, 1 to 6 analyses were performed within the grain cores. Here, we 219 

only focused on minor and trace elements known to form major associated point defect with H 220 

(e.g., Ti in olivine, e.g., Padrón-Navarta and Hermann, 2017), or coupled incorporation (Li, 221 

e.g., Kent and Rossman, 2002) or to have similar incompatible behavior (e.g., according to 222 

Dixon et al., 2002, between La and Ce) and common divalent ions not obtained accurately by 223 

EPMA (Ni, Mn, Na, Ti). These concentrations are also reported in Table 2. 224 

 225 

2.4 Fourier transform infrared spectroscopy  226 

 Hydrogen in mantle minerals was detected and quantified using transmission Fourier 227 

transform infrared spectroscopy (FTIR) spectroscopy at the Laboratoire Charles Coulomb 228 

(University of Montpellier, France). Rock thick sections (samples P3/5/1, P3/6/1 and P3/6/3) 229 

and separated grain were hand-polished with diamond lapping films (grid size from 30 µm to 230 

0.5 µm) down to a thickness ranging from 211 to 590 µm. The final thickness for each sample 231 

is reported in Table 3. To preserve the microstructures, the crystals were not 232 
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crystallographically oriented, and thus only unpolarized infrared spectra were acquired using a 233 

Bruker IFS66v spectrometer, equipped with a liquid nitrogen-cooled MCT detector (Mercatel 234 

alloy, HgCdTe), a KBr/Ge beam splitter. The spectrometer was coupled to a Bruker 235 

HYPERION microscope. Unpolarized IR measurements were performed following the 236 

protocol of Demouchy et al. (2019): A square aperture (100 × 100 µm) was used, only optically 237 

clean zones, free of cracks or inclusions, of the mineral grains were chosen for analyses, and 238 

over 200 scans were accumulated at a resolution of 4 cm–1. Each spectrum was baseline 239 

corrected (using OPUS software or subsequently, if needed, using the spline function in Igor 240 

Pro), and the absorbance was normalized to 1 cm thickness to yield the absorption coefficient.  241 

 We used two different types of infrared calibrations to calculate H concentrations: (1) 242 

the classic empirical frequency-dependent calibration of Paterson (1982) for unpolarized 243 

infrared and (2) mineral-dependent calibrations (Bell et al., 1995, for pyroxenes and garnet; 244 

Withers et al., 2012, for olivine). The frequency-dependent calibration of Paterson (1982) is 245 

given as 246 

𝐶)* =
χ𝑖

150ζ		
2

k(υ)
3780 − υ𝑑υ 247 

Where the following mineral specific factors χi (Paterson, 1982) were used, and adjusted 248 

as a function of the chemical composition in major element of the mineral i and thus its density 249 

(see method of calculation in Demouchy and Bolfan-Casanova, 2016): χol = 2718 or 250 

2726 ppm wt H2O for Fo92.2 or Fo93.3, respectively; χOpx = 2727 ppm wt H2O, χCpx = 2695 or 251 

2714 ppm wt H2O, for P6 or P1P2, respectively and χgarnet= 2326 ppm wt H2O for an average 252 

composition close to Prp76Alm12Sps1Grs11; z is the orientation factor and equals 1/3 for 253 

unpolarized infrared analyses (here on non-crystallographically oriented grains, see Paterson, 254 

1982 for details); and k(υ) the absorption coefficient is a function of the wavenumber υ. Typical 255 

integration of the spectrum ranges from 3620–2900 cm–1 for olivine, 3700–3000 cm–1 for 256 

pyroxeness and garnet, and was slightly adjusted if necessary (e.g., ± 10 cm-1). Note that when 257 
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concentration obtained by unpolarized infrared are multiplied by a factor three, it yields 258 

satisfying estimate compare to the sum of concentrations obtained by polarized infrared for the 259 

three crystallographic directions (see suppl. Fig. S1 in Férot and Bolfan-Casanova, 2012). This 260 

calibration allows a detection limit of about 1 ppm wt H2O for a 1-mm-thick olivine sample 261 

(Demouchy and Mackwell, 2003, 2006). The estimated error from the empirical calibration in 262 

the resulting H concentration is around 30% (Paterson, 1982; Rauch, 2000), but lower for the 263 

olivine calibration of Withers et al. (2012). Note that the maximum linear absorbance of the 264 

non-normalized spectrum did not exceed 0.3, in agreement with the recommendations of 265 

Withers et al. (2012) for unpolarized FTIR measurements of olivine. Also, if possible, at least 266 

10 spectra of different orientation should be average to improve accuracy of the measurements 267 

(Kovàcs et al., 2008). Here is was only possible for the PIP2 diopsides. The normalized 268 

integrated area (absorption) are also reported for application to future IR mineral-dependent 269 

calibrations or to previous calibrations (for olivine Bell et al., 2003, which overestimate H 270 

content, see Withers et al., 2012 for discussion).  271 

 272 

3. Results  273 

 274 

3.1 Summary of major and minor elements 275 

 276 

Major element compositions are reported in Table 2 for olivines, orthopyroxenes, 277 

clinopyroxenes and Al-rich phases (garnet or spinel). They are used to infer mineral 278 

petrogenetic origin and to further investigate potential variations in H as a function of major 279 

element concentrations. Only a selection of minor and trace elements is reported here (Ni, Mn, 280 

Na, Ti, La, Ce, Li, V) which are recurrently proposed as potentially associated point defects 281 

with proton in olivine (e.g., Ti-clinohumite-like point defect, Padrón-Navarta et al., 2014; 282 
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Padrón-Navarta and Hermann, 2017) or orthopyroxenes (e.g., Al-H coupled substitution, 283 

Mierdel et al., 2007) or having a chemical behavior similar to H. 284 

 285 

Olivine 286 

Olivines have relatively homogeneous composition with high Mg# ranging between 287 

92.4 and 93.4. The compositions in FeO and CaO range from 6.8-7.6 wt.% and 0.02- 0.04 wt.%, 288 

respectively. Contents in Ni range from 2932-2942 ppm. The Mg# data from this study and 289 

other olivine samples from the Dharwar craton are inversely but weakly correlated with NiO 290 

contents as illustrated in Figure 3a. The concentrations in Ti and V vary from 34-93 ppm and 291 

2.4-5.6 ppm respectively. The Li concentration was too low to be determined in olivine (< 4 292 

ppm). 293 

 294 

Orthopyroxene  295 

  The concentration of orthopyroxene is quite homogeneous within grains with MgO and 296 

FeO contents ranging from 36-37 wt.% and 4.3-4.6 wt.% respectively. The orthopyroxenes are 297 

enstatite with Mg numbers ranging from 93.3 to 93.9, which is typical for mantle-derived 298 

orthopyroxene (Dick and Bullen, 1984). The Cr# varies between 17.7 and 18.7, with Cr2O3 299 

contents ranging from 0.31 to 0.33 wt.%. The contents in CaO and MnO range from 0.2 to 0.4 300 

wt.% and 0.08 to 0.11 wt.%, respectively, while Al2O3 contents are very low in these 301 

orthopyroxene samples (0.96 wt.%, Table 2).  302 

 303 

Clinopyroxene 304 

Clinopyroxenes are mostly Cr-diopsides with 1.0-2.6 wt.% Cr2O3, except for sample 305 

