

Low hydrogen concentrations in Dharwar cratonic lithosphere inferred from peridotites, Wajrakarur kimberlites field: Implications for mantle viscosity and carbonated silicate melt metasomatism

Jiten Pattnaik, Sylvie Demouchy, Sujoy Ghosh

▶ To cite this version:

Jiten Pattnaik, Sylvie Demouchy, Sujoy Ghosh. Low hydrogen concentrations in Dharwar cratonic lithosphere inferred from peridotites, Wajrakarur kimberlites field: Implications for mantle viscosity and carbonated silicate melt metasomatism. Precambrian Research, 2021, 352, pp.105982. 10.1016/j.precamres.2020.105982 . hal-03093209

HAL Id: hal-03093209 https://hal.science/hal-03093209

Submitted on 3 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Low hydrogen concentrations in Dharwar cratonic lithosphere inferred
2	from peridotites, Wajrakarur kimberlites field: Implications for mantle
3	viscosity and carbonated silicate melt metasomatism
4	
5	Jiten Pattnaik ¹ , Sylvie Demouchy* ² , Sujoy Ghosh ¹
6	
7	1. Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur-721302, West
8	Bengal, India.
9	2. Géosciences Montpellier, Université Montpellier & CNRS, 34095 Montpellier, France.
10	
11	
12	Accepted for publication in Precambrian Research
13 14 15 16	Cite as Pattnaik, J., Demouchy S., Ghosh, S.K., (2021) Hydrogen concentrations in mantle xenoliths and minerals from Wajrakarur kimberlite field, Eastern Dharwar Craton, India. Precambrian Research, 352, 105982. <u>https://doi.org/10.1016/j.precamres.2020.105982</u>
17	
18	
19	
20	
21 22 23 24 25 26 27 28 29 30	* corresponding author Dr. Sylvie Demouchy Geosciences Montpellier Univ. Montpellier & CNRS Place E. Bataillon 34 000 Montpellier France sylvie.demouchy@umontpellier.fr

31 Abstract

32 Hydrogen as an atomic impurity in mantle minerals is recurrently proposed as a key element impacting 33 significantly on many mantle properties and processes such as melting temperature and mechanical 34 strength. Nevertheless, interpretation based on the natural samples remains weak as we do not have yet 35 a robust world-wild database for hydrogen concentrations in mantle minerals and rocks. Here, we report 36 the first hydrogen concentrations in nominally anhydrous minerals from a rare selection of ultramafic 37 rocks and minerals embedded in Mesoproterozoic Wajrakarur kimberlites (Eastern Dharwar craton, 38 India). Based on key chemical elements, we demonstrate that olivine, pyroxenes and garnet from the 39 Dharwar craton are of mantle origin. We quantify the hydrogen concentrations using Fourier transform 40 infrared spectroscopy (FTIR) and mineral-specific FTIR calibrations. Calculated hydrogen 41 concentrations are, in average, 18 ppm wt H₂O in olivine, 70 ppm wt H₂O in orthopyroxene and 207 42 ppm wt H₂O in clinopyroxene. Garnet has highly variable hydrogen concentration ranging from 0 to 43 258 ppm wt H_2O , probably influenced by nano-scale inclusions. The average of clean garnet spectra 44 yields 14.5 ppm wt H₂O. The reconstructed hydrogen bulk concentrations of Dharwar peridotites yields 40^{+10}_{-8} ppm wt H₂O. This value is two to five times lower than the estimated hydrogen concentration in 45 46 the lithospheric mantle, and agree well with the lower range of hydrogen bulk concentration from the 47 current data base for the upper mantle minerals transported by kimberlites from other cratons (e.g., South 48 Africa, Siberia). The low hydrogen concentration in mantle minerals, together with petrological and 49 geochemical evidence of carbonated silicate melt metasomatism in Dharwar cratonic lithospheric 50 mantle, suggest that these xenoliths are possibly related to proto-kimberlite melts with low water activity 51 prior to being transported to the surface by the Mesoproterozoic Wajrakarur kimberlites. These 52 observations, valid to a depth of ~165-km, suggest that cratonic lithosphere beneath the Dharwar craton 53 may not be particularly indicative of an abnormal hydrogen-rich southern Indian lithosphere in the late 54 Archean and that hydroxylic weakening in olivine would induced a negligible effect on the mantle 55 viscosity of Indian subcontinent.

56

57 Keywords: Peridotite xenolith; Wajrakarur kimberlite; Eastern Dharwar craton; hydrogen; FTIR

58 1. Introduction

59 Hydrogen (H) can be embedded within the crystallographic lattice of nominally anhydrous minerals (NAMs, such as olivine, pyroxenes, and garnet) as extrinsic points defects 60 (e.g., Beran and Zemman, 1969; Beran and Libowitzky, 2006). Hydrogen incorporation, even 61 at a low concentration level (expressed in part per million of water by weight in this study) is 62 63 known to enhance many physical and chemical properties of mantle minerals and rocks. For 64 example, a small amount of H can increase electrical conductivity (Karato, 1990; Yoshino et al., 2006; Poe et al., 2010; Novella et al., 2017; Sun et al., 2019; Fei and Katsura, 2020) or 65 increase ionic diffusion of major elements in mantle minerals (e.g., Costa and Chakraborty 66 67 2008; Demouchy et al., 2007). Furthermore, the incorporation of H was also proposed to weaken the strength of single crystal and polycrystalline olivine (e.g., Mackwell et al., 1985; 68 Hirth and Kohlstedt, 2003; Demouchy et al., 2012; Tielke et al., 2017). As a consequence, 69 70 distribution of H in the upper mantle minerals is repetitively proposed as a major parameter in geodynamic models (e.g., Regenauer-Lieb and Kohl, 2003; Regenauer-Lieb et al., 2006; 71 72 Albarède, 2009; Peslier et al., 2010; Masuti et al., 2016).

73 Laboratory experiments have been crucial to understand the primary mechanisms of 74 incorporation of H in mantle silicates at point defects scale and also to quantify the 'water solubility' in mantle minerals as a function of thermodynamic parameters (e.g., Bali et al., 2008; 75 Férot and Bolfan-Casanova, 2012; Gaetani et al., 2014; Keppler and Bolfan-Casanova, 2006; 76 Kohlstedt et al., 1996; Mierdel et al., 2007; Mierdel and Keppler, 2004; Padrón-Navarta and 77 78 Hermann, 2017). Although, it has long been known that almost all natural NAMs contain 79 variable amounts of H in their structures (Beran and Libowitzky, 2006; Litasov et al., 2007; Skogby, 2006). Furthermore, the systematic characterization and quantification of H 80 81 concentrations in upper mantle minerals from mantle peridotites of different geological settings have been explored in the last two decades (see Peslier, 2010; Demouchy and Bolfan-Casanova, 82

2016 for reviews). Mantle xenoliths and large phenocrysts hosted by kimberlites in cratonic 83 84 settings have received most of the attention regarding their H concentrations (e.g., Bell and Rossman, 1992a; 1992b; Bell et al., 2004; Grant et al., 2007; Peslier et al., 2008, 2010, 2012; 85 Baptiste et al., 2012), with undeniable popularity for the Kaapvaal craton, South Africa. Several 86 studies are also available for the Siberia craton (Matsyuk et al., 1998; Matsuyk and Langer, 87 88 2004; Koch-Mueller et al., 2006; Schmädicke et al., 2013; Doucet et al., 2014; Taylor et al., 89 2016, Jean et al., 2016). The literature has reported astonishing NAMs inclusions in diamonds, which also permit to further constrain the H concentration in the Earth's upper mantle (e.g., 90 91 Kurosawa et al., 1997; Matsyuk and Langer, 2004; Novella et al., 2015; Taylor et al., 2016; 92 Jean et al., 2016).

To date, available literature data only reports four H concentrations in nominally anhydrous 93 mineral specimens from the Indian subcontinent: (1) one garnet from an unknown geological 94 95 setting in Maldener et al., 2003 (sample # RAJA, Prp₄₂Alm₅₄Sps₂Grs₂, 14 ppm wt H₂O); (2) large gem-quality metamorphic diopsides from Jaipur (Rajasthan) recurrently used for diffusion 96 97 experiments (i.e., sample # CIT. 11221 in Skogby et al., 1990; Skogby and Rossman, 1989; Carpenter Woods et al., 2000; Ferriss et al., 2016); (3) an augite from Kangan area, Andhra 98 Pradesh (i.e., sample # GRR 1660, Skogby et al., 1990), and (4) two metamorphic enstatites 99 100 (i.e., samples GRR1650a,b; Skogby et al., 1990). Nevertheless, none of these nominally 101 anhydrous mineral specimens have a confirmed mantle origin, thus no statement can be proposed regarding the hydrogenation state and strength of the continental mantle lithosphere 102 103 of any part of Indian subcontinent.

Here, we report the first detailed measurements of H concentrations, major and key minor and trace element concentrations in NAMs (olivine, orthopyroxene, clinopyroxene and garnet) from spinel- and garnet-bearing peridotite xenoliths and olivine grains embedded in kimberlites from the Wajrakarur kimberlite field in the Eastern Dharwar craton, India.

Moreover, we also report H contents in several fresh garnet and clinopyroxene single crystals
which were separated from Wajrakarur kimberlite-hosted peridotite xenoliths. Our main aim is
therefore to quantify the H content in mantle NAMs beneath the Eastern Dharwar craton.

111

112 2. Material and Methods

113 Previous studies by Ganguly and Bhattacharya (1987) and Nehru and Reddy (1989) 114 already described the petrography of peridotitic mantle xenoliths hosted by Proterozoic 115 Wajrakarur kimberlites from the Eastern Dharwar craton and calculated the equilibrium pressures and temperatures of these samples. The more recent study by Pattnaik et al. (2020) 116 117 focused on trace element compositions of olivine, garnet, clinopyroxene, orthopyroxene, spinel and ilmenite of a larger selection of ultramafic xenoliths from the same area. Here we mainly 118 119 focus on the quantification of H in NAMs from selected peridotite mantle xenoliths and mantle 120 minerals hosted in Group-II kimberlites (orangeites) from the Wajrakarur kimberlite field in 121 the Eastern Dharwar craton, India. Please note that Group-II kimberlites (orangeites) are 122 recently being classified as a variety of lamproite (Pearson et al., 2019). The geological context 123 of the Dharwar craton and Wajrakarur kimberlite field is briefly presented below.

The Archean Dharwar craton represents a classical granite-greenstone terrane which is overlaid on a basement of tonalite-trondhjemite-granodiorite gneisses (Naqvi and Rogers, 1987). The Dharwar craton is bounded in the east by the Proterozoic Eastern Ghats Mobile Belt, in the northeast by the Archean Bastar craton and in the northwest by the cretaceous-tertiary Deccan traps. The Dharwar craton is divided into the Eastern Dharwar craton (EDC) and the Western Dharwar craton (WDC) by the Chitradurga boundary fold, which is considered as a distinct shear zone (Chadwick et al., 2000; Ramakrishnan and Vaidyanadhan, 2010).

The kimberlite pipes in the Dharwar craton are mainly confined to the Eastern part and
are distributed in three fields as illustrated in Figure 1: *Wajrakarur kimberlite field* (~80 × 70

km), situated in the southern part of the EDC, approximately at 400 km east of Goa and 200 km 133 134 north of Bangalore (Anantapur district, Andhra Pradesh); the Naravanpet kimberlite field in the 135 northern part of the EDC, and at last the Raichur kimberlite field located between the other 136 fields. In the *Wajrakarur field*, there are more than 30 individual pipes spread over four distinct clusters: Wajrakarur-Lattavaram, Chigicherla, Kalvandurg and Timmasamudram (Nayak and 137 138 Kudari, 1999). Kimberlites from the Wajrakarur field are poorly diamondiferous, while the other fields are diamond-free (Ravi et al., 2013). Ages based on ⁴⁰Ar/³⁹Ar and U–Pb isotope 139 140 systems on separate grains of phlogopite and crustal perovskite indicate that kimberlite emplacement occurred around 1.1 Ga (Gopalan and Kumar, 2008; Osborne et al., 2011; 141 142 Chalapathi Rao et al., 2014; see also study on major and trace element compositions of clinopyroxenes and garnets in Shaikh et al., 2020). 143

The magmatic intrusions in the Wajrakarur field are mostly kimberlites, while some are lamproites or orangeites, and ultramafic lamprophyres (Smith et al., 2013). A detailed account of the mode of occurrence and features of the individual pipes of Wajrakarur kimberlite field is given by Neelkantam (2001), Ravi et al. (2009) and Fareeduddin and Mitchell (2012). The magmatic rocks contain peridotites, eclogites and crustal xenoliths as well as megacrysts (Ganguly and Bhattacharya, 1987; Nehru and Reddy, 1989; Karmalkar et al., 2009). In the Kalyandurg cluster eclogites dominate the mantle xenolith population (95%).

151

152 2.1. Samples description

The studied samples are olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and garnet (grt) from two fresh mantle xenoliths: one spinel (±garnet)-lherzolite (sample P3/5/1) and one garnet-lherzolite (sample P3/6/1); and mantle olivines within a kimberlitic matrix (sample P3/6/3), all from pipe 3 (Fig. 1). We also selected 10 garnets and 15 diopsides fresh single grains, which were hand-separated from crushed xenoliths from different pipes of the Wajrakarur kimberlite field (pipes 1, 3, 6, 7 and 10; Fig. 1). Unfortunately, satisfying grains ofolivines and orthopyroxenes could not be recovered from crushed peridotites.

160 All the samples are from the Wajrakarur-Lattavaram cluster (Fig. 1) and the samples 161 description is summarized in Table 1. The mineral modal compositions were calculated using 162 a free image processing software ImageJ v.152 for two lherzolites (samples P3/5/1 and P3/6/1) 163 and yield: Ol₇₇Opx₁₅Cpx₇Sp₁ (garnet<<0.5) for sample P3/5/1, and Ol₇₄Opx₁₃Cpx₉Grt₄ for 164 sample P3/6/1. Modal compositions of these two samples are reported in Table 1. Equilibrium 165 temperatures were calculated using the classical two-pyroxenes geothermometer by Brey and 166 Köhler (1990) for a hypothetical initial pressure of 4 GPa. It yields 3.0 GPa of pressure and a temperature of 940 °C for sample P3/5/1; 4.5 GPa of pressure and a temperature of 1050 °C for 167 168 sample P3/6/1 and; 5.5 GPa of pressure and a temperature of 1270 °C for sample P3/6/3 (Table 169 1). Furthermore, following recommendations by Nimis and Grutter (2010), two-pyroxenes 170 thermometer by Taylor (1998) was also used to calculate the equilibration temperatures (TTA) 171 with an assumed initial pressure of 3 GPa for spinel peridotites and 5 GPa for garnet peridotites. 172 The estimated equilibration temperatures for theses peridotite give lower temperature ranging 173 from 710 to 1179 °C. Furthermore, garnet-orthopyroxene geobarometer based on aluminum exchange was taken into consideration by Nickel and Green (1985) for calculating the 174 175 equilibration pressures with TTA values set as the initial temperatures, which yield a pressure range of 2.5-5.0 GPa. 176

The peridotite xenoliths are coarse-grained, with olivine grain size between 2 and 7 mm, orthopyroxene grain size up to 3 mm, clinopyroxenes have grain size between 2 and 7 mm, garnets have grain size below 2 mm, and spinel below 1 mm, as illustrated in Fig. 2. The olivines and orthopyroxenes do not show undulose extinction or specific features of plastic deformation. Nevertheless, the rock sections are commonly fractured (Fig. 2), probably due to rapid ascent toward the surface. The clinopyroxenes are of irregular shape and mainly intergranular and thus

183 are likely formed after the olivines and orthopyroxenes. Garnets have subhedral to anhedral 184 shape with no apparent chemical zoning and some garnets are embedded in clinopyroxene. 185 Spinels are intergranular with typical holly-leaf shape.

- 186
- 187

2.2. Electron probe micro-analyzer

188 The chemical compositions of the mantle-derived minerals were analyzed using a 189 Cameca SX-100 electron probe micro-analyzer (EPMA) wavelength dispersive spectroscopy 190 (WDS) at Department of Geology and Geophysics, Indian Institute of Technology (IIT) 191 Kharagpur (India). Analytical procedures were performed with a 15 kV accelerating voltage 192 and 20 nA probe current on regular 30-µm thin sections. The measuring peak and background 193 times were 20 s and 10 s, respectively. The oxides and silicates standards used for the EPMA 194 calibration were orthoclase (Si, K), rutile (Ti), chromite (Cr), corundum (Al), hematite (Fe), 195 rhodonite (Mn), periclase (Mg), diopside (Ca), jadeite (Na). The number of point analyses per 196 mineral grain range from 3 to 25 (further analytical details are given in Pattnaik et al., 2020). 197 Homogeneity was checked by comparing core to rim composition. Mg# was calculated as equal 198 to 100×Mg/(Mg+Fe) in atomic ratio, whereas Cr# in spinel was calculated as 100×Cr/(Cr+Al). 199 The typical EPMA results are reported in Table 2.

