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Phase diagram and criticality
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We consider a massive particle driven with a constant force in a periodic potential and subjected to
a dissipative friction. As a function of the drive and damping, the phase diagram of this paradigmatic
model is well known to present a pinned, a sliding, and a bistable regime separated by three distinct
bifurcation lines. In physical terms, the average velocity v of the particle is nonzero only if either
(i) the driving force is large enough to remove any stable point, forcing the particle to slide, or (ii)
there are local minima but the damping is small enough, below a critical damping, for the inertia to
allow the particle to cross barriers and follow a limit cycle; this regime is bistable and whether v > 0
or v = 0 depends on the initial state. In this paper, we focus on the asymptotes of the critical line
separating the bistable and the pinned regimes. First, we study its behavior near the “triple point”
where the pinned, the bistable, and the sliding dynamical regimes meet. Just below the critical
damping we uncover a critical regime, where the line approaches the triple point following a power-
law behavior. We show that its exponent is controlled by the normal form of the tilted potential
close to its critical force. Second, in the opposite regime of very low damping, we revisit existing
results by providing a simple method to determine analytically the exact behavior of the line in the
case of a generic potential. The analytical estimates, accurately confirmed numerically, are obtained
by exploiting exact soliton solutions describing the orbit in a modified tilted potential which can be
mapped to the original tilted washboard potential. Our methods and results are particularly useful
for an accurate description of underdamped nonuniform oscillators driven near their triple point.

I. INTRODUCTION

Let x(t) be the one-dimensional position of an under-
damped particle driven in a generic differentiable peri-
odic potential V (x) with spatial period `, described by
the deterministic equation of motion

mẍ+ γẋ = −V ′(x) + f , (1)

where m is the mass of the particle, γ a friction con-
stant corresponding to a kinetic friction force propor-
tional to the instantaneous velocity, and f > 0 is a con-
stant driving force. Equation (1) is a ubiquitous differ-
ential equation. It provides both a textbook example of
bifurcations in two-dimensional nonlinear systems (e.g.,
see Ref. [1]) and a useful model for large number of con-
crete physical systems, such as nonuniform oscillators.
Already the simple case V (x) ∝ cos(2πx/`) describes
both the simple pendulum driven by a constant torque
and the underdamped Josephson junction driven by a
constant external electric current. In the latter exam-
ple, x(t) represents the superconducting order parameter
phase difference across a small junction separating two
superconducting regions with a capacitance C ∝ m and
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electric resistance R ∝ γ−1, with all these ideal elements
effectively connected in parallel in the so-called Stewart–
McCumber model [2]. Note that the steady-state time-
averaged velocity v ≡ 〈ẋ〉 as a function of f models the
voltage-current characteristics of the junction. Many of
the properties predicted from Eq. (1) have been observed
experimentally in these superconducting devices [3].

The phase diagram of the large-time behavior of so-
lutions to Eq. (1) can be solved analytically for m = 0,
i.e., in the overdamped case. We review here its deriva-
tion for comparison to the inertial case. The steady
state is entirely determined by whether the tilted po-
tential V (x) − fx presents barriers. A continuous de-
pinning transition exists at the unique threshold force
f0
c = maxx V ′(x) = V ′(x∗) at which barriers vanish
when increasing the drive f from 0. Indeed, below f0

c ,
barriers exist and the damping pins the particle in a
local minimum at large time; the average velocity is
0. At f0

c , a saddle-node bifurcation occurs. Above
f0
c , the instantaneous velocity becomes periodic in time:
ẋ(t) = ẋ(t+ τ), with a positive average value v. We have
that v ∼ (f − f0

c )β if 0 < f − f0
c � f0

c , and v ≈ f/γ
if f � f0

c . The so-called depinning exponent β ≥ 0
depends on the normal form of the saddle-node bifurca-
tion at f0

c . For typical analytical potentials such that
f − V ′(x) ≈ (f − f0

c ) + k|x − x∗|2 for |f − f0
c | � f0

c

with a constant k > 0 and |x − x∗| � `, we have the
well known square-root depinning law with β = 1/2. It
is derived as follows: On a time period τ , the trajectory
along the limit cycle spends most of its time close to the
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Figure 1. Phase diagram of Eq. (1) for a driven particle in
the washboard potential V (x) = − cos(x), in the large-time
asymptotics. Control parameters are the driving force f > 0
and the damping parameter α ≡ γ/