P3/5/1 (spinel-bearing peridotite) and P3 grain, which have a very low Cr2O3  content (0.25 306 

wt.% and 0.6 wt.%, respectively, see Table 2). The Mg# and Cr# vary from 91.35 to 93.55 and 307 
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24.4 to 32.3, respectively, whereas in case of P3 and P6 grains the Cr# is 16.71 and 42.20, 308 

respectively. The MgO and FeO contents range from 16.3–20.5 wt.% and 2.15–3.0 wt.%, 309 

respectively. The CaO, Al2O3, and Na2O contents vary from 17.79-23.6 wt.%, 0.52-3.2 wt.%, 310 

and 0.5-2.4 wt.%, respectively. The TiO2 content and Mg# of clinopyroxenes from the studied 311 

xenoliths show a weak negative correlation (Fig. 3b, R2=0.83) if the clinopyroxene grain from 312 

P1P2 is excluded. Indeed, the latter sample is also at odds this the current database as shown in 313 

Fig 3b. The CaO and Al2O3 contents of clinopyroxenes are also weakly correlated (R2=0.73) as 314 

shown in Fig 3c, if clinopyroxene from sample P3/5/1 is discarded which has a CaO content 315 

very low compare to the rest of the database.  316 

	317 

Spinel 318 

Spinels are present only in sample P3/5/1 and display Mg# of ~ 64.8, and Cr# of ~ 67.6 319 

with MgO and Cr2O3 contents are 13.9 wt.% and 53.8 wt.%, respectively (Table 2). The Al2O3 320 

and FeO contents are also homogeneous within the sample with 17.3 wt.%, and 14.9 wt.%, 321 

respectively. The Mg# of olivine together with the high Cr2O3 contents still place these spinel 322 

in the olivine-spinel mantle array (OSMA, Arai, 1994), although in the cratonic subgroup (e.g., 323 

Tran and Nguyen, 2018). 324 

 325 

Garnets 326 

Garnets are homogeneous with no distinct compositional variation from the core to rim. 327 

The Mg# and Cr# range from 84.6- 85.8 and 5.1- 7.5, respectively for the garnets group P1P2, 328 

P3D and P3B. Compare to other garnets from this study, P7 garnets have high Cr# ranging from 329 

14.8- 23.7. We have further separated P7 garnets individually (P7-1 and P7-2, see Table 2). 330 

Using the classic negative correlation between Al2O3 and Cr2O3 contents as a petrogenetic 331 

indicator, it confirms that our samples have mantle peridotite origin, as such relation is never 332 
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observed for mantle eclogites as illustrated in Fig 3d. The Al2O3 and CaO contents range from 333 

17.5- 22.3 wt.% and 4.2 - 5.1 wt.%, respectively, which are also typical for the peridotitic 334 

garnets (e.g., Ingrin and Skogby, 2000; Peslier, 2010). The Cr2O3 content lies in the range of 335 

1.8 to 2.6 wt. % for lherzolitic garnets while in case of harzburgitic garnets, P7G1 and P7G2, it 336 

varies from 5.1 to 8.1 wt.% and P10 is just between these latter values with a concentration of 337 

6.9 wt.% Cr2O3. The content in Ti and Ni vary from 1280- 2544 ppm and 30-111 ppm, 338 

respectively, while the Ti concentrations are low (<300 ppm) in P7 garnets.   339 

 340 

3.2 Fourier transform infrared spectra  341 

Over 182 analyses were performed by FTIR, unfortunately only a handful of spectra 342 

could be used to providing accurate estimates of H distribution and concentration in mantle 343 

nominally anhydrous minerals from Wajrakarur kimberlite field. Despite optical clearness, 344 

many grains were altered, and contamination by hydrous minerals lamellae (e.g., serpentine and 345 

amphibole) or along cleavages prevented accurate detection and quantification of H. The 346 

unpolarized FTIR spectra of uncontaminated olivine, pyroxenes and garnet are shown in Figure 347 

4. Examples of contamination by lamellae of hydrous minerals are shown in Figure 5, where 348 

the strong absorption band at 3686 cm-1 corresponds to structural OH groups in serpentines 349 

(Miller et al. 1987; Post and Borer 2000; Baptiste et al. 2012) and 3670 cm-1 OH groups in 350 

amphibole (Skogby, 2006). 351 

The spectra of olivine grains show distinct FTIR features: these olivine grains within 352 

the kimberlitic matrix in sample P3/6/3 have typical mantle-derived spectra with absorption 353 

bands at 3600, 3572, 3525 and 3227 cm-1 (Demouchy and Bolfan-Casanova, 2016). 354 

The spectra of orthopyroxenes (P3/5/1) display OH bands located at 3602, 3548, 3517, 355 

3409, 3313, and 3052 cm-1. While the bands at 3602, 3517, 3313, and 3052 cm-1 are typical of 356 
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hydrogen-rich mantle-derived orthopyroxenes, the band at 3542 cm-1 is not easily found in other 357 

mantle-derived orthopyroxene, even when hydrogen content is low (Fig. 4c). 358 

The spectra of Dharwar peridotitic clinopyroxenes display three major bands, again 359 

typical of mantle-derived diopsides located at 3640, 3530 and 3444 cm-1 (Fig. 4b, Ingrin and 360 

Skogby, 2000; Skogby, 2006; Peslier, 2010, Demouchy and Bolfan-Canova, 2016).  361 

Garnets, despite excellent clarity and large grain size (> 2 mm), do not show typical 362 

hydroxyl absorption bands. Only three samples (P1P2, P7, P3/6/1, Fig. 4c) show broad 363 

absorption bands at 3630-3622 cm-1 and 3427 cm-1. The first band positions match the typical 364 

hydrogarnet substitution mechanism (e.g., 4 H+ occupying a Si vacancy, Geiger and Rossman, 365 

2018; Mookherjee and Karato, 2010). However here the band at 3630-3620 cm-1 which is 366 

notably broad and do not display the usual well-defined Lorentzian shape for hydrogarnet 367 

substitution. The absorption band around 3427 cm-1 could be linked to molecular water in 368 

micro- to nano-inclusions (e.g., Rossman and Aines, 1991; Bell and Rossman, 1992b; Matsyuk 369 

and Langer, 2004, Xia et al., 2005; Sheng et al., 2007). 370 

Peridotites-derived garnets transported in alkali basalts are typically H-free, only 371 

mantle-derived garnets hosted by kimberlite display absorption bands at 3571 and 3512 cm-1 372 

often linked to Ti-rich composition (Bell and Rossman, 1992a, 1992b; Beran and Libowitzky, 373 

2006 see their Fig. 8; Kurosawa et al., 1997). It is interesting to note that the absence of H in 374 

peridotitic garnets equilibrated at depths greater than 80 km is unusual (Bell et al., 1995; 375 

Withers et al. 1998; Peslier et al., 2012), while H-free or low H concentrations in garnet 376 

inclusions in diamonds were reported in a number of studies (e.g., Novella et al., 2015; Taylor 377 

et al., 2016). At last, the infrared features of the Dharwar peridotite garnets do not match either 378 

the typical FTIR spectra of eclogitic garnets (see Fig. 7 in Beran and Libowitzky, 2006).  379 