200

2.3. Laser ablation inductively coupled plasma mass spectrometer 201

Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 202 203 measurements for minor and trace elements in olivine, clinopyroxene, and garnet were carried 204 out using a Thermo Fisher Scientific ICAP-Q quadrupole ICP-MS combined to a New Wave 205 193 ArF Excimer laser ablation system at Department of Geology and Geophysics, IIT 206 Kharagpur, India. The laser was used with an energy density of 5 J/cm² at a frequency of 5 Hz 207 and using a spot size of 50 µm. The ICP-MS was perfected for maximum sensitivity for Li and 208 Th using the NIST 612 as a reference glass. The oxide production rate was monitored using ²³²Th¹⁶O and was below 1.0-1.2 %. The analyses were performed in time-resolved mode with 209 210 each analysis consisting of 35 seconds of background measurement with the laser turned off 211 followed by 45 seconds peak signal measurement while the laser was ablating the sample. 212 External standardization was obtained by the bracketing group of two measurements of NIST 213 612. The data quality was monitored by measuring the NIST 610 reference glass as unknown 214 interspersed with the measurements of the samples. The raw data were reduced using the 215 GLITTER® software, with SiO₂ as an internal standard from electron microprobe analyses for olivine and pyroxenes, and CaO for garnet, and carefully inspected against heterogeneities in 216 217 the analyzed volume. Analyses were performed on a thin polished section for the rock slabs and 218 epoxy mounts for the mineral separates. Only unaltered and crack-free mineral grain areas were 219 analyzed. For each mineral, 1 to 6 analyses were performed within the grain cores. Here, we 220 only focused on minor and trace elements known to form major associated point defect with H 221 (e.g., Ti in olivine, e.g., Padrón-Navarta and Hermann, 2017), or coupled incorporation (Li, 222 e.g., Kent and Rossman, 2002) or to have similar incompatible behavior (e.g., according to 223 Dixon et al., 2002, between La and Ce) and common divalent ions not obtained accurately by 224 EPMA (Ni, Mn, Na, Ti). These concentrations are also reported in Table 2.

225

226 2.4 Fourier transform infrared spectroscopy

Hydrogen in mantle minerals was detected and quantified using transmission Fourier transform infrared spectroscopy (FTIR) spectroscopy at the Laboratoire Charles Coulomb (University of Montpellier, France). Rock thick sections (samples P3/5/1, P3/6/1 and P3/6/3) and separated grain were hand-polished with diamond lapping films (grid size from 30 μ m to 0.5 μ m) down to a thickness ranging from 211 to 590 μ m. The final thickness for each sample is reported in Table 3. To preserve the microstructures, the crystals were not 233 crystallographically oriented, and thus only unpolarized infrared spectra were acquired using a 234 Bruker IFS66v spectrometer, equipped with a liquid nitrogen-cooled MCT detector (Mercatel alloy, HgCdTe), a KBr/Ge beam splitter. The spectrometer was coupled to a Bruker 235 HYPERION microscope. Unpolarized IR measurements were performed following the 236 protocol of Demouchy et al. (2019): A square aperture ($100 \times 100 \mu m$) was used, only optically 237 238 clean zones, free of cracks or inclusions, of the mineral grains were chosen for analyses, and 239 over 200 scans were accumulated at a resolution of 4 cm⁻¹. Each spectrum was baseline 240 corrected (using OPUS software or subsequently, if needed, using the spline function in Igor 241 Pro), and the absorbance was normalized to 1 cm thickness to yield the absorption coefficient.

We used two different types of infrared calibrations to calculate H concentrations: (1) the classic empirical frequency-dependent calibration of Paterson (1982) for unpolarized infrared and (2) mineral-dependent calibrations (Bell et al., 1995, for pyroxenes and garnet; Withers et al., 2012, for olivine). The frequency-dependent calibration of Paterson (1982) is given as

247
$$C_{OH} = \frac{\chi i}{150\zeta} \int \frac{k(\upsilon)}{3780 - \upsilon} d\upsilon$$

248 Where the following mineral specific factors γ_i (Paterson, 1982) were used, and adjusted as a function of the chemical composition in major element of the mineral *i* and thus its density 249 (see method of calculation in Demouchy and Bolfan-Casanova, 2016): $\chi_{ol} = 2718$ or 250 2726 ppm wt H₂O for Fo_{92.2} or Fo_{93.3}, respectively; $\chi_{Opx} = 2727$ ppm wt H₂O, $\chi_{Cpx} = 2695$ or 251 2714 ppm wt H₂O, for P6 or P1P2, respectively and χ_{garnet} = 2326 ppm wt H₂O for an average 252 composition close to Prp₇₆Alm₁₂Sps₁Grs₁₁; ζ is the orientation factor and equals 1/3 for 253 unpolarized infrared analyses (here on non-crystallographically oriented grains, see Paterson, 254 255 1982 for details); and k(v) the absorption coefficient is a function of the wavenumber v. Typical integration of the spectrum ranges from 3620–2900 cm⁻¹ for olivine, 3700–3000 cm⁻¹ for 256 pyroxeness and garnet, and was slightly adjusted if necessary (e.g., ± 10 cm⁻¹). Note that when 257

258 concentration obtained by unpolarized infrared are multiplied by a factor three, it yields 259 satisfying estimate compare to the sum of concentrations obtained by polarized infrared for the three crystallographic directions (see suppl. Fig. S1 in Férot and Bolfan-Casanova, 2012). This 260 261 calibration allows a detection limit of about 1 ppm wt H₂O for a 1-mm-thick olivine sample (Demouchy and Mackwell, 2003, 2006). The estimated error from the empirical calibration in 262 263 the resulting H concentration is around 30% (Paterson, 1982; Rauch, 2000), but lower for the 264 olivine calibration of Withers et al. (2012). Note that the maximum linear absorbance of the 265 non-normalized spectrum did not exceed 0.3, in agreement with the recommendations of Withers et al. (2012) for unpolarized FTIR measurements of olivine. Also, if possible, at least 266 267 10 spectra of different orientation should be average to improve accuracy of the measurements (Kovàcs et al., 2008). Here is was only possible for the PIP2 diopsides. The normalized 268 269 integrated area (absorption) are also reported for application to future IR mineral-dependent 270 calibrations or to previous calibrations (for olivine Bell et al., 2003, which overestimate H 271 content, see Withers et al., 2012 for discussion).

272

273 **3. Results**

274

275	3.1	Summary	of	major	and	minor	elements
-			-			-	

276

Major element compositions are reported in Table 2 for olivines, orthopyroxenes, clinopyroxenes and Al-rich phases (garnet or spinel). They are used to infer mineral petrogenetic origin and to further investigate potential variations in H as a function of major element concentrations. Only a selection of minor and trace elements is reported here (Ni, Mn, Na, Ti, La, Ce, Li, V) which are recurrently proposed as potentially associated point defects with proton in olivine (e.g., Ti-clinohumite-like point defect, Padrón-Navarta et al., 2014;

Padrón-Navarta and Hermann, 2017) or orthopyroxenes (e.g., Al-H coupled substitution,
Mierdel et al., 2007) or having a chemical behavior similar to H.

285

286 *Olivine*

Olivines have relatively homogeneous composition with high Mg# ranging between 92.4 and 93.4. The compositions in FeO and CaO range from 6.8-7.6 wt.% and 0.02- 0.04 wt.%, respectively. Contents in Ni range from 2932-2942 ppm. The Mg# data from this study and other olivine samples from the Dharwar craton are inversely but weakly correlated with NiO contents as illustrated in Figure 3a. The concentrations in Ti and V vary from 34-93 ppm and 2.4-5.6 ppm respectively. The Li concentration was too low to be determined in olivine (< 4 ppm).

294

295 *Orthopyroxene*

The concentration of orthopyroxene is quite homogeneous within grains with MgO and FeO contents ranging from 36-37 wt.% and 4.3-4.6 wt.% respectively. The orthopyroxenes are enstatite with Mg numbers ranging from 93.3 to 93.9, which is typical for mantle-derived orthopyroxene (Dick and Bullen, 1984). The Cr# varies between 17.7 and 18.7, with Cr_2O_3 contents ranging from 0.31 to 0.33 wt.%. The contents in CaO and MnO range from 0.2 to 0.4 wt.% and 0.08 to 0.11 wt.%, respectively, while Al₂O₃ contents are very low in these orthopyroxene samples (0.96 wt.%, Table 2).

303

304 *Clinopyroxene*

Clinopyroxenes are mostly Cr-diopsides with 1.0-2.6 wt.% Cr_2O_3 , except for sample P3/5/1 (spinel-bearing peridotite) and P3 grain, which have a very low Cr_2O_3 content (0.25 wt.% and 0.6 wt.%, respectively, see Table 2). The Mg# and Cr# vary from 91.35 to 93.55 and

24.4 to 32.3, respectively, whereas in case of P3 and P6 grains the Cr# is 16.71 and 42.20, 308 309 respectively. The MgO and FeO contents range from 16.3-20.5 wt.% and 2.15-3.0 wt.%, respectively. The CaO, Al₂O₃, and Na₂O contents vary from 17.79-23.6 wt.%, 0.52-3.2 wt.%, 310 311 and 0.5-2.4 wt.%, respectively. The TiO₂ content and Mg# of clinopyroxenes from the studied 312 xenoliths show a weak negative correlation (Fig. 3b, $R^2=0.83$) if the clinopyroxene grain from 313 P1P2 is excluded. Indeed, the latter sample is also at odds this the current database as shown in 314 Fig 3b. The CaO and Al₂O₃ contents of clinopyroxenes are also weakly correlated ($R^2=0.73$) as 315 shown in Fig 3c, if clinopyroxene from sample P3/5/1 is discarded which has a CaO content 316 very low compare to the rest of the database.

317

318 Spinel

Spinels are present only in sample P3/5/1 and display Mg# of ~ 64.8, and Cr# of ~ 67.6 with MgO and Cr₂O₃ contents are 13.9 wt.% and 53.8 wt.%, respectively (Table 2). The Al₂O₃ and FeO contents are also homogeneous within the sample with 17.3 wt.%, and 14.9 wt.%, respectively. The Mg# of olivine together with the high Cr₂O₃ contents still place these spinel in the olivine-spinel mantle array (OSMA, Arai, 1994), although in the cratonic subgroup (e.g., Tran and Nguyen, 2018).

325

326 *Garnets*

Garnets are homogeneous with no distinct compositional variation from the core to rim. The Mg# and Cr# range from 84.6- 85.8 and 5.1- 7.5, respectively for the garnets group P1P2, P3D and P3B. Compare to other garnets from this study, P7 garnets have high Cr# ranging from 14.8- 23.7. We have further separated P7 garnets individually (P7-1 and P7-2, see Table 2). Using the classic negative correlation between Al₂O₃ and Cr₂O₃ contents as a petrogenetic indicator, it confirms that our samples have mantle peridotite origin, as such relation is never

observed for mantle eclogites as illustrated in Fig 3d. The Al₂O₃ and CaO contents range from 17.5- 22.3 wt.% and 4.2 - 5.1 wt.%, respectively, which are also typical for the peridotitic garnets (e.g., Ingrin and Skogby, 2000; Peslier, 2010). The Cr₂O₃ content lies in the range of 1.8 to 2.6 wt. % for lherzolitic garnets while in case of harzburgitic garnets, P7G1 and P7G2, it varies from 5.1 to 8.1 wt.% and P10 is just between these latter values with a concentration of 6.9 wt.% Cr₂O₃. The content in Ti and Ni vary from 1280- 2544 ppm and 30-111 ppm, respectively, while the Ti concentrations are low (<300 ppm) in P7 garnets.

340

341 **3.2** Fourier transform infrared spectra

Over 182 analyses were performed by FTIR, unfortunately only a handful of spectra 342 could be used to providing accurate estimates of H distribution and concentration in mantle 343 344 nominally anhydrous minerals from Wajrakarur kimberlite field. Despite optical clearness, 345 many grains were altered, and contamination by hydrous minerals lamellae (e.g., serpentine and 346 amphibole) or along cleavages prevented accurate detection and quantification of H. The 347 unpolarized FTIR spectra of uncontaminated olivine, pyroxenes and garnet are shown in Figure 4. Examples of contamination by lamellae of hydrous minerals are shown in Figure 5, where 348 the strong absorption band at 3686 cm⁻¹ corresponds to structural OH groups in serpentines 349 (Miller et al. 1987; Post and Borer 2000; Baptiste et al. 2012) and 3670 cm⁻¹ OH groups in 350 amphibole (Skogby, 2006). 351

The spectra of olivine grains show distinct FTIR features: these olivine grains within the kimberlitic matrix in sample P3/6/3 have typical mantle-derived spectra with absorption bands at 3600, 3572, 3525 and 3227 cm⁻¹ (Demouchy and Bolfan-Casanova, 2016).

The spectra of orthopyroxenes (P3/5/1) display OH bands located at 3602, 3548, 3517, 3409, 3313, and 3052 cm⁻¹. While the bands at 3602, 3517, 3313, and 3052 cm⁻¹ are typical of

hydrogen-rich mantle-derived orthopyroxenes, the band at 3542 cm⁻¹ is not easily found in other
mantle-derived orthopyroxene, even when hydrogen content is low (Fig. 4c).

The spectra of Dharwar peridotitic clinopyroxenes display three major bands, again typical of mantle-derived diopsides located at 3640, 3530 and 3444 cm⁻¹ (Fig. 4b, Ingrin and Skogby, 2000; Skogby, 2006; Peslier, 2010, Demouchy and Bolfan-Canova, 2016).

Garnets, despite excellent clarity and large grain size (> 2 mm), do not show typical 362 363 hydroxyl absorption bands. Only three samples (P1P2, P7, P3/6/1, Fig. 4c) show broad 364 absorption bands at 3630-3622 cm⁻¹ and 3427 cm⁻¹. The first band positions match the typical hydrogarnet substitution mechanism (e.g., 4 H⁺ occupying a Si vacancy, Geiger and Rossman, 365 2018; Mookherjee and Karato, 2010). However here the band at 3630-3620 cm⁻¹ which is 366 367 notably broad and do not display the usual well-defined Lorentzian shape for hydrogarnet substitution. The absorption band around 3427 cm⁻¹ could be linked to molecular water in 368 369 micro- to nano-inclusions (e.g., Rossman and Aines, 1991; Bell and Rossman, 1992b; Matsyuk 370 and Langer, 2004, Xia et al., 2005; Sheng et al., 2007).

371 Peridotites-derived garnets transported in alkali basalts are typically H-free, only 372 mantle-derived garnets hosted by kimberlite display absorption bands at 3571 and 3512 cm⁻¹ often linked to Ti-rich composition (Bell and Rossman, 1992a, 1992b; Beran and Libowitzky, 373 374 2006 see their Fig. 8; Kurosawa et al., 1997). It is interesting to note that the absence of H in 375 peridotitic garnets equilibrated at depths greater than 80 km is unusual (Bell et al., 1995; 376 Withers et al. 1998; Peslier et al., 2012), while H-free or low H concentrations in garnet 377 inclusions in diamonds were reported in a number of studies (e.g., Novella et al., 2015; Taylor 378 et al., 2016). At last, the infrared features of the Dharwar peridotite garnets do not match either the typical FTIR spectra of eclogitic garnets (see Fig. 7 in Beran and Libowitzky, 2006). 379

380

381 **3.3 Hydrogen concentrations**

382 Hydrogen concentrations, expressed in ppm by weight of H₂O and quantified using 383 several calibrations are reported in Table 3. Following the calibration of Paterson (1982), the H concentration ranges from 7-18 ppm wt H₂O in olivine, 53-77 ppm wt H₂O in opx, 41-309 ppm 384 385 wt H₂O in cpx, and 0–75 ppm wt H₂O in garnet (Table 3). Conversion to atomic ratio $H/10^6$ Si 386 (= ppm H/Si), which is commonly used in mineral physics community, is achieved by multiplying the concentration in ppm wt H₂O by a factor of 16.16 for olivine (for Fo_{92.5}, see 387 388 calculation method in Demouchy and Bolfan-Casanova (2016) for other mineral phases, cf. 389 their Table 1). As the calibration of Paterson (1982) underestimated the H concentrations (Bell et al., 2003; Withers et al., 2012), we also give the concentrations using mineral-dependent 390 391 calibrations and it yields 11–29 ppm wt H₂O in olivine, 56-88 ppm wt H₂O in opx, 81-642 ppm 392 wt H₂O in cpx, and 0–258 ppm wt H₂O in garnet (see Table 3, details of calibrations are given 393 in section 2.4). Note that if abnormal spectra for garnet are excluded, it yields an average of 394 14.5 ppm wt H₂O in garnet. Nevertheless, note that the IR bands for our garnets are not perfectly 395 matching the IR spectra of the two garnets used as standards in the calibration by Bell et al. 396 (1995). The same issues applied for the synthetic and very hydrous high pressure olivines used 397 by Withers et al. (2012).

398

```
399 4. Discussion
```

400

401 4.1. Incorporation of hydrogen in upper mantle minerals

Since hydrogen is embedded as atomic impurities in point defects within the structure
of NAMs, its incorporation is dependent of the intrinsic parameters (pressure, temperature, and
also oxygen fugacity) including chemical composition (e.g., Fe, Ti, Al), which leads to coupled
or associated point defects (e.g., Nakamura and Schmalzried, 1983; Mackwell and Kohlstedt,
1990; Berry et al., 2005). Here, the effect of iron can be deciphered using Mg# of the mantle-

407 derived olivines from the Dharwar craton and they are within the cratonic mantle database as 408 illustrated in Figure 6. Nevertheless, the H concentrations in olivine reported in this study agrees 409 with other Mg-rich and garnet-bearing peridotitic olivines from cratonic (>2.5 Ga) mantle 410 lithosphere (Fig. 6 and Demouchy and Bolfan-Casanova, 2016). It confirms that olivines from 411 spinel-bearing peridotite from off-cratonic settings have lower Mg# (90.4) than olivines 412 cratonic garnet-bearing peridotites (Figure 6, P3/5/1 olivine = Mg# 93.3 and P3/6/1 olivine = 413 Mg# 92.4), but indistinctly with low to high hydrogen concentrations.

414 Another notable mechanism incorporation mechanism of H in mantle olivine is the 415 association with Ti as a complex (coupled) point defect (PD): the occupancy of Mg vacancy by Ti⁴⁺ is balanced by 2H⁺ incorporation in Si vacancy in olivine (abbreviated henceforth [Ti-H]_{PD} 416 e.g., Berry et al., 2005; Walker et al., 2007; Padrón-Navarta et al., 2014; Padrón-Navarta and 417 418 Hermann, 2017; Tollan et al., 2018). This mechanism is characterized by a positive correlation 419 between the absorption of IR bands at 3575 and 3525 cm⁻¹ and Ti concentration (at saturation) 420 as shown in Figure 7a. Furthermore, the low Ti and H concentrations of olivine from sample 421 P3/6/3 agrees very well with the current database for mantle-derived olivines as illustrated in 422 Fig. 7b.