√
m. In the stable limit

cycle domain, the mean velocity v of the particle is finite (and
the motion is periodic), while it is zero in the stable fixed
point domain (the particle is pinned in a local minimum).
In the bistable regime, whether v = 0 of v > 0 depends on
the initial conditions. The magenta dash-dotted line fc(α)
represents a homoclinic bifurcation, the green dashed line a
finite-period saddle-node bifurcation, while the solid light blue
line is an infinite period bifurcation. The lines are obtained
using standard numerical integration methods for Eq. (1). In
this paper we obtain analytical expressions for fc(α) in the
α → 0 limit for an arbitrary pinning potential V (x), and
we describe the universal power-law behavior of fc(α) in the
α → αc limit when approaching the triple point where the
three bifurcation lines meet.

bottleneck at x = x∗, and thus τ =
∫ `

0 dx/[f − V
′(x)] ≈∫ `

0 dx/[(f − f
0
c ) + k|x− x∗|2] ∼ (f − f0

c )−1/2. Therefore,
since the particle travels a distance ` during the time τ ,
one has v = `/τ ∼ (f − f0

c )1/2 just above f0
c . The expo-

nent β depends on the behavior of V (x) in the vicinity of
the bottleneck. More generically, the normal form of the
saddle-node bifurcation is controlled by an expansion of
the form f−V ′(x) ≈ (f−f0

c )+k|x−x∗|Υ, and we obtain
β = 1− 1/Υ, for Υ > 1 [4]. Furthermore, the m = 0 case
of Eq. (1) can be solved analytically even in the presence
of an additive thermal Langevin noise. Analytical ex-
pressions for the thermally averaged velocity v for general
V (x) can be obtained solving the Fokker–Planck equation
for the steady-state probability [5–9]. At finite temper-
ature, the zero-temperature velocity-force characteristics
is rounded around f0

c (e.g., see Ref. [4]), and v is posi-
tive and finite for any f > 0, as thermal activation can
help to overcome barriers when 0 ≤ f < f0

c . Neverthe-
less, at small temperatures the fingerprint of the T = 0
and f = f0

c depinning transition is present and an anal-
ogy with continuous equilibrium phase transitions can be
drawn, with v representing the order parameter [10].

Compared to the overdamped case, far fewer analytical
results are known for the inertial dynamics [m > 0 in
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Figure 2. Hysteresis loops in the velocity-force characteris-
tics for V (x) = − cos(x) in Eq. (1). For high damping, cor-
responding to masses m < mc at fixed γ, with γ = 1 in this
case, the particle depins at f0

c ≡ 1 (magenta lines with empty
points), without displaying hysteresis. For masses m > mc

(green lines with filled points), there is a hysteretic depin-
ning: Slowly increasing the applied force from f = 0, the
particle depins at f0

c , acquiring a finite steady-state velocity
only above it. Then, slowly decreasing f from above f0

c , the
particle gets pinned only at the critical force fc(m) < f0

c .
In this paper we analytically calculate the hysteretic range
[f0
c − fc(m)] for masses close to mc.

Eq. (1)]. Now the phase diagram depends not only on the
properties of the tilted potential V (x)−fx but also on the
relative values of the mass m and the friction γ. For the
paradigmatic case V (x) = − cos(x), the representative
phase diagram as a function of the damping parameters
α = γ/

√
m and f is qualitatively well known [1, 11], and

shown in Fig. 1. It is characterized by three bifurcations
lines meeting at a triple point. As in the zero-mass case,
the line f = f0

c delimitates the region where the tilted
potential has local minima (f < f0

c ) or not (f ≥ f0
c ).

For α > αc, the damping is strong and having a zero
velocity or not depends only on this intrinsic property
of the tilted potential: The depinning transition occurs
at f0

c . It is described by an infinite-period bifurcation
where the stable fixed point annihilates with the unstable
fixed point and disappears as f ↑ f0

c . For f > f0
c , the

existence of a stable limit cycle implies v > 0, and as
in the overdamped case, v ∼ (f − f0

c )1/2 (though with
a nontrivial α-dependent prefactor). As α → ∞, one
recovers the zero-mass case.
In contrast, for α < αc, the damping is low enough

to allow a bistable regime when fc(α) < f < f0
c . In

that regime, there is a coexistence between a stable point
(a minimum of the tilted potential) for which v = 0,
and limit cycle (where inertia allows the particle to cross
barriers) for which v > 0. Initial conditions determine
whether v = 0 or v > 0, and varying f slowly leads to
hysteresis (see Fig. 2). The phase-space trajectories of
Fig. 3 illustrate the possible orbits in each regime. Note
that the transition line fc(α) for α < αc is described by
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a homoclinic bifurcation, for which the depinning transi-
tion occurs as v ∼ 1/| log[f − fc(α)]| as f ↓ fc(α). Such
logarithmic behavior, corresponding to a “0” depinning
exponent β, is in sharp contrast with the β > 0 expo-
nent that governs the transition for α > αc. Although
the phase diagram of Fig. 1 is obtained for the particular
case V (x) = − cos(x), it is qualitatively the same for any
smooth periodic potential presenting a single minimum
and maximum, as we show in this paper.