 380 

3.3 Hydrogen concentrations  381 
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Hydrogen concentrations, expressed in ppm by weight of H2O and quantified using 382 

several calibrations are reported in Table 3. Following the calibration of Paterson (1982), the H 383 

concentration ranges from 7-18 ppm wt H2O in olivine, 53-77 ppm wt H2O in opx, 41-309 ppm 384 

wt H2O in cpx, and 0–75 ppm wt H2O in garnet (Table 3). Conversion to atomic ratio H/106 Si 385 

(= ppm H/Si), which is commonly used in mineral physics community, is achieved by 386 

multiplying the concentration in ppm wt H2O by a factor of 16.16 for olivine (for Fo92.5, see 387 

calculation method in Demouchy and Bolfan-Casanova (2016) for other mineral phases, cf. 388 

their Table 1). As the calibration of Paterson (1982) underestimated the H concentrations (Bell 389 

et al., 2003; Withers et al., 2012), we also give the concentrations using mineral-dependent 390 

calibrations and it yields 11–29 ppm wt H2O in olivine, 56-88 ppm wt H2O in opx, 81-642 ppm 391 

wt H2O in cpx, and 0–258 ppm wt H2O in garnet (see Table 3, details of calibrations are given 392 

in section 2.4). Note that if abnormal spectra for garnet are excluded, it yields an average of 393 

14.5 ppm wt H2O in garnet. Nevertheless, note that the IR bands for our garnets are not perfectly 394 

matching the IR spectra of the two garnets used as standards in the calibration by Bell et al. 395 

(1995). The same issues applied for the synthetic and very hydrous high pressure olivines used 396 

by Withers et al. (2012).  397 

 398 

4. Discussion   399 

 400 

 4.1. Incorporation of hydrogen in upper mantle minerals 401 

Since hydrogen is embedded as atomic impurities in point defects within the structure 402 

of NAMs, its incorporation is dependent of the intrinsic parameters (pressure, temperature, and 403 

also oxygen fugacity) including chemical composition (e.g., Fe, Ti, Al), which leads to coupled 404 

or associated point defects (e.g., Nakamura and Schmalzried, 1983; Mackwell and Kohlstedt, 405 

1990; Berry et al., 2005). Here, the effect of iron can be deciphered using Mg# of the mantle-406 
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derived olivines from the Dharwar craton and they are within the cratonic mantle database as 407 

illustrated in Figure 6. Nevertheless, the H concentrations in olivine reported in this study agrees 408 

with other Mg-rich and garnet-bearing peridotitic olivines from cratonic (>2.5 Ga) mantle 409 

lithosphere (Fig. 6 and Demouchy and Bolfan-Casanova, 2016). It confirms that olivines from 410 

spinel-bearing peridotite from off-cratonic settings have lower Mg# (90.4) than olivines 411 

cratonic garnet-bearing peridotites (Figure 6, P3/5/1 olivine = Mg# 93.3 and P3/6/1 olivine = 412 

Mg# 92.4), but indistinctly with low to high hydrogen concentrations.  413 

Another notable mechanism incorporation mechanism of H in mantle olivine is the 414 

association with Ti as a complex (coupled) point defect (PD): the occupancy of Mg vacancy by 415 

Ti4+ is balanced by 2H+ incorporation in Si vacancy in olivine (abbreviated henceforth [Ti-H]PD 416 

e.g., Berry et al., 2005; Walker et al., 2007; Padrón-Navarta et al., 2014; Padrón-Navarta and 417 

Hermann, 2017; Tollan et al., 2018).  This mechanism is characterized by a positive correlation 418 

between the absorption of IR bands at 3575 and 3525 cm-1 and Ti concentration (at saturation) 419 

as shown in Figure 7a. Furthermore, the low Ti and H concentrations of olivine from sample 420 

P3/6/3 agrees very well with the current database for mantle-derived olivines as illustrated in 421 

Fig. 7b.  422 

In pyroxenes, at low pressure (<5 GPa) and based on experimentally hydrogenated 423 

enstatite, Al3+ is commonly considered as a H incorporation enhancer (e.g., Rauch, 2000, 424 

Mierdel et al., 2007; Stalder, 2004; Stalder et al., 2005; Stalder and Ludwig, 2007; Stalder et 425 

al., 2015; Tenner et al., 2009; O’Leary et al., 2010; Férot and Bolfan-Casanova, 2012; Gaetani 426 

et al., 2014; Novella et al., 2014). Here, we could not analyze the hydrogen concentration of 427 

orthopyroxenes with different alumina content (only in P3/5/1, 0.96 Al2O3 wt.%) by FTIR, but 428 

fresher clinopyroxenes were available and large enough to yield statistically relevant H 429 

concentrations (Fig. 4b and Table 3). The different fields of eclogitic cpx, peridotitic cpx 430 

transported in basalts, and kimberlites of mantle origin are easily identified by Al2O3 contents 431 
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of cpx (cf. dotted lines in Fig. 8), it supports the petrogenetic origin of peridotitic diopsides 432 

from the Dharwar craton.   433 

Hydrogen concentrations in garnet are very heterogeneous (0-258 ppm wt H2O) and 434 

comparison of chemical composition among different garnets does not reveal significant 435 

variation in Al2O3, CaO, or Ti concentrations potentially resulting from metasomatism and 436 

explaining the abnormal FTIR spectra. At present, we cannot rule out the possibility of 437 

hydroxyl-rich alteration or local contamination by nano-scale inclusions in P1P2 and P3/6/1 438 

garnets (Bell and Rossman, 1992b; Beran and Libowitzky, 2006). 439 

We must also mention the potential re-hydration by the volatiles-rich kimberlitic magma 440 

during transport toward the surface: as shown experimentally by Baptiste et al. (2015), the co-441 

existence of CO2 and H2O in kimberlitic magma lead to an effective decrease in water fugacity, 442 

which does not promote hydrogen incorporation in olivine, or other NAMs. At the opposite, 443 

transport within kimberlitic magma also does not seem to promote notable dehydration during 444 

ascent, probably due to local point defect interactions and long-term hydrogen locking in 445 

peculiar point defects (Thoraval and Demouchy, 2014; Thoraval et al., 2019). 446 

 447 

4.2. Reconstructed hydrogen whole-rock concentrations 448 

 449 

Despite the limited number of mantle minerals successfully analyzed in this study, we 450 

can attempt to estimate, for the first time, the whole-rock (bulk) H concentration of the late 451 