423 In pyroxenes, at low pressure (<5 GPa) and based on experimentally hydrogenated enstatite, Al³⁺ is commonly considered as a H incorporation enhancer (e.g., Rauch, 2000, 424 425 Mierdel et al., 2007; Stalder, 2004; Stalder et al., 2005; Stalder and Ludwig, 2007; Stalder et al., 2015; Tenner et al., 2009; O'Leary et al., 2010; Férot and Bolfan-Casanova, 2012; Gaetani 426 427 et al., 2014; Novella et al., 2014). Here, we could not analyze the hydrogen concentration of 428 orthopyroxenes with different alumina content (only in P3/5/1, 0.96 Al₂O₃ wt.%) by FTIR, but fresher clinopyroxenes were available and large enough to yield statistically relevant H 429 430 concentrations (Fig. 4b and Table 3). The different fields of eclogitic cpx, peridotitic cpx transported in basalts, and kimberlites of mantle origin are easily identified by Al₂O₃ contents 431

432 of cpx (cf. dotted lines in Fig. 8), it supports the petrogenetic origin of peridotitic diopsides433 from the Dharwar craton.

Hydrogen concentrations in garnet are very heterogeneous (0-258 ppm wt H₂O) and comparison of chemical composition among different garnets does not reveal significant variation in Al₂O₃, CaO, or Ti concentrations potentially resulting from metasomatism and explaining the abnormal FTIR spectra. At present, we cannot rule out the possibility of hydroxyl-rich alteration or local contamination by nano-scale inclusions in P1P2 and P3/6/1 garnets (Bell and Rossman, 1992b; Beran and Libowitzky, 2006).

We must also mention the potential re-hydration by the volatiles-rich kimberlitic magma during transport toward the surface: as shown experimentally by Baptiste et al. (2015), the coexistence of CO₂ and H₂O in kimberlitic magma lead to an effective decrease in water fugacity, which does not promote hydrogen incorporation in olivine, or other NAMs. At the opposite, transport within kimberlitic magma also does not seem to promote notable dehydration during ascent, probably due to local point defect interactions and long-term hydrogen locking in peculiar point defects (Thoraval and Demouchy, 2014; Thoraval et al., 2019).

447

448 4.2. Reconstructed hydrogen whole-rock concentrations

449

Despite the limited number of mantle minerals successfully analyzed in this study, we can attempt to estimate, for the first time, the whole-rock (bulk) H concentration of the late Archean Dharwar cratonic lithosphere (3.6-2.5 Ga; Jayananda et al., 2018). Using the estimated mineral modes (a lherzolite with ol: 74%, opx, 14%, cpx 9%, grt 4%, from Table 1) and the average hydrogen concentrations obtained from mineral-specific calibrations (Table 3, 18 ppm wt H₂O in olivine, 70 ppm wt H₂O in opx, 207 ppm wt H₂O in cpx and 14.5 ppm wt H₂O in garnet (based on clean spectra of P1P2-garnet 2 and P7 garnet 3, thus excluding the potentially

457 contaminated garnets), bulk H concentration yields 40 ppm wt H₂O. Furthermore, we can use 458 experimentally determined partition coefficients of hydrogen for coexisting olivine, orthopyroxene and clinopyroxene to cross-check if this estimate is indicating equilibrium 459 hydrogen concentration distribution. Here, we use the following published partition coefficients 460 from Demouchy et al. (2017): (1) partition coefficients of hydrogen between orthopyroxene 461 and olivine $(D^{opx/ol}) = 5$, (2) partition coefficients of hydrogen between clinopyroxene and 462 orthopyroxene $(D^{cpx/opx}) = 2$, and (3) partition coefficients of hydrogen between clinopyroxene 463 464 and olivine $(D^{cpx/ol}) = 10$, which were obtained at pressure and temperature ranges as close as possible to the equilibrium conditions of our samples (3 GPa and 1100 °C) for a mantle-derived 465 466 composition and importantly for a basaltic melt-free system. Indeed, most of the experimental studies have focused on basaltic melt-bearing systems, and a recent compilation can be found 467 468 in Demouchy et al. (2017, see their Table 3). Since, there is no experimental data for partition 469 coefficient of H between olivine and garnet (Dol/grt) in a basaltic melt-free system, we decided to use an average value of D^{ol/grt}=0.65, calculated using the results of experimental studies on 470 471 hydrous lherzolites (D^{ol/grt}=0.6 from Gaetani and Grove, 1998; D^{ol/grt}=0.7 recalculated from 472 Hirschmann et al., 2009). Temperature and pressure conditions of these experiments are fairly close to those of our samples. These experimental values are also close to the previous estimates 473 of partition coefficient of H between olivine and garnet in MORB composition (e.g., D^{ol/grt}=1, 474 475 Hirth and Kohlstedt, 1996). Using these partitioning coefficients, the same mineral mode (ol: 74%, opx, 14%, cpx 9%, grt 4%) and the hydrogen concentration in olivine as a reliable 476 concentration, it yields 41 ppm wt H₂O, thus in agreement with the first estimate given above. 477 478 If opx or cpx is used as the initial concentration, it yields 32 or 48 ppm wt H₂O, respectively. These estimates permit to further constrain the bulk H concentration to 40^{+10}_{-8} ppm wt H₂O. 479

480 The bulk H concentration in the Dharwar cratonic lithosphere is four to five times lower481 than the geochemical estimates of bulk H concentration in the upper mantle, e.g., 150 ppm wt

H₂O (Michael, 1988; Saal et al., 2002; Marty, 2012), H concentration in peridotites from 482 483 lithospheric mantle (150-200 ppm wt H₂O; Demouchy and Bolfan-Casanova, 2016). This bulk hydrogen concentration is also well below saturation values of H concentration reported by 484 experimentation at lithospheric conditions, i.e. ~ 700 ppm wt H₂O. (at 220 km of depth, see 485 486 Férot and Bolfan-Casanova, 2012). However, together with the equilibrium pressure estimates, 487 the resulting H concentrations in olivine from the Dharwar craton (Fig. 9) agree well with the 488 lower range of the current database for H-rich mantle olivines transported by the kimberlitic 489 magmas (e.g., South Africa and Udachnaya; Peslier et al., 2010; Baptiste et al., 2012; Doucet 490 et al., 2014).

491

492 **4.3.** Role of metasomatism

493

Metasomatism might be considered as a mantle process inducing enrichment or 494 495 depletion of H in the mantle NAMs (e.g., Bell and Rossman, 1992a; Ingrin and Skogby, 2000; Peslier et al., 2012; Denis et al., 2015; Demouchy et al., 2015: Satsukawa et al., 2017). On the 496 497 contrary, undersaturated partial melting and melt extraction can only induce H extraction as H 498 is an incompatible element (e.g. Dixon et al., 2002). As mentioned above, the estimated bulk H concentration of Dharwar peridotites is 40^{+10}_{-8} ppm wt H₂O is much lower than the current 499 500 estimates for the Earth's upper mantle (e.g., 150 ppm wt H₂O, Michael, 1988; Saal et al., 2002; Marty, 2012; Demouchy and Bolfan-Casanova, 2016). Such low H concentrations could also 501 502 be linked to (1) melting-induced depletion, as the depleted peridotites from the Dharwar craton probably represent a mantle residue after ~35-50 % melting, as suggested by Pattnaik et al. 503 504 (2020), or (2) melt-rock interactions as suggested in the irregular REEN patterns in peridotitic clinopyoxenes from the Dharwar craton (Pattnaik et al., 2020) or as shown by a study on Japan 505 back arc system, e.g. Oki-Dogo locality (SW Japan, Satsukawa et al., 2017). These low H 506

concentrations, together with trace element enrichment in clinopyroxenes, are indeed the 507 508 accurate witness of significant melt-rock interactions (Pattnaik et al., 2020). They have a 509 different signature than results from cryptic metasomatism (e.g., Ichinomegata peridotites, 510 which preserved or enhanced the H concentrations in pyroxenes (Satsukawa et al., 2017). Here, in Figure 8, the hydrogen and alumina compositions of clinopyroxenes from Dharwar 511 512 peridotites agree well with the relative decrease in H observed in clinopyroxenes from Okidogo 513 relative to Ichinomegata. Furthermore, based on REE concentrations of calculated hypothetical 514 melts composition in equilibrium with Dharwar garnet (Pattnaik et al., 2020) and following the 515 protocol of Aulbach et al. (2013), the results suggested that the metasomatic agent of the 516 Dharwar cratonic lithospheric mantle is likely to be small volumes of carbonated silicate melt 517 (Pattnaik et al., 2020), closely similar in composition to the natural kimberlite and lamproites 518 from the Dharwar craton (e.g., Chalapathi Rao et al., 2013). This conclusion is further supported 519 by the occurrence of kimberlite-carbonatite rocks in the Eastern Dharwar craton (Chatterjee et al., 2008; Smith et al., 2013), notably at the Khaderpet pipe, which is located only 15 km east 520 521 of the Wajrakarur pipes. Thus, as recall above (section 4.1), if the metasomatic agent was CO₂-522 rich melt, it could have lowered the water fugacity in the system and could limit H incorporation 523 in the NAMs lattice (e.g., Dixon and Stolper, 1995; Baptiste et al., 2015). Nonetheless, to 524 strengthen this outcome, specific H partition coefficients between peridotitic minerals co-525 existing with the carbonated silicate melt would be necessary. To date, such experimental data 526 are not yet available and only experiments with variable water activity are reported in simplified 527 systems (e.g., Matveev et al., 2001, Wang et al., 2014, Gaetani et al., 2014, Tollan et al., 2018). 528 Thus, further studies at high pressures are required to understand the partitioning of H in these 529 complex petrological systems.

530 NAMs inclusions in diamonds prior to kimberlite emplacement are shielded from531 interaction with passing fluids and melts, which define the variation of H concentration in the

532 upper mantle and transition zone at the time of diamond formation, (e.g., Novella et al., 2015). 533 Assuming that hydrogen diffusivity in diamond is indeed very slow (e.g., Popovici et al., 1995), 534 we can thus consider these specimens are reliable H concentration proxy for the pristine mantle, 535 that isolated NAMs from subsequent modification by discrete partial melting, melt-rock 536 interactions, metasomatism or aqueous fluids percolation occurring within subcontinental 537 mantle. A few studies reported H concentrations in inclusions in diamonds, using FTIR or 538 secondary ion mass spectrometry (Kurosawa, 1997, Matsyuk and Langer, 2004, Novella, et al., 539 2015; Taylor et al., 2016, Jean et al., 2016), with striking lower H concentrations in olivine (0-34 ppm wt H₂O) when compared to co-existing olivines in cratonic peridotite xenoliths (Fig. 540 541 9). Nevertheless, rigorous comparisons remain challenging due to the paucity of accurate determination of equilibrium temperatures and pressures for these rare NAMs inclusions in 542 543 diamonds.

544

545 4.4. Implication for the Dharwar Craton Viscosity

546

547 Incorporation of H in mantle minerals is recurrently proposed as a key parameter affecting many physical and chemical properties of the upper mantle minerals and rocks (e.g., 548 549 Regenauer-Lieb and Kohl, 2003; Regenauer-Lieb et al., 2006; Albarède, 2009; Peslier et al. 550 2010; Demouchy and Bolfan-Casanova, 2016; Masuti et al., 2016). One particular property is the viscosity of olivine-rich rocks, which constitute about 67 vol.% of the lithospheric upper 551 552 mantle (Demouchy and Bolfan-Casanova, 2016). It includes the lithosphere-asthenosphere boundary where a significant decrease in viscosity (from 10^{24} to 10^{20} Pa.s, e.g., Garel et al., 553 2014, 2020) is at the origin of partial mechanical decoupling, leading to the formation of a 554 555 horizontal boundary of tectonic plates. Several studies have proposed that this partial 556 mechanical decoupling between the lithosphere and asthenosphere is enhanced or even

557 triggered by H incorporation in olivine (Regenauer-Lieb and Kohl, 2003; Regenauer-Lieb et 558 al., 2006, Peslier et al., 2010; Faul et al., 2016; Masuti et al., 2016). Combined with numerical modeling to test the longevity of South African cratonic root, it has been also proposed that a 559 560 drastic decrease in H concentration in olivine at the base of a cratonic root would generate a 561 'hard shell', which protects the cratonic root from erosion by underlying convective 562 asthenosphere (Peslier et al., 2010). Later on, this hypothesis was not confirmed by the results 563 from the Siberian craton (Doucet et al., 2014). Furthermore, the most recent studies on H in 564 olivine inclusions within diamond tend to confirm H depletion in cratonic root (Taylor et al., 565 2016; Jean et al., 2016) even if the depletion is not as drastic as reported previously (Kurosawa, 566 1997; Matsyuk and Langer, 2004; Novella et al., 2015).

Here, the mantle beneath the Dharwar craton is of particular interest to test this 567 hypothesis because the Indian subcontinent was attached to Gondwana and located close to 40 568 569 °S-80 °E, before it drifted (~20 cm year⁻¹, e.g., Aitchinson et al., 2007) toward the Eurasian 570 plate during Cretaceous, until collision began at Eocene (55 Ma, Aitchinson et al., 2007). 571 Unfortunately, the results from rare Dharwar peridotitic olivines cannot permit to radically 572 confirm or infirm the hypothetic marked H-depletion in olivine at the base of the cratonic root, since our mantle samples are not particularly from a deep upper mantle section (~ 5 GPa, i.e. < 573 150 km depth). Nevertheless, this is the first study which report the H concentrations in mantle 574 minerals from the Indian cratonic mantle lithosphere and the results are in good agreements 575 576 with the current data base for other mantle minerals and peridotites for similar depth. This 577 value permits to calculate for the first time the viscosity of the Dharwar craton as a function of 578 the hydrogen concentration. We can not use the most recent experimental study on hydroxyl 579 weakening for dislocation glide and climb flow laws, that is equations (16) and (17) in Tielke et al., 2017, since these equations are not a function of the hydrogen concentration but use a 580 fixed hydrogen concentration (60 H/10⁶Si, which equals 3.7 ppm wt H₂O following the 581

582 calibration of Paterson, 1982). Nevertheless, we can use the dislocation creep flow laws given by Hirth and Kohlstedt (2003, see their Table 1). We calculate the stress for a strain rate of $1 \times$ 583 10⁻¹⁴ ms⁻¹, a temperature of 1179 °C (P3/6/3, T_{TA} reported in Table 1), a confining pressure of 584 585 5 GPa (P3/6/3, P_{NG} reported in Table 1), and the olivine hydrogen concentration of 11 ppm wt H₂O (Table 3, thus equals to 178 H/10⁶Si, with the calibration of Paterson, 1982). The ratio 586 stress/strain rate gives the viscosity, which yields 5.3×10^{20} Pa s for an anhydrous olivine and 587 1.5×10^{20} Pa s for hydrous olivine. The weakening factor is only 3.5 at high equilibrium 588 589 temperature and pressure of these xenoliths. Note that for a millimetric grain size, and a volume 590 fraction of olivine > 60%, the strength of a peridotite is not expected to be strongly impacted 591 by secondary phases (e.g., Ji et al., 2001). Therefore, we conclude that the occurrence of 592 hydrogen in olivine is not inducing a major change in viscosity of the Indian craton for these 593 conditions (hydrogen concentrations, high temperature and 165 km of depth).

594

595 **5.** Conclusion

We quantified the H concentrations in the four main rock-forming nominally anhydrous 596 597 minerals from a rare selection of peridotite xenoliths and minerals embedded in Wajrakarur 598 kimberlites from the Eastern Dharwar craton, India. We have demonstrated that olivines, 599 orthopyroxenes, clinopyroxenes and garnets from the Dharwar craton are of mantle origin. The 600 Dharwar peridotites show a range of H concentrations from 11-29 ppm wt H₂O in olivines, 601 from 56-88 ppm wt H₂O in opx, from 81-642 ppm wt H₂O in cpx, and 14-15 ppm wt H₂O. in garnets (using mineral-dependent calibration and excluding abnormal spectra). The range of H 602 603 concentrations in nominally anhydrous minerals present in Dharwar peridotites agrees well with 604 the current database for mantle minerals transported by kimberlites in other Archean cratons 605 (e.g., South Africa, Siberia) and are not especially indicative of a H-rich mantle lithosphere 606 beneath the Dharwar craton in the late Archean. Finally, despite having a limited number of studied mantle samples, we provide the first estimate of bulk H concentration in mantle
minerals from the Dharwar craton. Our results also permit to quantify the negligible impact of
hydrogen on the viscosity of the Indian cratonic mantle.

610

611 6. Acknowledgments

612 S.D. thanks IIT KGP and the Dept. of Geology and Geophysics for financially 613 supporting her visit in November 2019 and for their remarkable welcome. S.D. thanks D. Maurin for management of the FTIR lab at IRRAMAN platform of University of Montpellier 614 (France). S. G. thanks both ISIRD from IIT Kharagpur and the SERB-DST (grant no. 615 616 ERC/2015/000558) for financial support. J.P. acknowledges MHRD, Govt. of India for supporting his Ph.D. fellowship. EPMA and LA-ICP-MS analyses were performed at the Dept. 617 618 Geology and Geophysics (IIT Kharagpur, India) with the help of S. Sinha and S. Ranjan, 619 respectively. The authors thank K. Tiwari for his help for producing Fig. 2d and deeply thank Prof. J. Ganguly for the donation of very rare rocks and minerals from Wajrakarur kimberlite 620 field, India. We are also grateful to Prof. V. Pease for editorial comments and handling, and 621 622 two anonymous reviewers for constructive reviews.