II. SUMMARY OF THE RESULTS

We focus on the behavior of the homoclinic bifurcation
line, which separates the stable fixed point regime from
the bistable one (see Fig. 2). We will use two comple-
mentary view points: either varying directly the damp-
ing constant α = γ/

√
m, or, at fixed friction γ, varying

the massm. The critical line will respectively be denoted
by fc(α) or fc(m). At fixed γ, to the critical damping αc
corresponds a critical mass mc = (γ/αc)2, above which
inertial effects matter.

As seen on Fig. 1, on the one hand fc(α) tends to
zero when α → 0 (i.e., in the weakly damped limit)
while it goes smoothly to f0

c , as α → αc. For V (x) =
− cos(x), Guckenheimer and Holmes used Melnikov’s
technique [12] to show that fc(α) ∼ 4α/π as α→ 0 [13].
Rather surprisingly, to the best of our knowledge, no an-
alytical prediction regarding the way fc(α) approaches
f0
c as α→ αc nor any expression for αc were reported.
Yet, as we show, the line fc(α) presents universal and

scaling properties which are important to understand if
we wish to use Eq. (1) as a toy model for more complex
extended systems with inertia. These were not reported
neither and in this work we provide elements to fill this
gap. To do so, we employ a method to derive analyt-
ically f0

c − fc(α) as a function of α close to the triple
point (α − αc � αc), including explicit expressions for
αc. We generalize the α → 0 asymptotics fc(α) ∼ 4α/π
obtained by Guckenheimer and Holmes [13] for the cosine
potential to the case of an arbitrary potential. We also
show that while the α→ 0 asymptotic scaling fc(α) ∝ α
is rather insensible to the details of the periodic poten-
tial, the scaling behavior when α → αc is of the form
f0
c −fc(α) ∼ (αc−α)δ, where the exponent δ > 0 depends
on the normal form of the bifurcation at f0

c for α > αc. If,
near the saddle-node bifurcation point x∗, the force can
be expanded as f−V ′(x) ≈ (f−f0

c )+k|x−x∗|Υ+. . ., with
k a positive constant and Υ > 1, we obtain that δ = Υ.
In particular, for the cosine potential V (x) = − cos(x),
which corresponds to the paradigmatic pendulum and
Josephson-junction problems, we obtain that the homo-
clinic line is characterized by the scaling f0

c − fc(α) ∼
(αc − α)δ, with δ = 2.

We also show that the values of αc, fc(α) and of the
prefactor of the scaling laws are nonuniversal but depend
on the details of V (x) that are relevant for a precise in-
terplay among dissipation, inertia, and drive. They can

nevertheless be also estimated analytically. To obtain
these results we exploit the fact that, associated to the
homoclinic bifurcation at fc(α), there exists a “critical
trajectory,” or homoclinic orbit, that connects a local
maximum of the tilted potential to the next one, on an
infinite time window and with ẋ → 0 at both extremal
points [see Fig. 3 (b)]. This homoclinic orbit cannot be
obtained analytically in general, and presents no obvi-
ous scaling form. To study it in spite of these issues, we
use a tilted periodic potential VF (x), different from the
original one V (x)−fx, but which has the advantage that
the homoclinic orbit at fc(α) can be found exactly (it is a
dissipative soliton). We then map the exact critical prop-
erties derived for the effective potential to the ones of the
original tilted potential V (x) − fx, to estimate fc(α) in
the regimes of interest. We show that the procedure is
quite general and applies to various cases.
For the standard Υ = 2 case, we find

fc(α) ∼ Nα, [α→ 0] (2)
f0
c − fc(α) ∼ (αc − α)2, [αc − α→ 0+] (3)

v ∼ (f − f0
c )1/2, [α > αc, f − f0

c → 0+] (4)

with an exact determination of the prefactor N [see
Eq. (59)]. In the more general case of an arbitrary value
of the exponent Υ, one finds

fc(α) ∼ Nα, α→ 0 (5)
f0
c − fc(α) ∼ (αc − α)Υ, [αc − α→ 0+] (6)

v ∼ (f − f0
c )1− 1

Υ , [α > αc, f − f0
c → 0+] (7)

with the same expression for the prefactor N .