Archean Dharwar cratonic lithosphere (3.6-2.5 Ga; Jayananda et al., 2018). Using the estimated 452 

mineral modes (a lherzolite with ol: 74%, opx, 14%, cpx 9%, grt 4%, from Table 1) and the 453 

average hydrogen concentrations obtained from mineral-specific calibrations (Table 3, 18 ppm 454 

wt H2O in olivine, 70 ppm wt H2O in opx, 207 ppm wt H2O in cpx and 14.5 ppm wt H2O in 455 

garnet (based on clean spectra of P1P2-garnet 2 and P7 garnet 3, thus excluding the potentially 456 
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contaminated garnets), bulk H concentration yields 40 ppm wt H2O. Furthermore, we can use 457 

experimentally determined partition coefficients of hydrogen for coexisting olivine, 458 

orthopyroxene and clinopyroxene to cross-check if this estimate is indicating equilibrium 459 

hydrogen concentration distribution. Here, we use the following published partition coefficients 460 

from Demouchy et al. (2017): (1) partition coefficients of hydrogen between orthopyroxene 461 

and olivine (Dopx/ol) = 5, (2) partition coefficients of hydrogen between clinopyroxene and 462 

orthopyroxene (Dcpx/opx) = 2, and (3) partition coefficients of hydrogen between clinopyroxene 463 

and olivine (Dcpx/ol) = 10, which were obtained at pressure and temperature ranges as close as 464 

possible to the equilibrium conditions of our samples (3 GPa and 1100 °C) for a mantle-derived 465 

composition and importantly for a basaltic melt-free system. Indeed, most of the experimental 466 

studies have focused on basaltic melt-bearing systems, and a recent compilation can be found 467 

in Demouchy et al. (2017, see their Table 3). Since, there is no experimental data for partition 468 

coefficient of H between olivine and garnet (Dol/grt) in a basaltic melt-free system, we decided 469 

to use an average value of Dol/grt=0.65, calculated using the results of experimental studies on 470 

hydrous lherzolites (Dol/grt=0.6 from Gaetani and Grove, 1998; Dol/grt=0.7 recalculated from 471 

Hirschmann et al., 2009). Temperature and pressure conditions of these experiments are fairly 472 

close to those of our samples. These experimental values are also close to the previous estimates 473 

of partition coefficient of H between olivine and garnet in MORB composition (e.g., Dol/grt=1, 474 

Hirth and Kohlstedt, 1996). Using these partitioning coefficients, the same mineral mode (ol: 475 

74%, opx, 14%, cpx 9%, grt 4%) and the hydrogen concentration in olivine as a reliable 476 

concentration, it yields 41 ppm wt H2O, thus in agreement with the first estimate given above. 477 

If opx or cpx is used as the initial concentration, it yields 32 or 48 ppm wt H2O, respectively. 478 

These estimates permit to further constrain the bulk H concentration to 40#$%&' ppm wt H2O. 479 

The bulk H concentration in the Dharwar cratonic lithosphere is four to five times lower 480 

than the geochemical estimates of bulk H concentration in the upper mantle, e.g., 150 ppm wt 481 
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H2O (Michael, 1988; Saal et al., 2002; Marty, 2012), H concentration in peridotites from 482 

lithospheric mantle (150-200 ppm wt H2O; Demouchy and Bolfan-Casanova, 2016). This bulk 483 

hydrogen concentration is also well below saturation values of H concentration reported by 484 

experimentation at lithospheric conditions, i.e. ~ 700 ppm wt H2O. (at 220 km of depth, see 485 

Férot and Bolfan-Casanova, 2012). However, together with the equilibrium pressure estimates, 486 

the resulting H concentrations in olivine from the Dharwar craton (Fig. 9) agree well with the 487 

lower range of the current database for H-rich mantle olivines transported by the kimberlitic 488 

magmas (e.g., South Africa and Udachnaya; Peslier et al., 2010; Baptiste et al., 2012; Doucet 489 

et al., 2014).  490 

 491 

4.3. Role of metasomatism  492 

 493 

Metasomatism might be considered as a mantle process inducing enrichment or 494 

depletion of H in the mantle NAMs (e.g., Bell and Rossman, 1992a; Ingrin and Skogby, 2000; 495 

Peslier et al., 2012; Denis et al., 2015; Demouchy et al., 2015: Satsukawa et al., 2017). On the 496 

contrary, undersaturated partial melting and melt extraction can only induce H extraction as H 497 

is an incompatible element (e.g, Dixon et al., 2002). As mentioned above, the estimated bulk H 498 

concentration of Dharwar peridotites is 40#$%&' ppm wt H2O is much lower than the current 499 

estimates for the Earth’s upper mantle (e.g., 150 ppm wt H2O, Michael, 1988; Saal et al., 2002; 500 

Marty, 2012; Demouchy and Bolfan-Casanova, 2016). Such low H concentrations could also 501 

be linked to (1) melting-induced depletion, as the depleted peridotites from the Dharwar craton 502 

probably represent a mantle residue after ~35-50 % melting, as suggested by Pattnaik et al. 503 

(2020), or (2) melt-rock interactions as suggested in the irregular REEN patterns in peridotitic 504 

clinopyoxenes from the Dharwar craton (Pattnaik et al., 2020) or as shown by a study on Japan 505 

back arc system, e.g. Oki-Dogo locality (SW Japan, Satsukawa et al., 2017). These low H 506 
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concentrations, together with trace element enrichment in clinopyroxenes, are indeed the 507 

accurate witness of significant melt-rock interactions (Pattnaik et al., 2020). They have a 508 

different signature than results from cryptic metasomatism (e.g., Ichinomegata peridotites, 509 

which preserved or enhanced the H concentrations in pyroxenes (Satsukawa et al., 2017). Here, 510 

in Figure 8, the hydrogen and alumina compositions of clinopyroxenes from Dharwar 511 

peridotites agree well with the relative decrease in H observed in clinopyroxenes from Okidogo 512 

relative to Ichinomegata. Furthermore, based on REE concentrations of calculated hypothetical 513 

melts composition in equilibrium with Dharwar garnet (Pattnaik et al., 2020) and following the 514 

protocol of Aulbach et al. (2013), the results suggested that the metasomatic agent of the 515 

Dharwar cratonic lithospheric mantle is likely to be small volumes of carbonated silicate melt 516 

(Pattnaik et al., 2020), closely similar in composition to the natural kimberlite and lamproites 517 

from the Dharwar craton (e.g., Chalapathi Rao et al., 2013). This conclusion is further supported 518 

by the occurrence of kimberlite-carbonatite rocks in the Eastern Dharwar craton (Chatterjee et 519 

al., 2008; Smith et al., 2013), notably at the Khaderpet pipe, which is located only 15 km east 520 

of the Wajrakarur pipes. Thus, as recall above (section 4.1), if the metasomatic agent was CO2-521 

rich melt, it could have lowered the water fugacity in the system and could limit H incorporation 522 

in the NAMs lattice (e.g., Dixon and Stolper, 1995; Baptiste et al., 2015). Nonetheless, to 523 

strengthen this outcome, specific H partition coefficients between peridotitic minerals co-524 

existing with the carbonated silicate melt would be necessary. To date, such experimental data 525 

are not yet available and only experiments with variable water activity are reported in simplified 526 

systems (e.g., Matveev et al., 2001, Wang et al., 2014, Gaetani et al., 2014, Tollan et al., 2018). 527 

Thus, further studies at high pressures are required to understand the partitioning of H in these 528 

complex petrological systems. 529 

NAMs inclusions in diamonds prior to kimberlite emplacement are shielded from 530 

interaction with passing fluids and melts, which define the variation of H concentration in the 531 
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upper mantle and transition zone at the time of diamond formation, (e.g., Novella et al., 2015). 532 

Assuming that hydrogen diffusivity in diamond is indeed very slow (e.g., Popovici et al., 1995), 533 

we can thus consider these specimens are reliable H concentration proxy for the pristine mantle, 534 

that isolated NAMs from subsequent modification by discrete partial melting, melt-rock 535 

interactions, metasomatism or aqueous fluids percolation occurring within subcontinental 536 

mantle. A few studies reported H concentrations in inclusions in diamonds, using FTIR or 537 

secondary ion mass spectrometry (Kurosawa, 1997, Matsyuk and Langer, 2004, Novella, et al., 538 