623

624 7. References

- Aitchison, J.C., Ali, J.R., Davis, A.M., 2007. When and where did India and Asia collide? J. Geophys.
 Res. 112, 87–19. doi:10.1029/2006JB004706
- Albarède, F., 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature
 461, 1227–1233. doi:10.1038/nature08477
- Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships:
 review and interpretations. Chem. Geol. 113, 191-204.
- Aulbach, S., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., 2013. Nature and timing of metasomatism in
 the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol., 352,
 pp.153-169.
- Bali, E., Bolfan-Casanova, N., Koga, K., 2008. Pressure and temperature dependence of H solubility in
 forsterite: an implication to water activity in the Earth interior. Earth Planet. Sci. Lett. 268, 354–
 363.

- Baptiste, V., Demouchy, S., Keshav, S., Parat, F., Bolfan-Casanova, N., Condamine, P., Cordier, P.,
 2015. Decrease of hydrogen incorporation in forsterite from CO₂-H₂O-rich kimberlitic liquid.
 Am. Min. 100, 1912–1920. doi:10.2138/am-2015-5200
- Baptiste, V., Tommasi, A., Demouchy, S., 2012. Deformation, hydration and seismic properties of the
 lithospheric mantle beneath the Kaapval craton. Lithos 149, 31–50.
- Bell, D.R., Gregoire, M., Grove, T.L., Chatterjee, N., Carlson, R.W., Buseck, P.R., 2005. Silica and
 volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal
 Craton. Contrib. Mineral. Petrol. 150(3), 251-267 doi:10.1007/s00410-005-0673-8
- Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative and analysis of trace OH in garnet and
 pyroxenes. Am. Min. 80, 465–474.
- Bell, D.R., and Rossman, G.R., 1992a. Water in Earth's mantle: The role of nominally anhydrous
 minerals. Science 255, 1391–1397.
- Bell, D.R., and Rossman, G.R., 1992b. The distribution of hydroxyl in garnets from the subcontinental
 mantle of southern Africa. Contrib. Mineral. Petrol. 111, 161-178.
- Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., Rauch, F., 2003. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys.
 Res. 108 (B2). doi.org/10.1029/2001JB000679
- Bell, D.R., Rossman, G.R., Moore, R.O., 2004. Abundance and partitioning of OH in a high-pressure
 magmatic system: Megacrysts from the Monastery kimberlite, South Africa. J. Petrol. 45, 1539–
 1564.
- Beran, A., and Libowitzky, E. 2006. Water in natural mantle minerals II: Olivine, garnet and accessory
 minerals. in: Keppler, H., Smyth, J.R., Rosso, J.J. (Eds.), Water in nominally anhydrous minerals.
 American Mineralogical Society Geochemical Society, Chantilly (Vir.), Reviews in Mineralogy
 and Geochemistry 62, 169–191. doi:10.2138/rmg.2006.62.8
- 661 Beran, A., and Zemman, J., 1969. Üder OH-gruppen in Olivin. Öster. Akad. Wiss. 3, 73–74.
- Berry, A., Hermann, J., O'Neill, H.S.C., Foran, G.J., 2005. Fringerprinting the water site in mantle
 olivine. Geology 33, 869–872.
- Brey, G.P., and Köhler, T., 1990. Geothermobarometery in four-phase lherzolith II. New
 thermobarometers, and practical assessment of existing thremobarometers. J. Petrol. 31, 1353–
 1378.
- 667 Carpenter Woods, S., Mackwell, S.J., Dyar, D., 2000. Hydrogen in diopside: Diffusion profiles. Am.
 668 Min. 85, 480–487.
- 669 Chadwick, B., Vasudev, V.N. and Hegde, G. V., 2000. The Dharwar craton, southern India, interpreted
 670 as the result of Late Archean oblique convergence. Precam. Res. 99, 91-111.
- 671 Chalapathi Rao, N.V., Wu, F.Y., Mitchell, R.H., Li, Q.L., Lehmann, B., 2013. Mesoproterozoic U-Pb
 672 ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the
 673 Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1 Ga
 674 tectonomagmatic event. Chem. Geol. 353, 48–64. doi.org/10.1016/j.chemgeo.2012.04.023.
- 675 Chalapathi Rao, N.V., Kumar, A., Sahoo, S., Dongre, A.N., Talukdar, D., 2014. Petrology and
 676 petrogenesis of Mesoproterozoic lamproites from the Ramadugu field, NW margin of the
 677 Cuddapah basin, Eastern Dharwar craton, southern India. Lithos 196-197, 150–168.
 678 doi:10.1016/j.lithos.2014.03.007
- 679 Chatterjee, B., Haggerty, S.E., Beard, A., Smith, C.B., Townend, R., 2008. Kimberlite-carbonatite
 680 relationship revisited: Evidence from Khaderpet pipe, Andhra Pradesh, India. International
 681 Kimberlite Conference, Abstract #9IKC-A- 00070.
- 682 Costa, F., and Chakraborty, S., 2008. The effect of water in Si and O diffusion rates in olivine and
 683 implications for the transport properties and processes in the upper mantle. Phys. Earth Planet.
 684 Int. 166, 11–29.

- De Hoog, J.C.M., Hattori, K., Jung, H., 2014. Titanium- and water-rich metamorphic olivine in highpressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): Evidence for deep subduction
 of high-field strength and fluid-mobile elements. Contrib. Mineral. Petrol. 167, 990.
 doi:10.1007/s00410-014-0990-x
- Demouchy, S., and Bolfan-Casanova, N., 2016. Distribution and transport of hydrogen in the
 lithospheric mantle: A review. Lithos 240-243, 402–425. doi:10.1016/j.lithos.2015.11.012.
- Demouchy, S., Ishikawa, A., Tommasi, A., Alard, O., Keshav, S., 2015. Characterization of hydration
 in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example. Lithos
 212-215, 189–201. doi:10.1016/j.lithos.2014.11.005.
- 694 Demouchy, S., and Mackwell, S.J., 2003. Water diffusion in synthetic iron-free forsterite. Phys. Chem.
 695 Mineral. 30, 486–494.
- Demouchy, S., and Mackwell, S.J., 2006. Mechanisms of hydrogen incorporation and diffusion in iron bearing olivine. Phys. Chem. Mineral. 33, 347–355.
- Demouchy, S., Mackwell, S.J., Kohlstedt, D.L., 2007. Influence of hydrogen on Fe–Mg interdiffusion
 in (Mg,Fe)O and implications for Earth's lower mantle. Contrib. Mineral. Petrol. 154, 279–289.
- Demouchy, S., Shcheka, S., Denis, C.M.M., Thoraval, C., 2017. Subsolidus hydrogen partitioning
 between nominally anhydrous minerals in garnet-bearing peridotite. Am. Min. 102, 1822–1831.
 doi:10.2138/am-2017-6089.
- Demouchy, S., Tommasi, A., Barou, F., Mainprice, D., Cordier, P., 2012. Deformation of olivine in
 torsion under hydrous conditions. Phys. Earth Planet. Int. 202-203, 57–70.
 doi:10.1029/2008GL036611
- Demouchy, S., Tommasi, A., Ionov, D., Higgie, K., Carlson, R.W., 2019. Microstructures, water
 contents, and seismic properties of the mantle lithosphere beneath the northern limit of the Hangay
 Dome, Mongolia. Geochem. Geophys. Geosys. 2018GC007931. doi:10.1029/2018GC007931
- Denis, C.M.M., Alard, O., Demouchy, S., 2015. Water content and hydrogen behaviour during
 metasomatism in the uppermost mantle beneath Ray Pic volcano (Massif Central, France). Lithos
 236-237, 256–274. doi:10.1016/j.lithos.2015.08.013
- Denis, C.M.M., Demouchy, S., Alard, O., 2018. Heterogeneous hydrogen distribution in orthopyroxene
 from veined mantle peridotite (San Carlos, Arizona): Impact of melt-rock interactions. Lithos
 302-303, 298–311. doi:10.1016/j.lithos.2018.01.007.
- Denis, C.M.M., Demouchy, S., Shaw, C., 2013. Evidence of dehydration in peridotites from Eifel
 Volcanic Field and estimates of magma ascent rates. J. Volc. Geoth. Res. 258, 85–99.
- Dick, H.J., and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type
 peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86(1), 54-76.
- Dixon, J.E., Leist, L., Langmuir, C., Schilling, J.-G., 2002. Recycled dehydrated lithosphere observed
 in plume-influenced mid-ocean ridge-basalt. Nature 420, 385–389.
- Dixon, J.E., and Stolper, E.M., 1995. An experimental study of water and carbon dioxide solubilities in
 mid-ocean ridge basaltic liquids. Part II: applications to degassing. J. Petrol. 36(6), 1633-1646.
- Dongre, A.N., Jacob, D.E., Stern, R.A., 2015. Subduction-related origin of eclogite xenoliths from the
 Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology
 and geochemistry. Geochim. Cosmochim. Acta 166, 165–188. doi:10.1016/j.gca.2015.06.023
- Doucet, L.S., Ionov, D.A., Golovin, A.V., Pokhilenko, N.P., 2012. Depth, degrees and tectonic settings
 of mantle melting during craton formation inferences from major and trace element compositions
 of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci.
 Lett 359-360, 206–218. doi:10.1016/j.epsl.2012.10.001
- 730 Doucet, L.S., Peslier, A.H., Ionov, D.A., Brandon, A.D., Golovin, A.V., Goncharov, A.G., Ashchepkov,
- 731 I.V., 2014. High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR

- study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137, 159-187.
 doi:10.1016/j.gca.2014.04.011
- Fareeduddin and Mitchell, R.H., (2012) Diamond and their source rocks in India. Geological Society of
 India, Bangalore, 434 pp.
- Faul, U.H., Cline, C.J., II, David, E.C., Berry, A.J., Jackson, I., 2016. Titanium-hydroxyl defectcontrolled rheology of the Earth's upper mantle. Earth Planet. Sci. Lett. 452, 227–237.
 doi:10.1016/j.epsl.2016.07.016
- Fei, H., and Katsura, T., 2020. Pressure dependence of proton incorporation and water solubility in olivine. J. Geophys. Res. 125, 83–13. doi:10.1029/2019JB018813
- Férot, A., Bolfan-Casanova, N., 2012. Water storage capacity in olivine and pyroxene to 14 GPa:
 Implications for the water content of the Earth's upper mantle and nature of seismic discontinuities. Earth Planet. Sci. Lett. 349-350, 218–230.
- Ferriss, E., Plank, T., Walker, D., 2016. Site-specific hydrogen diffusion rates during clinopyroxene
 dehydration. Contrib. Mineral. Petrol. 171(6), 1–24. doi:10.1007/s00410-016-1262-8
- Gaetani, G.A., Grove, T.L., 1998. The influence of water on melting of mantle peridotite. Contrib.
 Mineral. Petrol. 131, 323–346.
- Gaetani, G.A., O'Leary, J.A., Koga, K.T., Hauri, E.H., Rose-Koga, E.F., Monteleone, B.D., 2014.
 Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib.
 Mineral. Petrol. 167, 965. doi:10.1007/s00410-014-0965-y
- Ganguly, J., and Bhattacharya, P.K., 1987. Xenoliths in Proterozoic kimberlites from southern India:
 Petrology and geophysical implications. In: Mantle Xenoliths, Nixon, P.H. (Ed.) John Wiley and
 Sons Ltd. John Wiley, New York, pp 249-266.
- Garel, F., Goes, S., Davies, D.R., Davies, J.H., Kramer, S.C., Wilson, C.R., 2014. Interaction of
 subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical
 models with a mobile trench and an overriding plate. Geochem. Geophys. Geosys. 15, 1739–
 1765. doi:10.1002/2014GC005257
- Garel, F., Thoraval, C., Tommasi, A., Demouchy, S., Davies, D.R., 2020. Using thermo-mechanical
 models of subduction to constrain effective mantle viscosity. Earth Planet. Sci. Lett. 539, 116243.
 doi:10.1016/j.epsl.2020.116243.
- Geiger, C.A., and Rossman, G.R., 2018. IR spectroscopy and OH– in silicate garnet: The long quest to
 document the hydrogarnet substitution. Am. Min. 103, 384–393. doi:10.2138/am-20186160CCBY
- Gibson, S.A., Malarkey, J. Day, J.A., 2008. Melt depletion and enrichment beneath the western
 Kaapvaal Craton: evidence from Finsch peridotite xenoliths. J. Petrol. 49(10), 1817-1852.
- Gopalan, K., and Kumar, A., 2008 Phlogopite K-Ca dating of Narayanpet kimberlites, South India:
 Implications to the discordance between their Rb-Sr, Ar/Ar ages. Precam. Res. 167, 377-382.
- Grant, K., Ingrin, J., Lorand, J.P., Dumas, P., 2007. Water partitioning between mantle minerals from
 peridotite xenoliths. Contrib. Mineral. Petrol. 154, 15–34.
- Grégoire, M., Tinguely, C., Bell, D.R., Le Roex, A.P., 2005. Spinel lherzolite xenoliths from the Premier
 kimberlite (Kaapvaal craton, South Africa): nature and evolution of the shallow upper mantle
 beneath the Bushveld complex. Lithos 84(3-4), 185-205.
- Hanger, B.J., Yaxley, G.M., Berry, A.J. and Kamenetsky, V.S., 2015. Relationships between oxygen
 fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite
 xenoliths in the Wesselton kimberlite, South Africa. Lithos 212, 443-452.
- Hills, D.V. and Haggerty, S.E., 1989. Petrochemistry of eclogites from the Koidu kimberlite complex,
 Sierra Leone. Contrib. Mineral. Petrol. 103(4), 397-422.

- Hirschmann, M.M., Tenner, T., Aubaud, C., Withers, A.C., 2009. Dehydration melting of nominally
 anhydrous mantle: The primacy of partitioning. Phys. Earth Planet. Int. 176, 54–68.
 doi:10.1016/j.pepi.2009.04.001
- Hirth, G., and Kohlstedt, D.L., 1996. Water in the oceanic upper mantle: implications for rheology, melt
 extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108.
- Hirth, G., and Kohlstedt, D.L., 2003. Rheology of the upper mantle and the mantle wedge: A view from
 the experimentalists, in: Eiler, J. (Ed.), Inside The Subduction Factory. American Geophysical
 Union, Washington D.C., pp. 83–105.
- 786 Ingrin, J., and Skogby, H., 2000. Hydrogen in nominally anhydrous upper-mantle minerals:
 787 concentration levels and implications. Eur. J. Mineral. 12, 543–570.
- Ionov, D.A., Doucet, L.S., Ashchepkov, I.V., 2010. Composition of the lithospheric mantle in the
 Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J.
 Petrol. 51(11), 2177-2210.
- Jayananda, M., Santosh, M., Aadhiseshan, K.R., 2018. Formation of Archean (3600–2500 Ma)
 continental crust in the Dharwar Craton, southern India. Earth Sci. Rev.181, 12–42.
- Jean, M.M., Taylor, L.A., Howarth, G.H., Peslier, A.H., Fedele, L., Bodnar, R.J., Guan, Y., Doucet,
 L.S., Ionov, D.A., Logvinova, A.M., Golovin, A.V., Sobolev, N.V., 2016. Olivine inclusions in
 Siberian diamonds and mantle xenoliths: Contrasting water and trace-element contents. Lithos
 265, 31–41. doi:10.1016/j.lithos.2016.07.023.
- Jerde, E.A., Taylor, L.A., Crozaz, G., Sobolev, N.V., Sobolev, V.N., 1993. Diamondiferous eclogites
 from Yakutia, Siberia: Evidence for a diversity of protoliths. Contrib. Mineral. Petrol. 114(2),
 189-202.
- Ji, S., Wang, Z., Wirth, R., 2001. Bulk flow strength of forsterite-enstatite composites as a function of
 forsterite content. Tectonophysics 341, 69–93.
- Kamenetsky, V.S., Kamenetsky, M.B., Sobole, A.V., Golovin, A.V., Demouchy, S., Faure, K.,
 Sharygin, V.V., Kuzmin, D.V., 2008. Olivine in the Udachnaya-East Kimberlite (Yakutia,
 Russia): Types, compositions and origins. J. Petrol. 49, 823–839.
- Karato, S.I., 1990. The role of hydrogen diffusivity in the electrical conductivity of the upper mantle.
 Nature 347, 272–273.
- Karmalkar, N.R., Duraiswami, R.A., Rao, N.C., Paul, D.K., 2009. Mantle-derived mafic-ultramafic
 xenoliths and the nature of Indian sub-continental lithosphere. J. Geol. Soc. India 73(5), 657.
- Katayama, I., Nakashima, S., Yurimoto, H., 2006. Water content in natural eclogite and implication for
 water transport into the deep upper mantle. Lithos 86, 245–259. doi:10.1016/j.lithos.2005.06.006.
- Kent, A.J.R., Rossman, G.R., 2002. Hydrogen, lithium, and boron in mantle-derived olivine: the role of
 coupled substitutions. Am. Min. 87, 1432–1436.
- Keppler, H., and Bolfan-Casanova, N., 2006. Thermodynamics of Water Solubility and Partitioning, in:
 Keppler, H., Smyth, J.R., Rosso, J.J. (Eds.), Water in Nominally Anhydrous Minerals. American
 Mineralogical Society Geochemical Society, Chantilly (Vir.), pp. 193–230.
- Koch-Mueller, M., Matsyuk, S.S., Rhede, D., Wirth, R., Khisina, N., 2006. Hydroxyl in mantle olivine
 xenocrysts from the Udahnaya kimberlite pipe. Phys. Chem. Mineral. 33, 276–287.
- Kohlstedt, D.L., Keppler, H., Rubie, D.C., 1996. Solubility of water in the α, β and γ-phases of
 (Mg,Fe)₂SiO₄. Contrib. Mineral. Petrol. 123, 345–357.
- Konzett, J., Wirth, R., Hauzenberger, C., Whitehouse, M., 2013. Two episodes of fluid migration in the
 Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: evidence
 from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos 182,
 165-184.