III. ORGANIZATION OF THE PAPER

In Sec. IV, we review the properties of the critical tra-
jectory which separates static from running solutions in
the bistable regime. Then in Sec. V, we present a partic-
ular periodic potential, along with also a particular way
of tilting it, from which fc(α) for α < αc, and αc can
be determined analytically. We show how to use the re-
sults obtained from the modified tilted potential in order
to estimate these properties for the paradigmatic case
V (x) ∝ − cos(x). Scaling forms and characteristic quan-
tities, are discussed. In Sec. VG, we generalize the ap-
proach for the more general case 1 < Υ 6= 2, and discuss
the universality of the different results. In Section VI,
we review and generalize the large-damping approach of
Guckenheimer and Holmes, which allows us to determine
exactly fc(α) in the regime α � αc for a generic po-
tential. Section VII presents numerical validation of our
predictions together with additional observations. Sec-
tion VIII contains our conclusions and perspectives.
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Figure 3. Phase-space trajectories obtained numerically
from Eq. (1), using different initial conditions, for the weakly
damped case α < αc. In (a), f < fc(α): All initial con-
ditions starting at the left margin of the plot with different
velocities are finally spirally attracted to one of the periodic
images of the stable fixed points of the tilted washboard po-
tential, such that V ′(x) − f = 0 and V ′′(x) > 0. In (b),
f = fc(α): Low initial velocity trajectories are trapped but
large velocity trajectories approach the homoclinic orbit (in
purple dashed line). In (c), fc(α) < f < f0

c : Trajectories
are either trapped or acquire a finite time-averaged velocity
converging to the stable limit cycle. In (d), f = f0

c : Stable
fixed points disappear, and all trajectories are attracted to
the running periodic orbit with a finite average velocity. With
dashed lines we show trajectories starting with infinitesimally
positive velocity at one of the unstable fixed points x∗ of the
tilted potential (open circles), such that V ′(x∗) − f = 0 and
V ′′(x∗) < 0. The homoclinic orbit corresponds exactly to the
dash line in (b).

IV. THE CRITICAL TRAJECTORY

Central to our analysis is the computation of the crit-
ical trajectory x?(t) that connects, for fc(α) < f < f0

c

and α < αc, a local maximum of the tilted potential
V (x)−fx to the following one in an infinite time window.
In phase space, such trajectory, called the homoclinic or-
bit, acts as a separatrix: It separates two domains of
the initial conditions: (i) those that lead to the limit cy-
cle, which is characterized by a running periodic solution
with ẋ(t) > 0, and (ii) and those that end on a local min-
imum of the tilted potential, with ẋ(t) → 0 as t → ∞.

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−x0 x0

0
0.1
0.2
0.3
0.4
0.5

−3−2−1 0 1 2 3

V F
(x
)

x

V 0
(x
)

x

Figure 4. The nontilted (inset) and tilted (main) potentials
V0(x) and VF (x) defined by Eqs. (8) and (9), respectively (pa-
rameters are µ = g = 1 and F = 1

2F
0
c ). A critical trajectory

x?(t) of a massive particle, with the dynamics (10), is repre-
sented with a green dashed line: It joins the location −x0 of
a local maximum at time t = −∞ to its periodic image x0 at
time t =∞.

In Fig. 3(c) we depict such two classes of trajectories. In
contrast, for f < fc(α) all initial conditions are trapped
in stable fixed points, while for f ≥ fc(α) only running
solutions are stable, as shown in Figs. 3(a) and 3(d), re-
spectively. An accurate numerical analysis of the homo-
clinic orbit is specially difficult near the triple point αc we
are interested in, because the bistability range vanishes.
To make progress we will hence adopt a complementary
approach by tackling its properties analytically.

V. A SOLUBLE TILTED PERIODIC
POTENTIAL

In the definition (1) of the model, we considered a
generic pinning potential V (x) and we also took as an
example potential a cosine function. In this section, we
study a special form of potential, a periodically replicated
quartic double-well potential. It allows us to obtain the
exact critical trajectory and to obtain the exponents of
the critical region of the homoclinic line close to the triple
point.
Consider a potential

V0(x) = −g2x
4 + µ2x2 (8)

defined on [−x0, x0] with x0 = µ√
g . Since it is even [i.e.,

V0(−x0) = V0(x0)] we can make it periodic on R. We
also denote V0(x) (see Fig. 4) this periodic potential.
To model the drive of a particle living in such potential

out of equilibrium, we tilt the potential V0(x) as

VF (x) = V0(x)−
(
x− x3

3x2
0

)
F, (9)
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where the constant F represents the amplitude of a driv-
ing force. The driving force can be made periodic in the
same way as for V0(x), in the sense that the force −V ′F (x)
corresponding to VF (x) is periodic. The resulting tilted
potential VF (x) is shown on Fig. 4. The form (9) of the
drive includes a cubic contribution on top of the usual
linear one, which seems unnatural but allows us to find
an exact expression of the critical trajectory (the homo-
clinic orbit) at nonzero mass. The relation between the
parameters {g, µ, F} of this effective model and those of
a physical one will be discussed in Sec. VC. We stress
that the relation between the effective drive F and the
force f of the original model does not take a simple form
on the whole range of forces of interest. Note in passing
that the form (9) of the drive ensures that the locations
of the local maxima of V0(x) are unchanged: they remain
in ±x0 as F increases.