2015; Taylor et al., 2016, Jean et al., 2016), with striking lower H concentrations in olivine (0-539 

34 ppm wt H2O) when compared to co-existing olivines in cratonic peridotite xenoliths (Fig. 540 

9). Nevertheless, rigorous comparisons remain challenging due to the paucity of accurate 541 

determination of equilibrium temperatures and pressures for these rare NAMs inclusions in 542 

diamonds. 543 

 544 

4.4. Implication for the Dharwar Craton Viscosity 545 

 546 

Incorporation of H in mantle minerals is recurrently proposed as a key parameter 547 

affecting many physical and chemical properties of the upper mantle minerals and rocks (e.g., 548 

Regenauer-Lieb and Kohl, 2003; Regenauer-Lieb et al., 2006; Albarède, 2009; Peslier et al. 549 

2010; Demouchy and Bolfan-Casanova, 2016; Masuti et al., 2016). One particular property is 550 

the viscosity of olivine-rich rocks, which constitute about 67 vol.% of the lithospheric upper 551 

mantle (Demouchy and Bolfan-Casanova, 2016). It includes the lithosphere-asthenosphere 552 

boundary where a significant decrease in viscosity (from 1024 to 1020 Pa.s, e.g., Garel et al., 553 

2014, 2020) is at the origin of partial mechanical decoupling, leading to the formation of a 554 

horizontal boundary of tectonic plates. Several studies have proposed that this partial 555 

mechanical decoupling between the lithosphere and asthenosphere is enhanced or even 556 
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triggered by H incorporation in olivine (Regenauer-Lieb and Kohl, 2003; Regenauer-Lieb et 557 

al., 2006, Peslier et al., 2010; Faul et al., 2016; Masuti et al., 2016). Combined with numerical 558 

modeling to test the longevity of South African cratonic root, it has been also proposed that a 559 

drastic decrease in H concentration in olivine at the base of a cratonic root would generate a 560 

‘hard shell’, which protects the cratonic root from erosion by underlying convective 561 

asthenosphere (Peslier et al., 2010). Later on, this hypothesis was not confirmed by the results 562 

from the Siberian craton (Doucet et al., 2014). Furthermore, the most recent studies on H in 563 

olivine inclusions within diamond tend to confirm H depletion in cratonic root (Taylor et al., 564 

2016; Jean et al., 2016) even if the depletion is not as drastic as reported previously (Kurosawa, 565 

1997; Matsyuk and Langer, 2004; Novella et al., 2015).  566 

Here, the mantle beneath the Dharwar craton is of particular interest to test this 567 

hypothesis because the Indian subcontinent was attached to Gondwana and located close to 40 568 

°S-80 °E, before it drifted (~20 cm year-1, e.g., Aitchinson et al., 2007) toward the Eurasian 569 

plate during Cretaceous, until collision began at Eocene (55 Ma, Aitchinson et al., 2007). 570 

Unfortunately, the results from rare Dharwar peridotitic olivines cannot permit to radically 571 

confirm or infirm the hypothetic marked H-depletion in olivine at the base of the cratonic root, 572 

since our mantle samples are not particularly from a deep upper mantle section (~5 GPa,  i.e. < 573 

150 km depth). Nevertheless, this is the first study which report the H concentrations in mantle 574 

minerals from the Indian cratonic mantle lithosphere and the results are in good agreements 575 

with the current data base for other mantle minerals and peridotites for similar depth.  This 576 

value permits to calculate for the first time the viscosity of the Dharwar craton as a function of 577 

the hydrogen concentration. We can not use the most recent experimental study on hydroxyl 578 

weakening for dislocation glide and climb flow laws, that is equations (16) and (17) in Tielke 579 

et al., 2017, since these equations are not a function of the hydrogen concentration but use a 580 

fixed hydrogen concentration (60 H/106Si, which equals 3.7 ppm wt H2O following the 581 
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calibration of Paterson, 1982). Nevertheless, we can use the dislocation creep flow laws given 582 

by Hirth and Kohlstedt (2003, see their Table 1). We calculate the stress for a strain rate of 1 ´ 583 

10-14 ms-1, a temperature of 1179 °C (P3/6/3, TTA reported in Table 1), a confining pressure of 584 

5 GPa (P3/6/3, PNG reported in Table 1), and the olivine hydrogen concentration of 11 ppm wt 585 

H2O (Table 3, thus equals to 178 H/106Si, with the calibration of Paterson, 1982). The ratio 586 

stress/strain rate gives the viscosity, which yields 5.3 ´ 1020 Pa s for an anhydrous olivine and 587 

1.5 ´ 1020 Pa s for hydrous olivine. The weakening factor is only 3.5 at high equilibrium 588 

temperature and pressure of these xenoliths. Note that for a millimetric grain size, and a volume 589 

fraction of olivine > 60%, the strength of a peridotite is not expected to be strongly impacted 590 

by secondary phases (e.g., Ji et al., 2001). Therefore, we conclude that the occurrence of 591 

hydrogen in olivine is not inducing a major change in viscosity of the Indian craton for these 592 

conditions (hydrogen concentrations, high temperature and 165 km of depth). 593 

 594 

5. Conclusion 595 

We quantified the H concentrations in the four main rock-forming nominally anhydrous 596 

minerals from a rare selection of peridotite xenoliths and minerals embedded in Wajrakarur 597 

kimberlites from the Eastern Dharwar craton, India. We have demonstrated that olivines, 598 

orthopyroxenes, clinopyroxenes and garnets from the Dharwar craton are of mantle origin. The 599 

Dharwar peridotites show a range of H concentrations from 11-29 ppm wt H2O in olivines, 600 

from 56- 88 ppm wt H2O in opx, from 81-642 ppm wt H2O in cpx, and 14-15 ppm wt H2O. in 601 

garnets (using mineral-dependent calibration and excluding abnormal spectra). The range of H 602 

concentrations in nominally anhydrous minerals present in Dharwar peridotites agrees well with 603 

the current database for mantle minerals transported by kimberlites in other Archean cratons 604 

(e.g., South Africa, Siberia) and are not especially indicative of a H-rich mantle lithosphere 605 

beneath the Dharwar craton in the late Archean. Finally, despite having a limited number of 606 
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studied mantle samples, we provide the first estimate of bulk H concentration in mantle 607 

minerals from the Dharwar craton. Our results also permit to quantify the negligible impact of 608 

hydrogen on the viscosity of the Indian cratonic mantle. 609 

 610 
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 1042 

Figures Captions 1043 

 1044 

Figure 1. (a) Geological map of southern India comprising of different tectonic units redrawn 1045 

from Patel et al. (2009). EDC: Eastern Dharwar Craton, WDC: Western Dharwar Craton, 1046 

EGMB: Eastern Ghat Mobile Belt, CG: Closepet granite and equivalents, GG: Godavari graben, 1047 

NKF: Narayanpet kimberlite field, RKF: Raichur kimberlite field, WKF: Wajrakarur kimberlite 1048 

field, CBF: Chitradurga boundary fault. (b) Enlarged map of Wajrakarur kimberlite field 1049 

showing locations of studied samples (after Nayak and Kudari, 1999).  1050 

 1051 
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Figure 2. Peridotite xenolith and mineral micrographs from Wajrakarur kimberlites field, 1052 