- Kopylova, M.G., Russell, J.K., Cookenboo, H., 1999. Petrology of peridotite and pyroxenite xenoliths
 from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave
 craton, northern Canada. J. Petrol. 40(1), 79-104.
- Kovàcs, I., Hermann, J., O'Neill, H.S.C., Gerald, J.F., Sambridge, M., Horvàth, G., 2008. Quantitative
 absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and
 development of a protocol for quantitative analysis of mineral IR spectra. Am. Min. 93, 765–
 778. doi:10.2138/am.2008.2656.
- Kurosawa, M., Yurimoto, H., Sueno, S., 1997. Patterns in the hydrogen and trace element compositions
 of mantle olivines. Phys. Chem. Mineral. 24, 385-395.
- Lazarov, M., Woodland, A.B., Brey, G.P., 2009. Thermal state and redox conditions of the Kaapvaal
 mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913-923.
- Li, Z.X.A., Lee, C.T.A., Peslier, A., Lenardic, A., Mackwell, S.J., 2008. Water contents in mantle
 xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and
 hydration-induced thining of continental lithosphere. J. Geophys. Res. 113, doi: 10.1029–
 2007JB005540.
- Litasov, K.D., Ohtani, E., Kagi, H., Jacobsen, S.D., Ghosh, S., 2007. Temperature dependence and
 mechanism of hydrogen incorporation in olivine at 12.5-14.0 GPa. Geophys. Res. Lett. 34, 460–
 5. doi:10.1029/2007GL030737
- MacGregor, I.D. and Manton, W.I., 1986. Roberts Victor eclogites: ancient oceanic crust. J. Geophys.
 Res. 91(B14), 14063-14079.
- MacKenzie, J.M. and Canil, D., 1999. Composition and thermal evolution of cratonic mantle beneath
 the central Archean Slave Province, NWT, Canada. Contrib. Mineral. Petrol. 134(4), 313-324.
- Mackwell, S.J., and Kohlstedt, D.L., 1990. Diffusion of hydrogen in olivine: Implications for water in
 the mantle. J. Geophys. Res. 95, 5079–5088.
- Mackwell, S.J., Kohlstedt, D.L., Paterson, M.S., 1985. The role of water in the deformation of olivine
 single crystals. J. Geophys. Res. 90, 11319-11333.
- Maldener, J., Hösch, A., Langer, K., Rauch, F., 2003. Hydrogen in some natural garnets studied by
 nuclear reaction analysis and vibrational spectroscopy. Phys. Chem. Mineral. 30, 337–344.
- Marty, B., 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth.
 Earth Planet. Sci. Lett. 313-314, 56–66. doi:10.1016/j.epsl.2011.10.040
- Masuti, S., Karato, S.-I., Feng, L., Banerjee, P., Barbot, S.D., 2016. Upper-mantle water stratification
 inferred from observations of the 2012 Indian Ocean earthquake. Nature 538, 373–377.
 doi:10.1038/nature19783.
- Matsyuk, S.S., and Langer, K., 2004. Hydroxyl in olivines from mantles xenoliths in kimberlites of the
 Siberian platform. Contrib. Mineral. Petrol. 147, 413–437.
- Matsyuk, S.S., Langer, K., Hoesch, A., 1998. Hydroxyl defects in garnet from mantle xenoliths in kimbelites of the Siberian platform. Contrib. Mineral. Petrol. 132, 163–179.
- Matveev, S., O'Neill, H.S.C., Ballhaus, C., Taylor, W.R., Green, D.H., 2001. Effect of silica activity on
 OH–IR spectra of olivine: implications for low-a SiO₂ mantle metasomatism. J. Petrol. 42(4),
 721-729.
- Menzies, A., Westerlund, K., Grütter, H., Gurney, J., Carlson, J., Fung, A., Nowicki, T., 2004.
 Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, NWT,
 Canada: major element compositions and implications for the lithosphere beneath the central
 Slave craton. Lithos, 77(1-4), 395-412.
- Michael, P.J., 1988, The concentration, behaviour and storage of H₂O in the suboceanic upper mantle:
 Implication for mantle metasomatism. Geochimi. Cosmochim. Acta 52, 555-566.
- Mierdel, K., and Keppler, H., 2004. The temperature dependence of water solubility in enstatite. Contrib.
 Mineral. Petrol. 148, 305–311.

- Mierdel, K., Keppler, H., Smyth, J.R., Langerhorst, F., 2007. Water solubility in aluminous
 orthopyroxene and the origin of the asthenosphere. Science 315, 364–368.
- Miller, G.H., Rossman, G.R., Harlow, G.E., 1987. The natural occurrence of hydroxide in olivine. Phys.
 Chem. Mineral. 14, 461–472.
- Mookherjee, M., and Karato, S.-I., 2010. Solubility of water in pyrope-rich garnet at high pressures and
 temperature. Geophys. Res. Lett. 37, L03310. doi:10.1029/2009GL041289
- 878 Nakamura, A., and Schmalzried, H., 1983. On the nonstoichiometry and point defects of olivine. Phys.
 879 Chem. Mineral. 10, 27–37.
- Naqvi, S.M., and Rogers, J.J.W., 1987 Precambrian Geology of India, Oxford University Press, New
 York, 223.
- Nayak, S.S., and Kudari, S.A.D., 1999. Discovery of diamond-bearing kimberlites in Kalyandurg area,
 Anantapur district, Andhra Pradesh. Current Science, 76(8), 1077-1079.
- Neelkantam, S., 2001. Exploration for diamond in southern India. Geological Survey of India Special
 Publication 58, 521-555.
- 886 Nehru, C.E., and Reddy, A.K., 1989. Ultramafic xenoliths from Vajrakarur kimberlites, India.
 887 Geolological Society of Australia Special Publication, 14, 745-758.
- Nickel, K.G. and Green, D.H., 1985. Empirical geothermobarometry for garnet peridotites and
 implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci.
 Lett. 73(1), 158-170.
- Nimis, P., and Grütter, H., 2010. Internally consistent geothermometers for garnet peridotites and
 pyroxenites. Contrib. Mineral. Petrol. 159(3), 411-427.
- Novella, D., Bolfan-Casanova, N., Nestola, F., Harris, J.W., 2015. H₂O in olivine and garnet inclusions
 still trapped in diamonds from the Siberian craton: Implications for the water content of cratonic
 lithosphere peridotites. Lithos 230, 180–183. doi:10.1016/j.lithos.2015.05.013.
- Novella, D., Frost, D.J., Hauri, E.H., Bureau, H., Raepsaet, C., Roberge, M., 2014. The distribution of
 H₂O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting
 in the deep upper mantle. Earth Planet. Sci. Lett. 400, 1–13. doi:10.1016/j.epsl.2014.05.006
- Novella, D., Jacobsen, B., Weber, P.K., Tyburczy, J.A., Ryerson, F.J., Frane, Du, W.L., 2017. Hydrogen
 self-diffusion in single crystal olivine and electrical conductivity of the Earth's mantle. Scientific
 Report 7, 629. doi:10.1038/s41598-017-05113-6.
- 902 O'Leary, J.A., Gaetani, G.A., Hauri, E.H., 2010. The effect of tetrahedral Al3+ on the partitioning of
 903 water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297, 111–120.
 904 doi:10.1016/j.epsl.2010.06.011.
- 905 O'Reilly, S.Y., Chen, D., Griffin, W.L., Ryan, C.G., 1997. Minor elements in olivine from spinel
 906 lherzolite xenoliths: Implication for thermobarometry. Min. Mag. 61, 257-269.
- 907 Osborne, I., Sherlock, S., Anand, L., Argles, T., 2011. New Ar-Ar ages of southern Indian kimberlites
 908 and lamphroite and their geochemical evolution. Precam. Res.189/ 91-103.
- Padrón-Navarta, J.A., and Hermann, J., 2017. A subsolidus olivine water solubility equation for the
 Earth's upper mantle. J. Geophys. Res. 122, 9862–9880. doi:10.1002/2017JB014510.
- 911 Padrón-Navarta, J.A., Hermann, J., O'Neill, H.S.C., 2014. Site-specific hydrogen diffusion rates in
 912 forsterite. Earth Planet. Sci. Lett. 392, 100–112. doi: 10.1016/j.epsl.2014.01.055
- Patel, S.C., Ravi, S., Anilkumar, Y., Naik, A., Thakur, S.S., Pati, J.K. and Nayak, S.S., 2009. Mafic
 xenoliths in Proterozoic kimberlites from Eastern Dharwar Craton, India: mineralogy and P–T
 regime. J. Asian Earth Sci., 34(3), 336-346. doi: 10.1016/j.jseaes.2008.06.001
- Paterson, M.S., 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses
 and similar materials. Bulle. Min. 105, 20–29.
- Pattnaik, J., Ghosh, S., Dongre, A., 2020. Plume activity and carbonated silicate melt metasomatism in
 ancient lithospheric mantle beneath the Eastern Dharwar Craton: Evidence from petrology and

- geochemistry of peridotite xenoliths in Wajrakarur kimberlites, Lithos, doi:10.1016/j.lithos.
 2020.105726.
- 922 Pearson, D.G., Woodhead, J., Janney, P.E., 2019. Kimberlites as geochemical probes of Earth's
 923 mantle. Elements, 15(6), 387-392.
- 924 Peslier, A.H., 2010. A review of water contents of nominally anhydrous minerals in the mantles of Earth,
 925 Mars and the Moon. J. Volc. Geoth. Res. 197, 239–258.
- Peslier, A.H., Luhr, J., Post, J., 2002. Low water contents in pyroxenes from spinel-peridotites of the
 oxidized, sub-arc mantle wedge. Earth Planet. Sci. Lett. 201, 69–86.
- Peslier, A.H., Woodland, A.B., Bell, D.R., Lazarov, M., 2010. Olivine water contents in the continental
 lithosphere and the longevity of cratons. Nature 467, 78–83.
- Peslier, A.H., Woodland, A.B., Bell, D.R., Lazarote, M., Lapen, T.J., 2012. Metasomatic control of
 water contents in the kaapvaal cratonic mantle. Geochim. Cosmochim. Acta 97, 213–246.
- Peslier, A. H., Woodland, A.B., Wolff, J.A., 2008. Fast kimberlite ascent rate estimates from hydrogen
 diffusion profiles in xenoliths mantle olivines from South Africa. Geochim. Cosmochim. Acta.
 72, 2711–2722.
- Poe, B.T., Romano, C., Nestola, F., Smyth, J.R., 2010. Electrical conductivity anisotropy of dry and
 hydrous olivine at 8 GPa. Phys. Earth Planet. Int. 181, 103–111. doi:10.1016/j.pepi.2010.05.003
- 937 Popovici, G., Wilson, R.G., Sung, T., Prelas, M.A., Khasawinah, S., 1995. Diffusion of boron, lithium,
 938 oxygen, hydrogen, and nitrogen in type IIa natural diamond. J. Appl. Phys. 77, 5103–5106.
- Post, J.L., and Borer, L., 2000. High-resolution infrared spectra, physical properties, and
 micromorphology of serpentines. Appl. Clay Sci.16, 73–85.
- 941 Ramakrishnan, M., and Vaidyanadhan, R. 2010. Geology of India, Vol 1., Second Ed. Geological942 Society of India, Bangalore.
- Rauch, M., 2000. Der Einbau von Wasser in Pyroxene, PhD thesis, Bayerisches Geoinstitut. Bayreuth
 Universität, Bayreuth.
- Ravi, S., Sufija, M.V., Patel, S.C., Sheikh, J.M., Sridhar, M., Kaminsky, F.V., Khachatryan, G.K.,
 Nayak, S.S., Bhaskara Rao, K.S., 2013. Diamond Potential of the Eastern Dharwar Craton,
 Southern India, and a Reconnaissance Study of Physical and Infrared Characteristics of the
 Diamonds, in: Proceedings of 10th International Kimberlite Conference. Springer India, New
 Delhi, 335–348. doi:10.1007/978-81-322-1170-9 23
- Ravi, S., Vaideswaran, T., Rao, K.S.B., 2009. Field guide to Wajrakarur kimberlite field, Anantpur district, Andhra Pradesh. Geological Survey of India, 1-43.
- Regenauer-Lieb, K., and Kohl, T., 2003. Water solubility and diffusivity in olivine: its role in planetary
 tectonics. Min. Mag. 67(4), 697–715.
- Regenauer-Lieb, K., Weinberg, R.F., Rosenbaum, G., 2006. The effect of energy feedbacks on
 continental strength. Nature 442, 67–70.
- Rossman, G.R., and Aines, R.D., 1991. The hydrous components in garnet: Grossular-hydrogrossular.
 Am. Min. 76, 1153-1164.
- Saal, A.E., Hauri, E.H., Langmuir, C.H., Perfit M.R., 2002. Vapour undersaturation in primitive mid ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419, 451–455.
- Satsukawa, T., Godard, M., Demouchy, S., Michibayashi, K., Ildefonse, B., 2017. Chemical interactions
 in the subduction factory: New insights from an *in situ* trace element and hydrogen study of the
 Ichinomegata and Oki-Dogo mantle xenoliths (Japan). Geochim. Cosmochim. Acta 208, 234–
 267. doi:10.1016/j.gca.2017.03.042
- Schmädicke, E., Gose, J., Witt-Eickschen, G., Brätz, H., 2013. Olivine from spinel peridotite xenoliths:
 Hydroxyl incorporation and mineral composition. Am. Min. 98, 1870–1880
- Shaikh, A.M., Tappe, S., Bussweiler, Y., Patel, S.C., Ravi, S., Bolhar, R., Viljoen, F., 2020.
 Clinopyroxene and garnet mantle cargo in kimberlites as probes of Dharwar craton architecture

- and geotherms, with implications for post 1.1 GPa lithosphere thinning events beneath southern
 India. J. Petrol. doi: 10.1093/petrology/egaa087.
- Sheng, Y.-M., Xia, Q.-K., Dallai, L., Yang, X.-Z., Hao, Y.-T., 2007. H₂O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern
 China. Geochim. Cosmochim. Acta 71, 2079–2103. doi:10.1016/j.gca.2007.01.018
- 973 Skogby, H., 2006. Water in natural mantle minerals I: Pyroxenes, in: Keppler, H., Smyth, J.R., Rosso,
 974 J.J. (Eds.), Water in Nominally Anhydrous Minerals. American Mineralogical Society
 975 Geochemical Society, Chantilly (Vir.), vol. 62, pp. 155–167.
- 976 Skogby, H., Bell, D.R., Rossman, G.R. 1990. Hydroxide in pyroxene; variations in the natural
 977 environment. Am. Min.75(7-8), 764-774.
- 978 Skogby, H., Rossman, G.R., 1989. OH-in pyroxene: An experimental study of incorporation
 979 mechanisms and stability. Am. Min.74, 1059–1069.
- 980 Smith, C.B., Haggerty, S.E., Chatterjee, B., Beard, A., Townend, R., 2013. Kimberlite, lamproite,
 981 ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India: An example
 982 from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonate intrusion, Lithos
 983 183, 102-113.
- 984 Snyder, G.A., Taylor, L.A., Crozaz, G., Halliday, A.N., Beard, B.L., Sobolev, V.N. and Sobolev, N.V.,
 985 1997. The origins of Yakutian eclogite xenoliths. J. Petrol. 38(1), 85-113.
- Sobolev, V.N., Taylor, L.A., Snyder, G.A., Sobolev, N.V., 1994. Diamondiferous eclogites from the
 Udachnaya kimberlite pipe, Yakutia. Inter. Geol. Rev. 36(1), 42-64.
- Stalder, R., 2004. Influence of Fe, Cr, and Al on hydrogen incorporation in orthopyroxene. Eur. J.
 Mineral. 16, 703–711.
- Stalder, R., Karimova, A., Konzett, J., 2015. OH-defects in multiple-doped orthoenstatite at 4-8 GPa:
 filling the gap between pure and natural systems. Contrib. Mineral. Petrol. 169, 38, doi:10.1007/s00410-015-1133-8
- Stalder, R., Klemme, S., Ludwig, T., Skogby, H., 2005. Hydrogen incorporation in orthopyroxene:
 interaction of different trivalent cations. Contrib. Mineral. Petrol. 150, 473–485.
 doi:10.1007/s00410-005-0037-4
- 996 Stalder, R., and Ludwig, T., 2007. OH incorporation in synthetic diopside. Eur. J. Mineral. 19, 373–380.
- Sun, W., Yoshino, T., Kuroda, M., Sakamoto, N., Yurimoto, H., 2019. H-D interdiffusion in singlecrystal olivine: Implications for electrical conductivity in the upper mantle. J. Geophys. Res. 124
 (56), 5696-5707.
- Taylor, W.R., 1998. An experimental test of some geothermometer and geobaro meterformulations for
 upper mantle peridotites with application to the ther-mobarometry offertile lherzolite and garnet
 websterite. Neues Jahrbuch für Mineralogie-Abhandlungen 381–408.
- Taylor, L.A., Logvinova, A.M., Howarth, G.H., Liu, Y., Peslier, A.H., Rossman, G.R., Guan, Y., Chen, 1003 1004 Y., Sobolev, N.V., 2016. Low water contents in diamond mineral inclusions: Proto-genetic origin 1005 а dry cratonic lithosphere. Earth Planet. Scie. Lett. 433, 125-132. in 1006 doi:10.1016/j.epsl.2015.10.042.
- Tenner, T.J., Hirschmann, M.M., Withers, A.C., Hervig, R.L., 2009. Hydrogen partitioning between
 nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to
 hydrous peridotite partial melting. Chem. Geol. 262, 42–56. doi:10.1016/j.chemgeo.2008.12.006.
- Tielke, J., A., Zimmerman, M.E, Kohlstedt, D.L., 2017. Hydrolytic weakening in olivine single crystals.
 J. Geophys. Res. 122(5), 3465-3479, doi:10.1002/(ISSN)2169-9356.
- 1012 Thoraval, C., Demouchy, S., 2014. Numerical models of ionic diffusion in one and three dimensions:
 1013 application to dehydration of mantle olivine. Phys. Chem. Mineral. 41, 709–723.
 1014 doi:10.1007/s00269-014-0685-x