A. An exact critical trajectory at nonzero mass

Let us consider the dissipative dynamics (1) of a mas-
sive particle in the potential VF (x),

mẍ+ γẋ = −V ′F (x) . (10)

For values of the drive F less than the critical drive

F 0
c = 2 µ

3
√
g
, (11)

we see that the tilted potential (9) presents local minima.
This implies that at zero mass the particle gets trapped
into a local minimum and the average velocity is zero.
At nonzero mass, if the initial position of the particle is
close enough to a local minimum, then the velocity at
long times is also zero. We now determine the condition
on the mass allowing, in some range Fc(m) < F < F 0

c ,
for the coexistence of another class of trajectories that
converge to a limit cycle, and hence possesses a nonzero
average velocity v.
We find by direct computation that, for F < F 0

c , there
exists a critical trajectory x?(t) joining two local maxima
of VF (x) located in −x0 and x0, between times t = −∞
and t =∞ (see Fig. 4). It takes the form

x?(t) = x0 tanh t

τ
with τ =

√
Mc(F )
µ

, (12)

provided the mass m has the value

Mc(F ) = 1
4

(
F 0
c

F

)2(
γ

µ

)2
. (13)

The existence of such explicit solution for the critical
trajectory is not immediate, because in presence of dis-
sipation (γ > 0) and drive (F > 0) the evolution equa-
tion (10) does not preserve energy anymore and there is
no conserved quantity along the trajectory.

B. Critical mass and homoclinic bifurcation

The interpretation of the solution (12) and (13) is that
of a trajectory x?(t) that allows the particle to cross a
barrier of potential (for F < F 0

c ) by use of inertia, pro-
vided its mass takes the precise value Mc(F ). Such tra-
jectory has the threshold mass that allows it to store
enough kinetic energy when going downhill to precisely
compensate for the friction-induced dissipation along its
course. We call such a trajectory an “inertial critical tra-
jectory.” In mathematical terms, such a trajectory is a
separatrix joining the unstable point −x0 to its periodic
image x0, allowing for a homoclinic bifurcation.
Physically, if we fix a drive F < F 0

c , and increase the
mass m starting from m = 0 (keeping every other pa-
rameters fixed), then the mass Mc(F ) is the first mass
for which a trajectory joining two local maxima of VF (x)
starts to exist. Based on this, we now determine the crit-
ical mass mc of the dynamics that corresponds (at fixed
γ) to the critical damping αc. We prove that the critical
mass is equal to:

mc = 1
4

(
γ

µ

)2
. (14)

For the demonstration of this relation, we denote m?
c =

1
4
(
γ
µ

)2.
• Proof that mc ≥ m?

c : Consider a drive F < F 0
c .

For all masses m < m?
c , we see from (13) that m <

m?
c < Mc(F ), and hence there exists no inertial

critical trajectory. We thus have proved that for
all m < m?

c the asymptotic velocity is 0. Hence, as
announced, mc ≥ m?

c .

• Proof that mc ≤ m?
c : For a drive F < F 0

c , con-
sider a mass m > m?

c . We see from (13) that
there exists a domain of drive [Fc(m), F 0

c ] such
that, ∀F ∈ [Fc(m), F 0

c ], there is an inertial critical
trajectory. Since this is possible for all m > m?

c ,
this shows as announced that mc ≤ m?

c . Note that
the exact explicit expression of Fc(m) is

Fc(m) =
√
mc

m
F 0
c . (15)

From the previous reasoning, we see that the expres-
sion (15) is precisely that of the homoclinic bifurcation
line of the model (on the range of mass m > mc). Trans-
lating the results (14) and (15) from the variable m (at
fixed γ) to the damping variable α = γ/

√
m, one obtains

the following expressions for the critical damping αc and
the homoclinic line Fc(α):

αc = 2µ , (16)

Fc(α) = α

2µ = α

αc
(for α ∈ [0, αc]) . (17)
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Figure 5. Landscape of force F (x) = −V ′(x) + f at external
force f close to depinning (f = f0

c−δf with δf > 0), presenting
the critical points x±c = xc ±

√
δf/κ .

We emphasize that the relation between the effective
drive F and the physical force f is not direct: As we
now detail, these parameters are not scaling in the same
way in the two regimes of interest (the low-damping limit
and the vicinity of the triple point). In particular, if the
homoclinic line Fc(α) is linear in α when α approaches
αc from below, then this will not be the case for fc(α).