Eastern Dharwar craton. (a) Thin section scans in natural light of spinel (± garnet) peridotite 1053 

(sample P3/5/1) showing granular texture with highly fractured large olivine grains, elongated 1054 

shaped orthopyroxenes, clinopyroxenes surrounding the olivines as veinlets. (b) Garnet 1055 

peridotite (sample P3/6/1) with polygonal garnets in a matrix of orthopyroxenes and 1056 

clinopyroxenes along with euhedral larger grains of olivines. (c) Sample P3/6/3 with mantle 1057 

olivine xenocrysts present in the kimberlitic matrix. (d) Mantle mineral separates of 1058 

clinopyroxenes and garnets from kimberlite pipes: P6 (clinopyroxenes), P7 (garnets), P1P2 1059 

(clinopyroxenes), P3P (garnet), P3 (clinopyroxene), P3D (garnets), P10 (garnet) and P1P2 1060 

(garnets).  1061 

 1062 

Figure 3. Key major element distribution in mantle minerals. Large red symbols are results 1063 

from this study, small red symbols are from previous studies for Dharwar craton (Ganguly and 1064 

Bhattacharya, 1987 and Nehru and Reddy, 1989; and Shaikh et al., 2020) and small grey 1065 

symbols are from previous studies for peridotite xenoliths from others cratons: Canada 1066 

(Kopylova et al., 1999; MacKenzie and Canil, 1999; Menzies et al., 2004); Kaapvaal (Grégoire 1067 

et al., 2005; Gibson et al., 2008; Lazarov et al., 2009; Konzett et al., 2013; Hanger et al., 1068 

2015;  Bell et al., 2005);  Siberia (Ionov et al., 2010; Doucet et al., 2012; 2014). (a) Mg# as a 1069 

function of NiO contents (wt.%) in olivine; b) CaO content (wt.%) as a function of 1070 

Al2O3 content (wt.%) in clinopyroxenes. (b)  Mg# as a function of TiO2 content (wt.%) in 1071 

clinopyroxenes; and (d) Al2O3 contents (wt.%) as a function of Cr2O3 contents (wt.%) in 1072 

garnet. Red squares are for eclogitic garnets from Eastern Dharwar craton (Dongre et al., 2015) 1073 

and grey squares are for garnets from other eclogites transported by kimberlites from Koidu 1074 

(Hills and Haggerty, 1989), Roberts Victor (MacGregor and Manton, 1986), Yakutia (Snyder 1075 

et. al, 1997; Jerde et al., 1993; Sobolev et al., 1994).  1076 
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 1077 

Figure 4. Representative unpolarized infrared spectra for anhydrous nominally minerals from 1078 

Wajrakarur; (a) olivine, (b) diopside, (c) orthopyroxenes, and (d) garnet. The integrated 1079 

absorbance is reported for each spectrum of olivine, opx and cpx. The dotted lines represent the 1080 

range of integration and the star symbol represents the contamination by hydrous minerals (see 1081 

main text for details). All spectra have been normalized to 1 cm of thickness. Spectra from 1082 

previous studies are shown for comparison. 1083 

 1084 

Figure 5. Representative unpolarized infrared spectra for anhydrous nominally minerals from 1085 

Wajrakarur contaminated by hydrous mineral lamellae. All spectra have been normalized to 1086 

1 cm of thickness.   1087 

 1088 

Figure 6. Hydrogen concentrations (express in ppm by weight of water) of olivine from 1089 

Wajrakarur peridotites as a function of magnesium number [Mg# = 100 × Mg/(Mg+Fe)]. Full 1090 

red symbol is for sample P3/6/3 olivine, while open symbols are the H concentration is the 1091 

result of calculation using partitioning coefficient for samples P3/5/1 and P3/6/1 (see main text 1092 

for values used in this study). For comparison data for other olivines are shown here: olivine 1093 

megacrysts from Kaapvaal (Bell et al., 2004); peridotitic olivines from Kaapvaal (Peslier et al., 1094 

2010; Baptiste et al., 2012); olivine phenocrysts from Udachnaya (Kamenetsky et al., 2008); 1095 

peridotitic olivines from Udachnaya (Doucet et al., 2014); off-craton spinel-bearing peridotites 1096 

(Demouchy et al., 2015, Demouchy and Bolfan-Casanova, 2016, Denis et al., 2013, 2018; Li et 1097 

al., 2008, NB: the spinel-lherzolites only). 1098 

 1099 

Figure 7.  (a) Ti concentrations in ppm determined by LA-ICP-MS as a function of the sum of 1100 

the normalized integrated absorbance from the IR bands 3575 and 3525 cm–1, which are 1101 
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attributed to titanium clinohumite-like point defects (see main text for details). For comparison, 1102 

results from experimental studies and data from natural mantle samples are also reported 1103 

(S2013: Schmädicke et al., 2013; Dm2015: Demouchy et al., 2015; PN&H2017: Padrón-1104 

Navarta and Hermann, 2017; Dn2015: Denis et al., 2015; T2018: Tollan et al., 2018). (b) 1105 

Compilation of Ti concentrations observed in peridotites together with data from O’Reilly et 1106 

al. (1997); De Hoog et al. (2014); Peslier (2010); Peslier et al. (2012); Satsukawa et al. (2017) 1107 

for comparison.  1108 

 1109 

Figure 8.  Hydrogen concentrations (express in ppm of water by weight) in clinopyroxenes 1110 

from Wajrakarur peridotites as a function of Al2O3 contents (wt.%) in clinopyroxenes. For 1111 

comparison, data for clinopyroxenes from a variety of tectonic settings are also shown. 1112 

Clinopyroxenes in kimberlites from Premier Mine  and Lesotho (Peslier et al., 2010); eclogites 1113 

from the Alps and from Khazakstan (Katayama et al., 2006; Peslier, 2010), basalts from Nushan 1114 

and Hannuoba (Yang et al., 2008); Massif central (Denis et al., 2015); Mexico (Peslier et al., 1115 

2002); Ichinomegata and Okidogo in Japan (Satsukawa et al., 2017).  1116 

 1117 

Figure 9. Hydrogen concentrations (express in ppm of water by weight) in olivine from 1118 

Wajrakarur peridotites as a function of depth (using two different geobarometers, BK: Brey and 1119 

Kohler (1990) or NG: Nickel and Green (1985), see main text for details). Open symbols are 1120 

values derived from partitioning coefficients. For comparison, data for olivines from two well-1121 

studied cratons are also shown: Kaapvaal (Peslier et al., 2010; Baptiste et al., 2012); and 1122 

Udachnaya (Doucet et al., 2014). Hydrogen concentrations in olivine inclusion within 1123 

diamonds are also shown for comparison (Novella et al., 2015 by FTIR and Jean et al., 2016 by 1124 

secondary ion mass spectrometry). Matsyuk and Langer (2004) reported two dry olivines within 1125 

diamond, but without pressure of equilibrium, which prevents us to implement these data in the 1126 
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figure. We encountered the same problem for olivine inclusion in diamonds from Taylor et al. 1127 