- Thoraval, C., Demouchy, S., Padrón-Navarta, J.A., 2019. Relative diffusivities of hydrous defects from
 a partially dehydrated natural olivine. Phys. Chem. Mineral. 46, 1–13. doi:10.1007/s00269-0180982-x
- Tollan, P.M.E., O'Neill, H.St.C., Hermann, J., 2018. The role of trace elements in controlling H
 incorporation in San Carlos olivine. Contrib. Mineral. Petrol. 173, 89. doi:10.1007/s00410-0181517-7
- Tran, H., and Nguyen, H., 2018. Petrology, geochemistry, and Sr, Nd isotopes of mantle xenolith in
 Nghia Dan alkaline basalt (West Nghe An): implications for lithospheric mantle characteristics
 beneath the region. Vietnam J. Earth Sci. 40. 207-227. 10.15625/0866-7187/40/3/12614.
- Walker, A.M., Hermann, J., Berry, A., O'Neill, H.S., 2007. Three water sites in the upper mantle olivine
 and the role of titanium in the water weakening mechanism. J. Geophys. Res. 112 (B5).
 doi:10.1029–2006JB004620.
- Wang, Q., Bagdassarov, N., Xia, Q.K., Zhu, B., 2014. Water contents and electrical conductivity of
 peridotite xenoliths from the North China Craton: Implications for water distribution in the upper
 mantle. Lithos 189, 105-126.
- Withers, A.C., Bureau, H., Raepsaet, C., Hirschmann, M.M., 2012. Calibration of infrared spectroscopy
 by elastic recoil detection analysis of H in synthetic olivine. Chem. Geol. 334, 92–98.
- Withers, A.C., Wood, B.J., Carroll, M., 1998. The OH content of pyrope at high pressure. Chem. Geol.
 1033 147, 161–171.
- Xia, Q.K., Sheng, Y.M., Yang, X.Z., Yu, H.M., 2005. Heterogeneity of water in garnets from UHP
 eclogites, eastern Dabieshan, China. Chem. Geol. 224, 237–246.
- Yang, X.-Z., Xia, Q.-K., Deloule, E., Dallai, L., Fan, Q.-C., Feng, M., 2008. Water in minerals of the continental lithospheric mantle and overlying lower crust: A comparative study of peridotite and granulite xenoliths from the North China Craton. Chem. Geol. 256, 33–45.
 doi:10.1016/j.chemgeo.2008.07.020.
- Yoshino, T., Matsuzaki, T., Yamashita, S., Katsura, T., 2006. Hydrous olivine unable to account for
 conductivity anomaly at the top of the asthenosphere. Nature 443(7114), 973–976.
- 1042
- **1043** Figures Captions

1044

- **Figure 1.** (a) Geological map of southern India comprising of different tectonic units redrawn
- 1046 from Patel et al. (2009). EDC: Eastern Dharwar Craton, WDC: Western Dharwar Craton,
- 1047 EGMB: Eastern Ghat Mobile Belt, CG: Closepet granite and equivalents, GG: Godavari graben,
- 1048 NKF: Narayanpet kimberlite field, RKF: Raichur kimberlite field, WKF: Wajrakarur kimberlite
- 1049 field, CBF: Chitradurga boundary fault. (b) Enlarged map of Wajrakarur kimberlite field
- showing locations of studied samples (after Nayak and Kudari, 1999).

1052 Figure 2. Peridotite xenolith and mineral micrographs from Wajrakarur kimberlites field, 1053 Eastern Dharwar craton. (a) Thin section scans in natural light of spinel (± garnet) peridotite 1054 (sample P3/5/1) showing granular texture with highly fractured large olivine grains, elongated 1055 shaped orthopyroxenes, clinopyroxenes surrounding the olivines as veinlets. (b) Garnet peridotite (sample P3/6/1) with polygonal garnets in a matrix of orthopyroxenes and 1056 1057 clinopyroxenes along with euhedral larger grains of olivines. (c) Sample P3/6/3 with mantle 1058 olivine xenocrysts present in the kimberlitic matrix. (d) Mantle mineral separates of clinopyroxenes and garnets from kimberlite pipes: P6 (clinopyroxenes), P7 (garnets), P1P2 1059 (clinopyroxenes), P3P (garnet), P3 (clinopyroxene), P3D (garnets), P10 (garnet) and P1P2 1060 1061 (garnets).

1062

1063 Figure 3. Key major element distribution in mantle minerals. Large red symbols are results 1064 from this study, small red symbols are from previous studies for Dharwar craton (Ganguly and Bhattacharya, 1987 and Nehru and Reddy, 1989; and Shaikh et al., 2020) and small grey 1065 1066 symbols are from previous studies for peridotite xenoliths from others cratons: Canada 1067 (Kopylova et al., 1999; MacKenzie and Canil, 1999; Menzies et al., 2004); Kaapvaal (Grégoire et al., 2005; Gibson et al., 2008; Lazarov et al., 2009; Konzett et al., 2013; Hanger et al., 1068 1069 2015; Bell et al., 2005); Siberia (Ionov et al., 2010; Doucet et al., 2012; 2014). (a) Mg# as a function of NiO contents (wt.%) in olivine; b) CaO content (wt.%) as a function of 1070 Al₂O₃ content (wt.%) in clinopyroxenes. (b) Mg# as a function of TiO₂ content (wt.%) in 1071 clinopyroxenes; and (d) Al₂O₃ contents (wt.%) as a function of Cr₂O₃ contents (wt.%) in 1072 1073 garnet. Red squares are for eclogitic garnets from Eastern Dharwar craton (Dongre et al., 2015) and grev squares are for garnets from other eclogites transported by kimberlites from Koidu 1074 1075 (Hills and Haggerty, 1989), Roberts Victor (MacGregor and Manton, 1986), Yakutia (Snyder et. al, 1997; Jerde et al., 1993; Sobolev et al., 1994). 1076

1077

Figure 4. Representative unpolarized infrared spectra for anhydrous nominally minerals from Wajrakarur; (a) olivine, (b) diopside, (c) orthopyroxenes, and (d) garnet. The integrated absorbance is reported for each spectrum of olivine, opx and cpx. The dotted lines represent the range of integration and the star symbol represents the contamination by hydrous minerals (see main text for details). All spectra have been normalized to 1 cm of thickness. Spectra from previous studies are shown for comparison.

1084

Figure 5. Representative unpolarized infrared spectra for anhydrous nominally minerals from
Wajrakarur contaminated by hydrous mineral lamellae. All spectra have been normalized to
1 cm of thickness.

1088

1089 Figure 6. Hydrogen concentrations (express in ppm by weight of water) of olivine from Wajrakarur peridotites as a function of magnesium number $[Mg# = 100 \times Mg/(Mg+Fe)]$. Full 1090 1091 red symbol is for sample P3/6/3 olivine, while open symbols are the H concentration is the 1092 result of calculation using partitioning coefficient for samples P3/5/1 and P3/6/1 (see main text 1093 for values used in this study). For comparison data for other olivines are shown here: olivine 1094 megacrysts from Kaapvaal (Bell et al., 2004); peridotitic olivines from Kaapvaal (Peslier et al., 1095 2010; Baptiste et al., 2012); olivine phenocrysts from Udachnaya (Kamenetsky et al., 2008); peridotitic olivines from Udachnava (Doucet et al., 2014); off-craton spinel-bearing peridotites 1096 (Demouchy et al., 2015, Demouchy and Bolfan-Casanova, 2016, Denis et al., 2013, 2018; Li et 1097 1098 al., 2008, NB: the spinel-lherzolites only).

1099

Figure 7. (a) Ti concentrations in ppm determined by LA-ICP-MS as a function of the sum of
the normalized integrated absorbance from the IR bands 3575 and 3525 cm⁻¹, which are

attributed to titanium clinohumite-like point defects (see main text for details). For comparison,
results from experimental studies and data from natural mantle samples are also reported
(S2013: Schmädicke et al., 2013; Dm2015: Demouchy et al., 2015; PN&H2017: PadrónNavarta and Hermann, 2017; Dn2015: Denis et al., 2015; T2018: Tollan et al., 2018). (b)
Compilation of Ti concentrations observed in peridotites together with data from O'Reilly et
al. (1997); De Hoog et al. (2014); Peslier (2010); Peslier et al. (2012); Satsukawa et al. (2017)
for comparison.

1109

Figure 8. Hydrogen concentrations (express in ppm of water by weight) in clinopyroxenes from Wajrakarur peridotites as a function of Al₂O₃ contents (wt.%) in clinopyroxenes. For comparison, data for clinopyroxenes from a variety of tectonic settings are also shown. Clinopyroxenes in kimberlites from Premier Mine and Lesotho (Peslier et al., 2010); eclogites from the Alps and from Khazakstan (Katayama et al., 2006; Peslier, 2010), basalts from Nushan and Hannuoba (Yang et al., 2008); Massif central (Denis et al., 2015); Mexico (Peslier et al., 2002); Ichinomegata and Okidogo in Japan (Satsukawa et al., 2017).

1117

1118 Figure 9. Hydrogen concentrations (express in ppm of water by weight) in olivine from 1119 Wajrakarur peridotites as a function of depth (using two different geobarometers, BK: Brey and 1120 Kohler (1990) or NG: Nickel and Green (1985), see main text for details). Open symbols are values derived from partitioning coefficients. For comparison, data for olivines from two well-1121 1122 studied cratons are also shown: Kaapvaal (Peslier et al., 2010; Baptiste et al., 2012); and 1123 Udachnaya (Doucet et al., 2014). Hydrogen concentrations in olivine inclusion within 1124 diamonds are also shown for comparison (Novella et al., 2015 by FTIR and Jean et al., 2016 by secondary ion mass spectrometry). Matsyuk and Langer (2004) reported two dry olivines within 1125 diamond, but without pressure of equilibrium, which prevents us to implement these data in the 1126

- 1127 figure. We encountered the same problem for olivine inclusion in diamonds from Taylor et al.
- (2016).

Pattnaik et al., Fig. 1

60 Serpentine 50 Amphibole Contamination by hydrous minerals ----P7 Garnet P3/6/1 Diopside P3 Diopside P3/5/1 Olivine 40 Absorption coefficient (cm⁻¹) 30 L Ę 20 10 0 4000 3800 3600 3400 3200 3000 Wavenumber (cm⁻¹)

Fig. 5 Pattnaik et al.,

Figure 7, Pattnaik et al.

Fig. 8 Pattnaik et al.

Fig. 9, Pattnaik et al.

Table 1. Sample types, mineral modes and estimated equilibrium temperatures and pressures for peridotites and mantle minerals from Dharwar craton.

Sample no.	Location	Sample Type	Rock type/Mineral	Mineral modes (vol.%)	T _{BK90} (⁰C)	P _{NG} (GPa)	T _{TA} (⁰C)	P _{NG} (GPa)
P3/5/1	Pipe 3	Mantle xenolith	Spinel ±Garnet Lherzolite	Ol ₇₇ Opx ₁₅ Cpx ₇ Sp ₁	940	3.0	710	2.5
P3/6/1	Pipe 3	Mantle xenolith	Garnet Lherzolite	Ol ₇₄ Opx ₁₃ Cpx ₉ Grt ₄	1050	4.5	831	3.1
P3/6/3*	Pipe 3	Mantle mineral	Olivine grains in matrix	3 grains	1270	5.5	1179	5
P1P2	Pipe 1	Mineral separated from mantle xenolith	Diopside	6 grains	n.d.	n.d.	n.d.	n.d.
P1P2	Pipe 1	Mineral separated from mantle xenolith	Garnet	2 grains	n.d.	n.d.	n.d.	n.d.
P3D	Pipe 3	Mineral separated from mantle xenolith	Garnet	3 grains	n.d.	n.d.	n.d.	n.d.
P3P	Pipe 3	Mineral separated from mantle xenolith	Garnet	1 grains	n.d.	n.d.	n.d.	n.d.
P3	Pipe 3	Mineral separated from mantle xenolith	Diopside	1 grain	n.d.	n.d.	n.d.	n.d.
P6	Pipe 6	Mineral separated from mantle xenolith	Diopside	8 grains	n.d.	n.d.	n.d.	n.d.
P7	Pipe 7	Mineral separated from mantle xenolith	Garnet	3 grains	n.d.	n.d.	n.d.	n.d.
P10	Pipe 10	Mineral separated from mantle xenolith	Garnet	1 grain	n.d.	n.d.	n.d.	n.d.

OI - olivine; Cpx - clinopyroxene; Opx - orthopyroxene; Sp - spinel; Grt - Garnet T_{BK90} - Brey and Kohler (1990); T_{TA} - Taylor (1998); P_{NG} - Nickel and Green (1985) Temperatures (T_{TA}) and Pressures (P_{NG}) were calculated assuming an initial pressure of 3 GPa for spinel peridotite and 5 GPa for garnet peridotites. * Garnet was not present in this section, we assumed 5 vol. % of garnet as observed in samples from the same pit (Ganguly and Bhattacharya, 1987).