C. Parameters of the effective model close to the
depinning point of a physical model

We now come back to the model of Eq. (1) with a
generic periodic potential V (x) of spatial period `, and
we assume that it is monotonous between its unique min-
imum and the closest maxima (see Fig. 5). A concrete
example is given by the cosine potential

Vcos(x) = f0`
cos 2πx

`

2π . (18)

The corresponding force F (x), to which the particle is
subjected, includes an external constant force f with
F (x) = −V ′(x) + f . For the cosine potential, this gives:

Fcos(x) = f0 sin 2πx
`

+ f . (19)

Along a period, the contribution −V ′(x) to the force
presents a minimum in xc. The corresponding critical
force (for the zero-mass depinning) is

f0
c = −V ′(xc) . (20)

For an external force f < f0
c close to them = 0 depinning

force, denoting f = f0
c − δf (with δf > 0 and δf � f0

c ),
the dynamics presents two critical points x±c represented
on Fig. 5. Writing that, close to xc,

F (xc + δx) = −δf + κ δx2 + . . . (21)

we find

x±c = xc ±
√
δf

κ
+ . . . (22)

Note that for the cosine potential (18) one has f0
c = f0,

xc = 3
4`, κ = 2π2f0/`

2.
We are now in position to determine the values of the

parameters {g, µ, F} of the effective potential (8) and (9)
that describe the criticality of interest. We fix

g = 4µ
2

`2
, (23)

ensuring that the spatial period of the potential V0(x) is
equal to `. Then, shifting x so that −V ′F (x+

c ) = 0, we
impose the following conditions:

− V ′F (x−c ) = 0 and − V ′F (xc) = −δf , (24)

which ensure that force −V ′F (x) of the effective model
presents the critical properties of F (x) described on
Fig. 5. Solving for µ and F , we thus find, for small δf :

µ =
√
κ`

8 +
√

δf

32` + O(δf) , (25)

F = κ`2

8 −
3
8
√
κ δf ` + O(δf) . (26)

Note that, in these expressions, we should keep both con-
tributions of order O(

√
δf) to describe correctly the crit-

ical scaling.

D. Scaling regime m & mc and fc(m) . f0
c

We have seen in Sec. VB that, for masses below the
critical mass mc given by (14), the bistable regime drive
is [Fc(m), F 0

c ] with F 0
c given by (11) and Fc(m) by (15).

Using the correspondence (25) and (26) between the pa-
rameters of the effective model and those of the physical
model, we find that

F 0
c − F = 1

2`
√
κ δf + O(δf) . (27)

This relation implies an important scaling: Close to the
depinning point f0

c of the physical model (f = f0
c − δf),

the drive F of the effective model scales as F 0
c −F ∼

√
δf

and not as ∼ δf , contrarily to what we could have naively
expected.
Then, considering a mass m slightly above the critical

mass mc,

m = mc + δm with δm� mc , (28)

we see from (15) that the size of the bistable regime is
determined by

F 0
c−Fc(m) =

(
1−
√

mc

mc + δm

)
F 0
c = 1

2F
0
c

δm

mc
+O(δm2).

(29)
Thus, we see from (27) that, for the physical force f , the
size δf = f0

c − fc(m) of the bistable regime is governed
by the scaling f0

c − fc(m) ∝ (m−mc)2; more precisely:

f0
c − fc(m) = `4κ3

256 γ4

(
m−mc

)2 for m→ m+
c . (30)
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For the damping coefficient, we get

f0
c − fc(α) = κ3

[
`

64µ3

]2 (
αc−α

)2 for α→ α−c . (31)

For the cosine potential (18) we have κ = 2π2f0/`
2 and

thus

f0
c − fc(m) = π6

32
f30
`2 γ4

(
m−mc

)2
, (32)

where π6/32 ≈ 30.0 .

E. Effective description on the full range of forces
[0, f0

c ] for the tilted cosine potential

For the cosine potential (18) the zeros x±c of the cor-
responding force (19) are given (see Fig. 5) by

x−c = `

2 +
` arcsin f

f0

2π and x+
c = `−

` arcsin f
f0

2π .

(33)
Performing the same program as previously in order to
find the parameters of the effective tilted potential VF ,
we impose

V ′F (x−c ) = 0 and − V ′F (xc) = f − f0
c , (34)

where f0
c = f0. We shift the x coordinate to ensure

V ′F (x+
c ) = 0 (before the shift one has xc = 3

4`). We
find

F =
4π2 (f0 − f) arcsin f

f0[
3π + 2 arcsin f

f0

] [
arccos f

f0

]
2

(35)

µ = π3/2

arccos f
f0

√
`

f0−f

(
3π
2 + arcsin f

f0

) , (36)

where g is again given by (23).
From Eqs. (11), (14), and (15), we find that the corre-

sponding equation for the pinned or bistable homoclinic
critical line fc(m),

4
√
f0 − fc(m) arcsin fc(m)

f0

γ arccos fc(m)
f0

√
`
(

2− 1
π arccos fc(m)

f0

) = 1√
m
. (37)

We easily check that expanding this relation for m close
to mc and f close to f0

c = f0 (i.e., f = f0 − δf , δf � f0)
we recover the result (32), which describes the behavior
of the homoclinic line close to the triple point.