(2016). 1128 

 1129 
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Sample no. Location Sample Type Rock type/Mineral Mineral modes (vol.%) TBK90 (oC) PNG (GPa) TTA (oC) PNG (GPa)
P3/5/1 Pipe 3 Mantle xenolith Spinel ±Garnet Lherzolite Ol77Opx15Cpx7Sp1 940 3.0 710 2.5
P3/6/1 Pipe 3 Mantle xenolith Garnet Lherzolite Ol74Opx13Cpx9Grt4 1050 4.5 831 3.1
P3/6/3* Pipe 3 Mantle mineral Olivine grains  in matrix 3 grains 1270 5.5 1179 5
P1P2 Pipe 1 Mineral separated from mantle xenolith Diopside 6 grains n.d. n.d. n.d. n.d.
P1P2 Pipe 1 Mineral separated from mantle xenolith Garnet 2 grains n.d. n.d. n.d. n.d.
P3D Pipe 3 Mineral separated from mantle xenolith Garnet 3 grains n.d. n.d. n.d. n.d.
P3P Pipe 3 Mineral separated from mantle xenolith Garnet 1 grains n.d. n.d. n.d. n.d.
P3 Pipe 3 Mineral separated from mantle xenolith Diopside 1 grain n.d. n.d. n.d. n.d.
P6 Pipe 6 Mineral separated from mantle xenolith Diopside 8 grains n.d. n.d. n.d. n.d.
P7 Pipe 7 Mineral separated from mantle xenolith Garnet 3 grains n.d. n.d. n.d. n.d.

P10 Pipe 10 Mineral separated from mantle xenolith Garnet 1 grain n.d. n.d. n.d. n.d.

Ol - olivine; Cpx - clinopyroxene; Opx - orthopyroxene; Sp - spinel; Grt - Garnet
TBK90 - Brey and Kohler (1990); TTA - Taylor (1998); PNG - Nickel and Green (1985)
Temperatures (TTA) and Pressures (PNG) were calculated assumimg an initial pressure of 3 GPa for spinel peridotite and 5 GPa for garnet peridotites.
* Garnet was not present in this section, we assumed 5 vol. % of garnet as observed in samples from the same pit (Ganguly and Bhattacharya, 1987).

Table 1. Sample types,  mineral modes and estimated equlibrium temperatures and pressures for peridotites and mantle minerals from 
Dharwar craton.



Sample no. P3/6/3
Minerals Ol Opx Cpx Spl Ol Opx Cpx Grt Ol

wt.% n=8 σ n=25 σ n=4 σ n=6 σ n=5 σ n=2 σ n=8 σ n=9 σ n=12 σ
       SiO2 41.3 (0.3) 57.6 (0.4) 53.0 (0.3) 0.03 (0.03) 40.8 (0.5) 57.4 (0.1) 53.3 (0.8) 41.8 (0.4) 41.0 (0.7)
       TiO2 0.00 (0.00) 0.00 (0.01) 0.17 (0.01) 0.00 (0.01) 0.02 (0.03) 0.13 (0.03) 0.36 (0.07) 0.22 (0.03) 0.01 (0.02)
       Al2O3 0.01 (0.00) 0.96 (0.04) 0.50 (0.3) 17.3 (0.3) 0.03 (0.02) 0.96 (0.01) 3.20 (0.3) 21.90 (0.3) 0.01 (0.01)
       Cr2O3 0.03 (0.02) 0.31 (0.05) 0.30 (0.1) 53.8 (0.5) 0.01 (0.01) 0.33 (0.00) 1.80 (0.1) 2.70 (0.2) 0.02 (0.03)
       FeO 6.80 (0.2) 4.30 (0.2) 2.30 (0.4) 15 (0.3) 7.60 (0.30) 4.60 (0.10) 2.30 (0.2) 7.10 (0.1) 7.60 (3.7)
       MnO 0.08 (0.25) 0.10 (0.2) 0.02 (0.03) 0.3 (0.1) 0.09 (0.06) 0.08 (0.08) 0.07 (0.07) 0.33 (0.06) 0.13 (0.08)
       MgO 52.61 (0.01) 37.00 (0.02) 18.50 (0.9) 13.9 (0.2) 51.8 (0.67) 36.00 (0.10) 16.30 (0.5) 21.90 (0.2) 50.00 (3)
       CaO 0.04 (0.02) 0.19 (0.05) 23.00 (1) 0.01 (0.01) 0.02 (0.02) 0.44 (0.06) 19.90 (1) 4.60 (0.08) 0.04 (0.02)
       Na2O 0.01 (0.01) 0.02 (0.01) 0.5 (0.1) 0.01 (0.01) 0.01 (0.01) 0.14 (0.01) 2.40 (0.8) 0.07 (0.02) 0.02 (0.02)
       K2O 0.00 (0.00) 0.01 (0.00) 0.7 (0.5) 0.01 (0.01) 0.01 (0.01) 0.00 (0.00) 0.02 (0.03) 0.00 (0.01) 0.01 (0.01)
       NiO 0.29 (0.01) 0.10 (0.01) 0.04 (0.01) 0.06 (0.01) 0.35 (0.01) 0.04 (0.01) 0.03 (0.01) 0.00 (0.01) 0.31 (0.01)

Total 101.18 100.58 99.04 100.42 100.78 100.13 99.66 100.60 99.10
Mg# 93.3 93.9 93.6 92.4 93.3 92.7 92.2
Cr# - 17.7 24.4 - 18.7 27.5 -
ppm n=2 n=1 n=1 n=1 n=2 n=2 n=3 n=2 n=2
Ni 2932 (277) 864 344.00 532 2932 (39) 864 (62) 270 (7) 31 (2.8) 2492 (356)
Mn 716 (44) 432 762.00 1301 716 (3) 431 (21) 499 (26) 2629 (125) 676 (9)
Na 18 (3) 23 1142.82 b.d.l 63 (18) 286 (24) 17547 (39) 371 (77) 56 (75)
Ti 52 (4) 4 1319.00 62 93 (3) 11 (5) 1678 (20) 1583 (421) 34 (64)
La b.d.l b.d.l 2.04 0.02 b.d.l b.d.l b.d.l 26.00 (2) 0.06 (0.03) b.d.l
Ce b.d.l 0.02 41.23 0.52 b.d.l b.d.l b.d.l 78.00 (5) 0.76 (0.16) b.d.l
Li n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
V 2.45 (0.06) 33 501 2045 5.60 (0.2) 15 (2.83) 560 (8.85) 242 (70) b.d.l b.d.l