Table 2. Typical average major, minor and trace element compositions of mantle minerals from Dharwar craton ; n gives the number of analysed EPMA points to obtain the reported average values. Between 2 and 9 points were analyzed by LA-ICP-MS. Mg#=100×Mg/(Mg+Fe) in atomic ratio and Cr#= 100×Cr/(Cr+AI). NB: EPMA analyses were performed on thin section while FTIR were performed on thick hand polished grains and sections.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample no				P3	/5/1							P3/6/1					P3/6/3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Minerals	OI		Opx	10	Cpx		Spl		OI		Onx	1 0/0/1	Cox		Grt		0	
	wt.%	n=8	σ	n=25	σ	n=4	σ	n=6	σ	n=5	σ	n=2	σ	n=8	σ	n=9	σ	n=12	σ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂	41.3	(0.3)	57.6	(0.4)	53.0	(0.3)	0.03	(0.03)	40.8	(0.5)	57.4	(0.1)	53.3	(0.8)	41.8	(0.4)	41.0	(0.7)
$ \begin{array}{c ccccc} A_{1,0} & 0.01 & [0.00] & 0.08 & [0.04] & 0.50 & [0.21] & 17.3 & [0.3] & 0.03 & [0.02] & 0.06 & [0.01] & 3.20 & [0.21] & 21.90 & [0.3] & 0.01 & [0.01] \\ \hline Cr_{2,0} & 0.08 & [0.02] & 0.31 & [0.05] & 0.22 & 0.30 & 0.11 & 15.8 & [0.5] & 0.31 & 7.60 & [0.00] & 0.33 & [0.00] & 10.80 & [0.11] & 2.70 & [0.2] & 0.26 & [0.30] \\ \hline MrO & 0.08 & [0.25] & 0.11 & [0.2] & 2.30 & [0.4] & 15 & [0.3] & 7.60 & [0.30] & 4.60 & [0.01] & 2.30 & [0.2] & 7.10 & [0.1] & 7.60 & [0.3] \\ \hline MrO & 0.08 & [0.25] & 0.11 & [0.21] & 0.22 & [0.33] & 0.01 & [0.01] & 0.33 & [0.00] & 10.93 & [0.00] & 10.93 & [0.00] & 10.90 & [0.16 & 0.01] \\ \hline MrO & 0.08 & [0.25] & 0.11 & [0.01] & 0.01 & [0.01] & 0.01 & [0.01] & 0.20 & [0.02 & 0.44 & [0.05] & 19.90 & [11 & 460 & [0.05] & 0.02 & [0.02] \\ \hline Mag & 0.01 & [0.01] & 0.02 & [0.03] & 0.5 & [0.1] & 0.01 & [0.01] & 0.01 & [0.01] & 0.44 & [0.00] & 19.90 & [11 & 460 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.03] & 0.01 & [0.01] & 0.01 & [0.01] & 0.01 & [0.01] & 0.04 & [0.00] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.02] & 0.02 & [0.03] & 0.01 & [0.01] & 0.01 &$	TiO ₂	0.00	(0.00)	0.00	(0.01)	0.17	(0.01)	0.00	(0.01)	0.02	(0.03)	0.13	(0.03)	0.36	(0.07)	0.22	(0.03)	0.01	(0.02)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al ₂ O ₂	0.01	(0.00)	0.96	(0.04)	0.50	(0.3)	17.3	(0.3)	0.03	(0.02)	0.96	(0.01)	3.20	(0.3)	21.90	(0.3)	0.01	(0.01)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cr ₂ O ₃	0.03	(0.02)	0.31	(0.05)	0.30	(0.1)	53.8	(0.5)	0.01	(0.01)	0.33	(0.00)	1.80	(0.1)	2.70	(0.2)	0.02	(0.03)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FeO	6.80	(0.2)	4.30	(0.2)	2.30	(0.4)	15	(0.3)	7.60	(0.30)	4.60	(0.10)	2.30	(0.2)	7.10	(0.1)	7.60	(3.7)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO	0.08	(0.25)	0.10	(0.2)	0.02	(0.03)	0.3	(0.1)	0.09	(0.06)	0.08	(0.08)	0.07	(0.07)	0.33	(0.06)	0.13	(0.08)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MgO	52.61	(0.01)	37.00	(0.02)	18.50	(0.9)	13.9	(0.2)	51.8	(0.67)	36.00	(0.10)	16.30	(0.5)	21.90	(0.2)	50.00	(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CaO	0.04	(0.02)	0.19	(0.05)	23.00	(1)	0.01	(0.01)	0.02	(0.02)	0.44	(0.06)	19.90	(1)	4.60	(0.08)	0.04	(0.02)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₂ O	0.01	(0.01)	0.02	(0.01)	0.5	(0.1)	0.01	(0.01)	0.01	(0.01)	0.14	(0.01)	2.40	(0.8)	0.07	(0.02)	0.02	(0.02)
Ni 0.29 (0.01) 0.10 (0.01) 0.04 (0.01) 0.03 (0.01) 0.01 0.21 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.	K ₂ O	0.00	(0.00)	0.01	(0.00)	0.7	(0.5)	0.01	(0.01)	0.01	(0.01)	0.00	(0.00)	0.02	(0.03)	0.00	(0.01)	0.01	(0.01)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NiO	0.29	(0.01)	0.10	(0.01)	0.04	(0.01)	0.06	(0.01)	0.35	(0.01)	0.04	(0.01)	0.03	(0.01)	0.00	(0.01)	0.31	(0.01)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total	101.18		100.58		99.04		100.42		100.78		100.13		99.66		100.60		99.10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg#	93.3		93.9		93.6				92.4		93.3		92.7				92.2	
ppm fm2 mm1 mm1 mm1 mm1 mm2 mm3 mm3 <thm3< th=""> <thm3< th=""> <thm3< th=""></thm3<></thm3<></thm3<>	Cr#	-		17.7		24.4				•		18.7		27.5				-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ppm	n=2	(077)	n=1		n=1		n=1		n=2	(00)	n=2	(00)	n=3	(7)	n=2	(0.0)	n=2	(0.5.0)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NI	2932	(277)	864		344.00		532		2932	(39)	864	(62)	270	(7)	31	(2.8)	2492	(356)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IVIN No	/16	(44)	432		1142.00		1301 b.d.l		/16	(3)	431	(21)	499	(26)	2629	(125)	6/6	(9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ti	52	(3)	23		1310.00		62		03	(10)	200	(24)	1678	(39)	1593	(17)	34	(73)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	la la	hdi	(4)	h d l		2 04		0.02		b d l	(5)	hdl	hdl	26.00	(20)	0.06	(0.03)	h d l	(04)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce	b.d.l		0.02		41.23		0.52		b.d.l		b.d.l	b.d.l	78.00	(5)	0.76	(0.16)	b.d.l	
V 2.45 (0.06) 33 501 2045 5.60 (0.2) 15 (2.83) 560 (8.85) 242 (70) b.d.l b.d.l Sample nols D1 Grt Grt Grt D1 Grt	Li	n.d.		n.d.		n.d.		n.d.		n.d.		n.d.		n.d.	(-)	n.d.	(*****)	n.d.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	2.45	(0.06)	33		501		2045		5.60	(0.2)	15	(2.83)	560	(8.85)	242	(70)	b.d.l	b.d.l
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			
	Complexe	D100		D1D0		DOD		DOD		Do		De		D7 1		D7 0		D10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample no.	P1P2		P1P2		P3D		P3P		P3		P6		P7-1		P7-2		P10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample no. Minerals	P1P2 Di		P1P2 Grt		P3D Grt		P3P Grt		P3 Di	a	P6 Di	a	P7-1 Grt		P7-2 Grt	a	P10 Grt	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.%	P1P2 Di n=22	σ (0.2)	P1P2 Grt n=4	σ (0.3)	P3D Grt n=6	σ (0.3)	P3P Grt n=4	σ (0.2)	P3 Di n=2	σ (0.1)	P6 Di n=4	σ (0.3)	P7-1 Grt n=3 41.6	σ (0.7)	P7-2 Grt n=3	σ (0.3)	P10 Grt n=4	σ (0.3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂	P1P2 Di n=22 54.9	σ (0.2)	P1P2 Grt n=4 42.8	σ (0.3)	P3D Grt n=6 42.3	σ (0.3)	P3P Grt n=4 43.2	σ (0.2)	P3 Di n=2 55.7	σ (0.1)	P6 Di n=4 55.5	σ (0.3)	P7-1 Grt n=3 41.6	σ (0.7)	P7-2 Grt n=3 41.1	σ (0.3)	P10 Grt n=4 42.3	σ (0.3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al-O	P1P2 Di n=22 54.9 0.13 1.43	σ (0.2) (0.03)	P1P2 Grt n=4 42.8 0.16 21.71	σ (0.3) (0.03)	P3D Grt n=6 42.3 0.29 22.30	σ (0.3) (0.04) (0.5)	P3P Grt n=4 43.2 0.25 22.30	σ (0.2) (0.02)	P3 Di n=2 55.7 0.40 2.10	σ (0.1) (0.01)	P6 Di n=4 55.5 0.23 2.30	σ (0.3) (0.06) (0.2)	P7-1 Grt n=3 41.6 0.07 19.70	σ (0.7) (0.02) (0.3)	P7-2 Grt n=3 41.1 0.02 17 50	σ (0.3) (0.00)	P10 Grt 42.3 0.21 18.40	σ (0.3) (0.01)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr.O.	P1P2 Di n=22 54.9 0.13 1.43 1.00	σ (0.2) (0.03) (0.06) (0.1)	P1P2 Grt n=4 42.8 0.16 21.71 2 20	σ (0.3) (0.03) (0.03) (0.1)	P3D Grt n=6 42.3 0.29 22.30 2.35	σ (0.3) (0.04) (0.5) (0.66)	P3P Grt n=4 43.2 0.25 22.30 1.80	σ (0.2) (0.02) (0.4) (0.7)	P3 Di n=2 55.7 0.40 2.10 0.60	σ (0.1) (0.01) (0.02) (0.20)	P6 Di n=4 55.5 0.23 2.30 2.55	σ (0.3) (0.06) (0.2) (0.55)	P7-1 Grt n=3 41.6 0.07 19.70 5.10	σ (0.7) (0.02) (0.3) (0.26)	P7-2 Grt n=3 41.1 0.02 17.50 8.12	σ (0.3) (0.00) (0.1)	P10 Grt n=4 42.3 0.21 18.40 6.90	σ (0.3) (0.01) (069) (0.8)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00	σ (0.2) (0.03) (0.06) (0.1) (0.2)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50	σ (0.3) (0.03) (0.03) (0.1) (0.1)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00	σ (0.3) (0.04) (0.5) (0.66) (0.9)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96	σ (0.2) (0.2) (0.4) (0.7) (0.05)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98	σ (0.1) (0.01) (0.02) (0.20) (0.2)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15	σ (0.3) (0.06) (0.2) (0.55) (0.02)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40	σ (0.7) (0.02) (0.3) (0.26) (0.1)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56	σ (0.3) (0.00) (0.1) (0.02) (0.51)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50	σ (0.3) (0.01) (069) (0.8) (0.3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25	σ (0.3) (0.03) (0.03) (0.1) (0.1) (0.13)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.06)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06	σ (0.1) (0.01) (0.02) (0.20) (0.2) (0.28)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MqO	P1P2 Di n=22 54.9 0.13 1.43 1.43 1.00 3.00 0.10 20.50	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00	σ (0.3) (0.03) (0.03) (0.1) (0.1) (0.13) (0.10)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07) (0.7)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90	σ (0.2) (0.4) (0.7) (0.05) (0.06) (0.2)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60	σ (0.1) (0.02) (0.20) (0.2) (0.08) (0.1)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04) (0.2)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26 22.90	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13) (0.4)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.2) (0.3) (0.5)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59	σ (0.3) (0.03) (0.1) (0.1) (0.13) (0.10) (0.04)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07) (0.7) (0.3)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35	σ (0.2) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00	σ (0.1) (0.02) (0.20) (0.2) (0.08) (0.1) (0.20)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04) (0.2) (0.3)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.10 5.40 0.26 22.90 4.26	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13) (0.4) (0.06)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5)
Nic 0.05 (0.01) 0.01 (0	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05	σ (0.3) (0.03) (0.1) (0.1) (0.13) (0.10) (0.04) (0.02)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20 0.07	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07) (0.7) (0.3) (0.10)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.2) (0.10) (0.1)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43	σ (0.1) (0.02) (0.20) (0.2) (0.08) (0.1) (0.20) (0.02)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04) (0.2) (0.3) (0.2)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26 22.90 4.26 0.03	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13) (0.4) (0.06) (0.03)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.01) (0.00)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01)
	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88 0.04	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04	σ (0.3) (0.03) (0.1) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20 0.07 0.01	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.7) (0.7) (0.3) (0.10) (0.01)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01	σ (0.2) (0.02) (0.4) (0.05) (0.06) (0.2) (0.10) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03	σ (0.1) (0.02) (0.20) (0.2) (0.08) (0.1) (0.20) (0.22) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.03	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.3) (0.2) (0.01)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26 22.90 4.26 0.03 0.00	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13) (0.4) (0.06) (0.03) (0.00)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.00) (0.00)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03 0.00	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O NiO NiO	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88 0.04 0.05	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01	σ (0.3) (0.03) (0.1) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20 0.07 0.01 0.00	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07) (0.7) (0.7) (0.3) (0.10) (0.01)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01	σ (0.2) (0.02) (0.4) (0.55) (0.06) (0.2) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12	σ (0.1) (0.01) (0.02) (0.20) (0.08) (0.1) (0.20) (0.02) (0.02) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.03 0.05	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.04) (0.2) (0.3) (0.2) (0.01)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26 22.90 4.26 0.03 0.00 0.01	σ (0.7) (0.02) (0.3) (0.1) (0.13) (0.4) (0.06) (0.03) (0.00) (0.01)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00 0.01	σ (0.3) (0.00) (0.1) (0.02) (0.04) (0.01) (0.00) (0.00) (0.00) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.40 19.80 0.03 0.000 n.d	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88 0.04 0.05 99.84	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28	σ (0.3) (0.03) (0.03) (0.1) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01) (0.01)	P3D Grt n=6 42.30 2.35 7.00 0.35 7.00 0.22.20 4.20 0.07 0.01 0.00 101.00	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.7) (0.3) (0.10) (0.01) (0.01)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01 101.17	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10) (0.01) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06	σ (0.1) (0.02) (0.20) (0.2) (0.08) (0.1) (0.20) (0.02) (0.02) (0.01) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.03 0.05 100.94	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04) (0.2) (0.3) (0.2) (0.01) (0.01)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26 0.22.90 4.26 0.03 0.00 0.01 99.34	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13) (0.4) (0.06) (0.03) (0.00) (0.01)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00 99.74	σ (0.3) (0.00) (0.1) (0.2) (0.51) (0.04) (0.01) (0.01) (0.00) (0.00) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 6.50 0.03 0.00 n.d 101.02	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
ppm n=6 n=3 n=2 n=1 n=1 n=1 n=2 n=2 n=2 Ni 396 60 111 (9) 48 (21) 51 924 381 (69) 89 (7) 65 (23) n.d. Mn 753 (129) 2267 (123) 2763 (451) 2496 940 742 (57) 2071 (73) 3092 (71) n.d. Na 3770 (90) 255 (23) 428 (158) 511 17782 15253 (1306) 60 (3) 514 (154) n.d. Ti 875 (53) 1280 (305) 2544 (317) 1976 1066 758 (63) 294 (19) 274 (53) n.d. La 1.2 (0.9) b.d.l b.d.l b.d.l 0.0 10.9 11.5 (4) 0.4 0.2 (0.07) n.d. La	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total Mg#	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88 0.04 0.05 99.84 92.4	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01)	P1P2 Grt n=4 42.8 0.16 50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8	σ (0.3) (0.03) (0.03) (0.1) (0.1) (0.10) (0.04) (0.02) (0.01) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20 0.07 0.01 0.00 101.00 84.9	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.7) (0.3) (0.10) (0.01) (0.01)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01 101.17 84.9	σ (0.2) (0.4) (0.5) (0.06) (0.2) (0.10) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06 91.4	σ (0.1) (0.02) (0.20) (0.20) (0.20) (0.08) (0.1) (0.20) (0.02) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.03 0.05 100.94 93.3	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.3) (0.2) (0.01) (0.01)	P7-1 Grt n=3 41.6 0.07 5.10 5.40 0.26 0.03 0.00 0.01 99.34 88.3	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.4) (0.06) (0.03) (0.00) (0.01)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00 0.01 99.74 87.6	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.01) (0.00) (0.00) (0.00)	P10 Grt n=4 42.3 0.21 18.40 6.50 0.40 19.80 6.50 0.03 0.00 n.d 101.02 84.5	σ (0.3) (0.69) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
Ni 396 60 111 (9) 48 (21) 51 924 381 (69) 89 (7) 65 (23) n.d. Mn 753 (129) 2267 (123) 2763 (451) 2496 940 742 (57) 2071 (73) 3092 (71) n.d. Na 3770 (90) 255 (23) 428 (158) 511 17782 15253 (1306) 60 (3) 514 (154) n.d. Ti 875 (53) 1280 (305) 2544 (317) 1976 1066 758 (63) 294 (19) 274 (53) n.d. La 1.2 (0.9) b.d.l b.d.l 0.0 10.9 11.5 (4) 0.1 (0.06) b.d.l b.d.l n.d. Ce 6.0 (3) 0.4 (0.05) 0.3 (0.2) 0.3 35.2 35.0 (19)	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O NiO Total Mg# Cr#	P1P2 Di n=22 54.9 0.13 1.43 1.00 0.10 20.50 17.80 0.88 0.04 0.05 99.84 92.4 32.3	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01) (0.01)	P1P2 Grt 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3	б (0.3) (0.03) (0.1) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01) (0.01)	P3D Grt 12.30 22.30 22.30 2.35 7.00 0.30 22.20 4.20 0.07 0.01 0.00 101.00 84.9 6.6	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.7) (0.7) (0.3) (0.10) (0.01)	P3P Grt 1.80 0.25 22.30 1.80 0.32 21.90 4.35 0.05 0.01 0.01 0.01 101.17 84.9 5.1	σ (0.2) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10) (0.11) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06 91.4 16.7	σ (0.1) (0.02) (0.20) (0.20) (0.08) (0.1) (0.20) (0.02) (0.01) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 9.10 0.03 0.03 0.03 0.094 93.3 42.2	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.04) (0.2) (0.2) (0.01) (0.01)	P7-1 Grt n=3 41.6 0.07 19.70 5.40 0.26 22.90 4.26 0.03 0.00 0.01 99.34 88.3 14.8	σ (0.7) (0.02) (0.3) (0.26) (0.11) (0.13) (0.4) (0.06) (0.03) (0.03) (0.04)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.55 0.32 22.01 5.07 0.01 0.00 0.01 0.00 0.01 99.74 87.6 23.7	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.01) (0.00) (0.00) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.50 0.40 19.80 6.50 0.03 0.03 0.00 n.d 101.02 84.5 20.1	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.5) (0.01) (0.00) n.d
Mn 753 (129) 2267 (133) 2763 (451) 2496 940 742 (57) 2071 (73) 3092 (71) n.d. Na 3770 (90) 255 (23) 428 (158) 511 17782 15253 (1306) 60 (3) 514 (154) n.d. Ti 875 (53) 1280 (305) 2544 (317) 1976 1066 758 (63) 294 (19) 274 (53) n.d. La 1.2 (0.9) b.d.l b.d.l b.d.l 0.d. 10.9 11.5 (4) 0.1 (0.06) b.d.l b.d.l n.d. Ce 6.0 (3) 0.4 (0.05) 0.3 (0.2) 0.3 35.2 35.0 (19) 0.8 (0.4) 0.2 (0.07) n.d. Li 2.7 (0.4) 0.0 (0.00) 0.1 (0.10) 0.3 3.4 1.0	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Na ₂ O NiO NiO NiO Ci Mg# Ci Al Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.84 0.04 0.05 99.84 92.4 32.3 n=6	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3 n=3	G (0.3) (0.03) (0.1) (0.1) (0.1) (0.10) (0.04) (0.02) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 0.07 0.01 0.00 101.00 84.9 6.6 n=2	(0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.3) (0.10) (0.01) (0.01)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 101.17 84.9 5.1 n=1	σ (0.2) (0.02) (0.4) (0.05) (0.05) (0.2) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06 91.4 16.7 n=1	σ (0.1) (0.20) (0.20) (0.20) (0.20) (0.08) (0.1) (0.20) (0.02) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.05 100.94 93.3 42.2 n=2	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.22.90 4.26 0.03 0.00 4.26 0.03 0.01 99.34 88.3 14.8 n=2	σ (0.7) (0.22) (0.3) (0.26) (0.1) (0.3) (0.4) (0.06) (0.03) (0.00) (0.01)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 5.07 0.01 0.00 0.01 99.74 87.6 23.7 n=2	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.01) (0.00) (0.00) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03 0.00 n.d 101.02 84.5 20.1	σ (0.3) (0.01) (069) (0.8) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
Na 37/v (90) 255 (23) 428 (158) 511 17/82 15253 (1306) 60 (3) 514 (154) n.d. Ti 875 (53) 1280 (305) 2544 (317) 1976 1066 758 (63) 294 (19) 274 (53) n.d. La 1.2 (0.9) b.d.l b.d.l b.d.l b.d.l 0.0 10.9 11.5 (4) 0.1 (0.06) b.d.l	Sample no. Minerals wt.% SiO ₂ TiO ₂ A ₂ O ₃ Cr ₂ O ₃ NiO Na ₂ O Cr ₄ Ppm Ni Ni	P1P2 Di n=22 54.9 0.13 1.43 1.00 0.10 20.50 0.10 20.50 0.88 0.04 0.05 99.84 92.4 32.3 n=6 396	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3 n=3 111	σ (0.3) (0.03) (0.1) (0.1) (0.10) (0.04) (0.02) (0.01) (0.01) (0.01)	P3D Grt n=6 42.3 0.29 22.35 7.00 0.30 22.20 4.20 0.07 0.01 0.00 101.00 84.9 6.6 n=2 48	σ (0.3) (0.64) (0.5) (0.66) (0.9) (0.7) (0.7) (0.3) (0.10) (0.01) (0.01)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01 0.01 0.01 101.17 84.9 5.1 n=1 51 212	σ (0.2) (0.2) (0.4) (0.7) (0.05) (0.2) (0.10) (0.01) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.98 0.06 17.60 20.00 1.43 0.02 0.12 101.06 91.4 16.7 n=1 924	σ (0.1) (0.02) (0.20) (0.08) (0.1) (0.20) (0.02) (0.02) (0.01)	P6 Di n=4 55.5 2.30 2.55 2.15 2.55 2.15 0.07 16.80 19.10 2.10 0.03 0.05 100.94 93.3 42.2 n=2 381	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.3) (0.2) (0.01) (0.01)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.290 4.26 0.03 0.00 0.01 99.34 88.3 14.8 88.3 14.8 9.92	σ (0.7) (0.02) (0.3) (0.26) (0.1) (0.13) (0.4) (0.03) (0.00) (0.01)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00 0.01 99.74 87.6 23.7 n=2 65 2000	σ (0.3) (0.00) (0.1) (0.02) (0.04) (0.04) (0.01) (0.00) (0.00) (0.00) (0.01)	P10 Grt n=4 42.3 0.21 18.40 6.50 0.40 19.80 6.50 0.03 0.00 n.d 101.02 84.5 20.1 n.d.	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
II 875 (53) 1260 (305) 2544 (317) 1976 1066 758 (63) 294 (19) 274 (53) n.d. La 1.2 (0.9) b.d.l b.d.l b.d.l 0.0 10.9 11.5 (4) 0.1 (0.06) b.d.l b.d.l b.d.l b.d.l b.d.l n.d. Ce 6.0 (3) 0.4 (0.05) 0.3 (0.2) 0.3 35.2 35.0 (19) 0.8 (0.4) 0.2 (0.07) n.d. Li 2.7 (0.4) 0.0 (0.00) 0.1 (0.10) 0.3 3.4 1.0 (0.4) n.d. n.d. V 154 (80) 15 (6) 236 (42) 134 325 464 (71) 333 (42) 10.0 (30) n.d.	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO Mg0 CaO Na ₂ O NiO Total Mg# Cr# Ppm Ni Ni	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.84 0.04 0.05 99.84 92.4 32.3 n=6 396 753 0720	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.04) (0.01) (0.01) (0.01) (0.01)	P1P2 Grt 1=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.04 0.01 100.28 85.8 6.3 n=3 111 2267 ocr	σ (0.3) (0.03) (0.03) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.35 7.00 0.22.20 4.20 0.01 0.00 101.00 101.00 84.9 6.6 n=2 48 2763	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.7) (0.7) (0.7) (0.1) (0.10) (0.10) (0.01) (0.01) (0.01) (21) (455)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 21.90 4.35 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06 91.4 16.7 n=1 924 940	σ (0.1) (0.01) (0.20) (0.2) (0.2) (0.2) (0.1) (0.20) (0.02) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.03 0.05 100.94 93.3 42.2 n=2 381 742	σ (0.3) (0.06) (0.2) (0.05) (0.02) (0.04) (0.2) (0.01) (0.01) (0.01) (69) (57)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.10 5.40 0.22.90 4.26 0.03 0.00 0.01 9.34 88.3 14.8 n=2 89 2071	с (0.7) (0.02) (0.3) (0.26) (0.1) (0.4) (0.06) (0.03) (0.00) (0.01) (7) (73)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 9.74 87.6 23.7 n=2 87.6 23.7 n=2 65 3092	σ (0.3) (0.00) (0.1) (0.02) (0.01) (0.04) (0.01) (0.00) (0.00) (0.00) (0.01) (23) (71) (75)	P10 Grt n=4 42.3 0.21 18.40 6.50 0.450 0.50 0.00 n.d 19.80 6.50 0.00 n.d 19.80 6.50 0.00 n.d. 20.1 n.d. n.d.	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
La 1.2 (0.3) 0.0.1 0.0.1 0.0.1 0.0.1 0.0.1 0.0.1 10.9 11.5 (4) 0.1 (0.0b) 0.0.1 0.0.1 n.d. Ce 6.0 (3) 0.4 (0.05) 0.3 (0.2) 0.3 35.2 35.0 (19) 0.8 (0.4) 0.2 (0.07) n.d. Li 2.7 (0.4) 0.0 (0.00) 0.1 (0.10) 0.3 3.4 1.0 (0.4) n.d. n.d. V 154 (80) 15 (6) 236 (42) 134 325 464 (71) 333 (42) 100.0 (30) n.d.	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Na ₂ O K ₂ O Total Mg# Cr# Ppm Ni Na T	P1P2 Di n=22 54.9 0.13 1.00 3.00 0.10 20.50 17.80 0.05 99.84 92.4 32.3 n=6 396 753 3770 0.275	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01) (0.01) (0.01) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3 n=3 111 2267 2555 1000	σ (0.3) (0.03) (0.03) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20 0.07 0.01 0.00 101.00 84.9 6.6 n=2 48 2763 428 2764	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.3) (0.10) (0.01) (0.01) (0.01) (0.01) (0.11) (0.5)	P3P Grt 1=4 43.2 0.25 22.300 6.96 0.32 21.90 4.35 0.05 0.01 101.17 84.9 5.1 n=1 5.1 2496 511 2496	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 0.14 16.7 n=1 924 940 17782	σ (0.1) (0.01) (0.02) (0.02) (0.08) (0.1) (0.02) (0.02) (0.02) (0.01) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 0.03 0.05 100.94 93.3 42.2 n=2 381 742 15253 750	σ (0.3) (0.06) (0.2) (0.02) (0.04) (0.2) (0.2) (0.3) (0.2) (0.01) (0.01) (0.01) (0.01) (0.01)	P7-1 Grt n=3 41.6 0.07 19.70 5.10 5.40 0.26 0.22.90 4.26 0.03 0.00 0.01 99.34 88.3 14.8 n=2 89 2071 60 0.04	с (0.7) (0.02) (0.3) (0.26) (0.1) (0.4) (0.06) (0.03) (0.00) (0.01) (0.01) (73) (73) (3) (40)	P7-2 Grt n=3 41.1 0.02 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00 0.01 99.74 87.6 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7	σ (0.3) (0.00) (0.1) (0.2) (0.51) (0.04) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.1) (0.1)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03 0.00 n.d 101.02 84.5 20.1 n.d. n.d. n.d. n.d.	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
Li 2.7 (0.4) 0.0 (0.00) 0.1 (0.10) 0.3 3.4 1.0 (0.4) n.d. n.d. n.d. V 154 (80) 15 (6) 236 (42) 134 325 464 (71) 333 (42) 1000 (30) n.d.	Sample no. Minerals wt.% SiO ₂ TiO ₂ TiO ₂ Cr ₂ O ₃ Cr	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.68 8 0.04 0.05 99.84 92.4 32.3 n=6 753 396 755 37770 875	σ (0.2) (0.03) (0.1) (0.2) (0.3) (0.5) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07) (0.0	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3 111 2265 1280 255 1280 255	с (0.3) (0.03) (0.03) (0.1) (0.13) (0.10) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.03) (0.03) (0.03) (0.13) (0.03) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.12) (0.13) (0.12) (P3D Grt n=6 42.3 0.29 2.35 7.00 0.30 22.20 4.20 0.01 0.00 101.00 84.9 6.6 n=2 48 27634 428 2544	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.7) (0.7) (0.3) (0.10) (0.01) (0.01) (0.01) (0.01) (451) (158) (317) b d l	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01 101.17 84.9 5.1 101.17 84.9 5.1 12496 511 1976	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06 91.4 16.7 n=1 924 940 940 17782 1066	σ (0.1) (0.02) (0.20) (0.20) (0.20) (0.01) (0.02) (0.01) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.03 0.05 100.94 93.3 42.2 n=2 381 742 381 75253 7588 15253	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04) (0.2) (0.01) (0.01) (0.01) (0.01) (57) (1306) (63) (4)	P7-1 Grt n=3 41.6 0.07 5.10 5.10 5.40 0.26 22.90 4.26 0.03 0.00 0.01 99.34 88.3 14.8 n=2 89 2071 60 294	<u>с</u> (0.7) (0.02) (0.3) (0.26) (0.1) (0.4) (0.06) (0.00) (0.00) (0.01) (7) (73) (3) (19) (195)	P7-2 Grt n=3 41.1 0.02 5.56 0.32 22.01 5.07 0.01 0.00 0.01 0.00 0.01 99.74 87.6 23.7 n=2 65 3092 514 274 2514	σ (0.3) (0.00) (0.1) (0.02) (0.51) (0.04) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.53) (71) (154) (53)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03 0.00 n.d. 101.02 84.5 20.1 n.d. n.d. n.d. n.d. n.d.	σ (0.3) (0.01) (069) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d
V 154 (80) 15 (6) 236 (42) 134 325 464 (71) 333 (42) 100.0 (30) nd	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Na ₂ O NiO Tota# Cr# Ppm Ni Ni Cr# Cr#	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88 0.04 99.84 92.4 92.4 92.4 32.3 n=6 396 753 3770 875 1.2 6.0	σ (0.2) (0.03) (0.06) (0.1) (0.2) (0.07) (0.3) (0.5) (0.04) (0.01) (0.01) (0.01) (0.01)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3 6.3 111 2267 255 1280 b.d.l 0.4	с (0.3) (0.03) (0.03) (0.1) (0.1) (0.1) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (123) (23) (305) b.d.l (0.05)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 0.30 22.00 4.20 0.07 0.01 0.00 101.00 84.9 763 428 2544 b.d.l 0.3	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07) (0.7) (0.3) (0.10) (0.01) (0.01) (0.01) (0.01) (21) (451) (158) (317) b.d.l (0.2)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01 101.17 84.9 5.1 n=1 2496 511 1976 0.0 3	σ (0.2) (0.02) (0.4) (0.7) (0.05) (0.06) (0.2) (0.10) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 2.00 1.43 0.02 101.06 91.4 16.7 n=1 924 940 17782 1066 10.9 35.2	б (0.1) (0.02) (0.20) (0.20) (0.08) (0.1) (0.20) (0.02) (0.01) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 2.10 0.05 100.94 93.3 42.2 n=2 381 742 381 742 35.5 55.5 25.6	σ (0.3) (0.2) (0.55) (0.02) (0.04) (0.2) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (0.03) (0.04) (0.05) (0.02) (0.05) (0.02) (0.04) (0.05) (0.02) (0.05) (0.02) (0.04) (0.02) (0.05) (0.02) (0.04) (0.04) (0.04) (0.05) (0.02) (0.05) (0.02) (0.05) (0.02) (0.04) (0.04) (0.04) (0.05) (0.02) (0.05) (0.04) (0.04) (0.05) (0.04) (0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0	P7-1 Grt n=3 41.6 0.07 5.10 5.40 0.26 22.90 4.26 0.03 0.00 0.01 99.34 88.3 14.8 n=2 89 2071 60 294 0.8	с (0.7) (0.02) (0.3) (0.26) (0.11) (0.4) (0.03) (0.00) (0.01) (0.01) (77) (73) (3) (19) (0.06) (0.4)	P7-2 Grt n=3 41.1 17.50 8.12 5.56 0.32 22.01 5.07 0.01 0.00 0.01 99.74 87.6 23.7 n=2 3092 514 87.6 23.7 n=2 3092 514 0.2 2 514 0.2 2 5 3092 5 1 4 0.2 2 5 5 6 0.3 2 2 0.1 1 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	σ (0.3) (0.00) (0.51) (0.04) (0.04) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03 0.00 n.d 101.02 84.5 20.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.05) (0.01) n.d
	Sample no. Minerals wt.% SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O NiO Total Mg# Cr# Ppm Ni Na Ti La Ce Li	P1P2 Di n=22 54.9 0.13 1.43 1.00 3.00 0.10 20.50 17.80 0.88 0.04 0.05 99.84 92.4 32.3 770 875 3770 875 3770 875 2,7	б (0.2) (0.06) (0.06) (0.1) (0.07) (0.3) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.0) (129) (90) (53) (0.9) (3) (0.4)	P1P2 Grt n=4 42.8 0.16 21.71 2.20 6.50 0.25 22.00 4.59 0.05 0.04 0.01 100.28 85.8 6.3 n=3 111 2267 255 1280 b.d.l 0.4 0.0	с (0.3) (0.03) (0.1) (0.1) (0.1) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)	P3D Grt n=6 42.3 0.29 22.30 2.35 7.00 0.30 22.20 4.20 0.07 0.01 0.00 101.00 84.9 6.6 n=2 48 2763 428 2763 428 2544 b.d.l 0.3 0.1	σ (0.3) (0.04) (0.5) (0.66) (0.9) (0.07) (0.3) (0.10) (0.01) (0.01) (0.01) (0.01) (0.01) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.01) (0.01) (0.02) (0.10)	P3P Grt n=4 43.2 0.25 22.30 1.80 6.96 0.32 21.90 4.35 0.05 0.01 0.01 0.01 101.17 84.9 5.1 n=1 511 1976 511 1976 0.0 0.3	(0.2) (0.02) (0.4) (0.7) (0.05) (0.2) (0.10) (0.01) (0.01) (0.01)	P3 Di n=2 55.7 0.40 2.10 0.60 2.98 0.06 17.60 20.00 1.43 0.03 0.12 101.06 91.4 16.7 n=1 924 17782 1060 10.9 35.2 3.4	σ (0.1) (0.02) (0.20) (0.20) (0.08) (0.1) (0.20) (0.02) (0.01) (0.01)	P6 Di n=4 55.5 0.23 2.30 2.55 2.15 0.07 16.80 19.10 0.03 0.05 100.94 93.3 42.2 n=2 381 752 31.7 758 11.5 35.0 0.0 10	σ (0.3) (0.06) (0.2) (0.55) (0.02) (0.04) (0.2) (0.01) (0.01) (0.01) (0.01) (57) (1306) (63) (4) (19) (0.4)	P7-1 Grt n=3 41.6 0.07 5.10 5.40 0.26 22.90 4.26 0.03 0.00 0.01 99.34 88.3 14.8 n=2 89 2071 60 294 0.1 0.8 4 201 10 8 8 0.2 14.8 0.01 14.8 0.01 14.8 0.01 14.8 0.02 14.8 0.01000000000000000000000000000000000	σ (0.7) (0.3) (0.26) (0.1) (0.4) (0.03) (0.04) (0.05) (0.01) (7) (73) (3) (19) (0.06) (0.4)	P7-2 Grt n=3 41.1 0.02 5.56 0.32 22.01 5.07 0.01 0.00 0.01 0.00 0.01 99.74 87.6 23.7 n=2 65 3092 514 274 b.d.1 0.2 2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.	σ (0.3) (0.00) (0.1) (0.22) (0.51) (0.04) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.11) (154) (53) b.d.l (0.07)	P10 Grt n=4 42.3 0.21 18.40 6.90 6.50 0.40 19.80 6.50 0.03 0.00 n.d 101.02 84.5 20.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.	σ (0.3) (0.01) (069) (0.8) (0.3) (0.1) (0.6) (0.5) (0.01) (0.00) n.d