In the other asymptotics, for small f (which corre-
sponds to large mass along the homoclinic line), we find

F = 16
3πf and µ = 2

√
2
3
f0
`

for f � f0 . (38)

In this regime, the effective drive F is proportional to the
tilt force f , as physically expected. From Eq. (14), the
effective critical mass in that regime is found to be

mc = 3
32
`γ2

f0
, (39)

and we find from (15) that the critical equation for the
line between the pinned and the bistable regime is

fc(m) ∼ π

8

√
3f0`
2m γ for m� mc . (40)

We should beware that the result of Eq. (39) on the loca-
tion of the triple point is only indicative since it results
from a computation done in the regime of small forces
along the homoclinic line (that is, far from the triple
point). Translating the result (40) to the damping vari-
able α, one finds

fc(α) ∼ π

8

√
3f0`

2 α for α� αc . (41)

We recover the expected scaling fc(α) ∝ α of the large-
damping limit. For the parameters f0 = 1 and ` = 2π
corresponding to the cosine potential of Guckenheimer
and Holmes [13], the prefactor becomes 1

8
√

3π3/2 ' 1.21
which is not very far from the exact prefactor 4/π '
1.27. This result validates our approach based on an
approximate “periodicized ϕ4” potential. A derivation
of the exact prefactor 4/π and of its generalization for an
arbitrary potential is done in Sec. VI.

F. The critical mass and its asymptotic behaviors

We note that in the regime of forces f close to the triple
point, critical mass coming from Eqs. (14) and (25) is
1
π2

`γ2

f0
, while we obtained a different numerical prefactor

in (39). The reason behind this mismatch is that the
approach we follow consists in approximating the tilted
potential V (x)−fx by the effective one, VF (x), and that
the effective parameters µ, g and F depend on f in a
nontrivial way, determined by the homoclinic line force
fc(m). The first result is derived for the asymptotics
fc(m) − f0

c � f0
c and the second one for fc(m) � f0

c .
This means that our approach predicts

mc ≈


3
32
`γ2

f0
for `γ2

f0
→ 0

1
π2
`γ2

f0
for `γ2

f0
→∞ ,

(42)

corresponding respectively to a regime where dissipation
is low (compared to the potential barriers) and a regime
where dissipation is higher and close to the maximal one
allowing for a limit cycle at f < f0

c . We note that the nu-
merical prefactors in both cases of (42) are rather close:
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This means in the intermediate regime where `γ2

f0
takes

a finite value, the critical mass scales as in (42) with a
prefactor mildly depending on `γ2

f0
.

G. Mapping for general normal forms: Υ 6= 2

Considering a tilted force that is expanded close to its
critical point as f−V ′(x) ≈ (f−f0

c )+k|x−x∗|Υ instead
of (21), one simply replaces

√
δf by δf1/Υ in Eq. (22).

This implies that the same substitution has to be done
in Eqs. (25) and (26). Instead of (27), one obtains now

F 0
c − F ∼ δf1/Υ for δf → 0 . (43)

Then, Eqs. (30) and (31) become

f0
c − fc(m) ∼ (m−mc)Υ , (44)
f0
c − fc(α) ∼ (αc − α)Υ , (45)

and are valid in the vicinity of the triple point (m→ m+
c ,

i.e., α→ α−c ). The large damping regime, which is more
universal, is described at the end of Sec. VIB.

VI. FAR FROM THE TRIPLE POINT: THE
LARGE-DAMPING REGIME

A. Settings

To understand the scaling properties of the large-
damping regime, we consider that the potential V (x) is
described by two physical parameters, its period ` and
its amplitude V0:

V (x) = V0 V̂ (x/`) , (46)

where one assumes that the rescaled potential V̂ (x̂) is
independent of V0 and `. At zero friction (γ = 0) and
zero external force (f = 0) the equation of motion (1) for
the position of the particle—whose coordinate is denoted
by x0(t)—becomes

mẍ0 = −V ′(x0) (47)

which, on the rescaling

x0(t) = ` x̂0(t/τ) with τ =

√
m`2

V0
(48)

becomes

¨̂x0 = −V̂ ′(x̂0) . (49)