Sample no. P1P2 P1P2 P3D P3P P3 P6 P7-1 P7-2 P10
Minerals Di Grt Grt Grt Di Di Grt Grt Grt

wt.% n=22 σ n=4 σ n=6 σ n=4 σ n=2 σ n=4 σ n=3 σ n=3 σ n=4 σ
       SiO2 54.9 (0.2) 42.8 (0.3) 42.3 (0.3) 43.2 (0.2) 55.7 (0.1) 55.5 (0.3) 41.6 (0.7) 41.1 (0.3) 42.3 (0.3)
       TiO2 0.13 (0.03) 0.16 (0.03) 0.29 (0.04) 0.25 (0.02) 0.40 (0.01) 0.23 (0.06) 0.07 (0.02) 0.02 (0.00) 0.21 (0.01)
       Al2O3 1.43 (0.06) 21.71 (0.03) 22.30 (0.5) 22.30 (0.4) 2.10 (0.02) 2.30 (0.2) 19.70 (0.3) 17.50 (0.1) 18.40 (069)
       Cr2O3 1.00 (0.1) 2.20 (0.1) 2.35 (0.66) 1.80 (0.7) 0.60 (0.20) 2.55 (0.55) 5.10 (0.26) 8.12 (0.02) 6.90 (0.8)
       FeO 3.00 (0.2) 6.50 (0.1) 7.00 (0.9) 6.96 (0.05) 2.98 (0.2) 2.15 (0.02) 5.40 (0.1) 5.56 (0.51) 6.50 (0.3)
       MnO 0.10 (0.07) 0.25 (0.13) 0.30 (0.07) 0.32 (0.06) 0.06 (0.08) 0.07 (0.04) 0.26 (0.13) 0.32 (0.04) 0.40 (0.1)
       MgO 20.50 (0.3) 22.00 (0.10) 22.20 (0.7) 21.90 (0.2) 17.60 (0.1) 16.80 (0.2) 22.90 (0.4) 22.01 (0.01) 19.80 (0.6)
       CaO 17.80 (0.5) 4.59 (0.04) 4.20 (0.3) 4.35 (0.10) 20.00 (0.20) 19.10 (0.3) 4.26 (0.06) 5.07 (0.01) 6.50 (0.5)
       Na2O 0.88 (0.04) 0.05 (0.02) 0.07 (0.10) 0.05 (0.01) 1.43 (0.02) 2.10 (0.2) 0.03 (0.03) 0.01 (0.00) 0.03 (0.01)
       K2O 0.04 (0.01) 0.04 (0.01) 0.01 (0.01) 0.01 (0.01) 0.03 (0.01) 0.03 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
       NiO 0.05 (0.01) 0.01 (0.01) 0.00 (0.01) 0.01 (0.01) 0.12 (0.01) 0.05 (0.01) 0.01 (0.01) 0.01 (0.01) n.d n.d

Total 99.84 100.28 101.00 101.17 101.06 100.94 99.34 99.74 101.02
Mg# 92.4 85.8 84.9 84.9 91.4 93.3 88.3 87.6 84.5
Cr# 32.3 6.3 6.6 5.1 16.7 42.2 14.8 23.7 20.1
ppm n=6 n=3 n=2 n=1 n=1 n=2 n=2 n=2
Ni 396 60 111 (9) 48 (21) 51 924 381 (69) 89 (7) 65 (23) n.d.
Mn 753 (129) 2267 (123) 2763 (451) 2496 940 742 (57) 2071 (73) 3092 (71) n.d.
Na 3770 (90) 255 (23) 428 (158) 511 17782 15253 (1306) 60 (3) 514 (154) n.d.
Ti 875 (53) 1280 (305) 2544 (317) 1976 1066 758 (63) 294 (19) 274 (53) n.d.
La 1.2 (0.9) b.d.l b.d.l b.d.l b.d.l 0.0 10.9 11.5 (4) 0.1 (0.06) b.d.l b.d.l n.d.
Ce 6.0 (3) 0.4 (0.05) 0.3 (0.2) 0.3 35.2 35.0 (19) 0.8 (0.4) 0.2 (0.07) n.d.
Li 2.7 (0.4) 0.0 (0.00) 0.1 (0.10) 0.3 3.4 1.0 (0.4) n.d. n.d. n.d.
V 154 (80) 15 (6) 236 (42) 134 325 464 (71) 333 (42) 100.0 (30) n.d.

P3/6/1P3/5/1

Table 2.Typical average major, minor and trace element compositions of mantle minerals from Dharwar craton ;  n gives  the number of analysed EPMA points to obtain the reported average values. 
Between 2 and 9 points were analyzed by  LA-ICP-MS. Mg#=100×Mg/(Mg+Fe) in atomic ratio and Cr#= 100×Cr/(Cr+Al). NB: EPMA analyses were performed on thin section while FTIR were 
performed on thick hand polished grains and sections.



Table 3:  Integrated normalized absorbance  and  hydrogen concentrations for the mineral grains from this study

Thickness Int. Abs. Coeff. Paterson (1982) Garnet or Pyroxenes Bell et al. (1995)  Olivine - Withers et al. (2012) 
(mm ± 0.001 ) (cm-2) (ppm wt H2O) 2s=30% (ppm wt H2O) 2s=20-30% (ppm wt H2O) 2s=10%

P3/5/1 0.211 Orthopyroxene 455 77 88 -
P3/5/1 0.211 Orthopyroxene1 354 64 68 -
P3/5/1 0.211 Orthopyroxene2 289 53 56 -
P3/5/1 0.211 Orthopyroxene (average) 366 65 70
P3/5/1 0.211 Garnet Dry Dry - -
P3/6/1 0.216 Diopside contaminated - - -
P3/6/1 0.216 Garnet 88 75 63 -
P3/6/3 0.211 Olivine1 82 18 - 29
P3/6/3 0.211 Olivine2 36 8 - 13
P3/6/3 0.211 Olivine3 31 7 - 11
P3/6/3 0.211 Olivine (average) 50 11 - 18

P1P2 0.390 Diopside1 position1 318 69 135 -
P1P2 0.390 Diopside1 position2 355 73 150 -
P1P2 0.390 Diopside1 position3 320 69 135 -
P1P2 0.390 Diopside2 position1 282 61 119 -
P1P2 0.390 Diopside2 position2 355 77 150 -
P1P2 0.390 Diopside2 position3 325 66 138 -
P1P2 0.390 Diopside3 position1 192 40 81 -
P1P2 0.390 Diopside3 position3 162 34 69 -
P1P2 0.390 Diopside3 position4 193 39 82 -
P1P2 0.390 Diopside4 position1 209 41 88 -
P1P2 0.390 Diopside5 position1 449 91 190 -
P1P2 0.390 Diopside6 position1 602 122 255 -
P1P2 0.390 Diopside6 position2 603 122 255 -
P1P2 0.390 Diopside  (average) 335 69 142 -
P1P2 0.590 Garnet1 359 54 258 -
P1P2 0.590 Garnet1 21 5 15 -
P1P2 0.590 Garnet2 Dry Dry - -

P3 0.241 Diopside contaminated - - -
P3 0.458 Garnet Dry Dry - -

P3D 0.351 Garnet Dry Dry - -
P3D 0.351 Garnet Dry Dry - -
P3D 0.351 Garnet Dry Dry - -
P6 0.336 Diopside1 528 124 223 -
P6 0.336 Diopside2 481 118 204 -
P6 0.336 Diopside3 1518 309 642 -
P6 0.336 Diopside4 308 71 130 -
P6 0.336 Diopside5 497 107 210 -
P6 0.336 Diopside6 726 162 307 -
P6 0.336 Diopside7 463 122 196 -
P6 0.336 Diopside (average) 646 145 273 -
P7 0.372 Garnet1 Dry Dry - -
P7 0.372 Garnet2 Dry Dry - -
P7 0.372 Garnet3 19 6 14 -

P10 0.492 Garnet Dry Dry - -

Thin sections

Mineral separated from mantle xenolith

Sample Mineral phase
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