Table 3: Integrated normalized absorbance and hydrogen concentrations for the-mineral grains from this study

0	Thickness	Manualahara	Int. Abs. Coeff.	Paterson (1982)	Garnet or Pyroxenes Bell et al. (1995)	Olivine - Withers et al. (2012)
Sample	(mm ± 0.001)	Mineral phase	(cm-2)	(ppm wt H ₂ O) 2σ=30%	(ppm wt H ₂ O) 2σ=20-30%	(ppm wt H ₂ O) 2σ=10%
					··· ·	
			Thin sectio	ns		
P3/5/1	0.211	Orthopyroxene	455	77	88	-
P3/5/1	0.211	Orthopyroxene1	354	64	68	-
P3/5/1	0.211	Orthopyroxene2	289	53	56	-
P3/5/1	0.211	Orthopyroxene (average)	366	65	70	
P3/5/1	0.211	Garnet	Dry	Dry	-	-
P3/6/1	0.216	Diopside	contaminated	-	-	-
P3/6/1	0.216	Garnet	88	75	63	-
P3/6/3	0.211	Olivine1	82	18	-	29
P3/6/3	0.211	Olivine2	36	8	-	13
P3/6/3	0.211	Olivine3	31	7	-	11
P3/6/3	0.211	Olivine (average)	50	11	-	18
			Mineral separated from	mantle xenolith		
P1P2	0.390	Diopside1 position1	318	69	135	-
P1P2	0.390	Diopside1 position2	355	73	150	-
P1P2	0.390	Diopside1 position3	320	69	135	-
P1P2	0.390	Diopside2 position1	282	61	119	-
P1P2	0.390	Diopside2 position2	355	77	150	-
P1P2	0.390	Diopside2 position3	325	66	138	-
P1P2	0.390	Diopside3 position1	192	40	81	-
P1P2	0.390	Diopside3 position3	162	34	69	-
P1P2	0.390	Diopside3 position4	193	39	82	
P1P2	0.390	Diopside4 position1	209	41	88	
P1P2	0.390	Diopside5 position1	449	91	190	-
P1P2	0.390	Diopside6 position1	602	122	255	
P1P2	0.390	Diopside6 position2	603	122	255	
P1P2	0.390	Diopside (average)	335	69	142	
P1P2	0.590	Garnet1	359	54	258	
P1P2	0.590	Garnet1	21	5	15	-
P1P2	0.590	Garnet2	Dry	Dry	-	-
P3	0.241	Diopside	contaminated	-	-	-
P3	0.458	Garnet	Dry	Dry	-	-
P3D	0.351	Garnet	Dry	Dry	-	-
P3D	0.351	Garnet	Dry	Dry	-	-
P3D	0.351	Garnet	Dry	Dry	-	-
P6	0.336	Diopside1	528	124	223	-
P6	0.336	Diopside2	481	118	204	-
P6	0.336	Diopside3	1518	309	642	-
P6	0.336	Diopside4	308	71	130	-
P6	0.336	Diopside5	497	107	210	-
P6	0.336	Diopside6	726	162	307	-
P6	0.336	Diopside7	463	122	196	-
P6	0.336	Diopside (average)	646	145	273	-
P7	0.372	Garnet1	Dry	Dry	-	-
P7	0.372	Garnet2	Dry	Dry	-	-
P7	0.372	Garnet3	19	6	14	-
P10	0.492	Garnet	Dry	Dry		-