Since the dynamics is conservative, its description is
rather explicit. Its lowest energy solution, which starts
from a local maximum of V̂ (x̂)—located in x̂ = 0, with-
out loss of generality—with an infinitesimally small ve-
locity at time t = −∞ and arrives at the next maximum

in x̂ = 1 at time t = +∞, is the solution of the differential
equation

1
2
[ ˙̂x0

(
t̂
)]2 = V̂ (0)− V̂

[
x̂0
(
t̂
)]
. (50)

We denote its solution by x̂?0(t̂); it is independent of the
physical parameters V0 and ` and is given by

dt̂ = dx̂?0√
2
[
V̂ (0)− V̂ (x̂?0)

] , i.e. (51)

t̂ =
∫ x̂?

0(t̂)

0

dx̂0√
2
[
V̂ (0)− V̂ (x̂0)

] . (52)

B. Perturbation at small friction and small drive

To describe the small-dissipation asymptotics of the
homoclinic curve, we now drive the system by applying
a small force f and adding a small dissipation γ that en-
sures the energy remains finite. The motion is described
by Eq. (1). For a given friction γ and a mass m, we
are looking for the critical value of the force fc(m) above
which a bistable regime is possible. This homoclinic line
fc(m) is determined by the existence of a critical solution
x?(t) to (1) with the boundary conditions

x(−∞) = xc ; x(∞) = xc + ` (53)
ẋ(−∞) = 0+ ; ẋ(∞) = 0 , (54)

where xc is the location of the maximum of V (x) − fx
(satisfying xc → 0 as f → 0). On the rescaling (48) one
finds

¨̂x = −V̂ ′(x̂)−γτ
m

˙̂x+ f̂︸ ︷︷ ︸
“small”

where f̂ = f

V0/`
. (55)

We consider the rescaled critical solution x̂?(t). Mul-
tiplying (55) by ˙̂x?(t), integrating between t = −∞ and
t = +∞ and using the boundary conditions (53) and (54),
together with [V̂ ]x̂c+1

x̂c
= 0 (by periodicity), one finds that

necessarily

γτ

m

∫ ∞
−∞

dt̂
( ˙̂x?
)2 = f̂ . (56)

This relation is true in general for the inertial critical
trajectory (for any f and γ at the critical value of the
mass) and expresses the fact that the energy dissipated
along this trajectory matches exactly the potential loss f̂
on one period. If one is able to determine the expression
of the critical trajectory x̂?(t) then Eq. (56) allows one
to obtain the expression of fc(m). However this is not
possible in general. In our asymptotics of interest (f →
0, γ → 0), since both sides are small one can replace
˙̂x? by the zero-friction zero-force solution ˙̂x?0. This is
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the essence of Melnikov’s formalism [12] but written in
a theoretical physicist’s manner. Then, using (51) to
convert the time integral into a spatial integral together
with the expression (48) of the characteristic time τ , one
finds

γ`√
mV0

∫ 1

0
dx̂
√

2
[
V̂ (0)− V̂ (x̂)

]
= f̂ . (57)

This relation gives the criterion relating fc(m) and in the
small damping limit:

fc(m) = N γ
√
V0√
m

for γ√
m
→ 0 (58)

N =
∫ 1

0
dx̂
√

2
[
V̂ (0)− V̂ (x̂)

]
. (59)

Here the prefactor N is a numerical constant. In terms
of the damping coefficient, the homoclinic asymptotics
writes fc(α) ∼ N

√
V0 α for α → 0. For the cosine po-

tential, one has V̂ (x̂) = cos 2πx̂ and N = 4
π : One recov-

ers the result of Levi et al. [11] and Guckenheimer and
Holmes [13]. We note that the predictions of Eqs. (58)
and (59) are independent on the regularity properties of
the potential, so that they should be valid even in pres-
ence of cusps. We validate this prediction numerically in
Sec. VIIB.

VII. NUMERICAL VALIDATION

A. The case of the cosine potential

In this section, we will validate our analytical results
by using a numerical integration of Eq. (1) with the co-
sine potential of Eq. (18). Without loss of generality, we
choose γ = 1, f0 = 1 and ` = 2π, to simplify the notation.

As we showed in Fig. 2, we obtained the steady-state
time-averaged velocity of the particle, as a function of the
driving force, and for different mass values. This velocity
seen as a function of the mass, when the driving force is
equal to the critical force of the massless particle, behaves
as a power law above the critical mass, which, naively,
can be described as

v(f ≡ f0
c ) ∼ (m−mc)βδ. (60)

This allows us to determine the critical mass with great
precision. Leaving mc, βδ, and a prefactor as fitting pa-
rameters, we find

mc = 0.70757± 0.00002, (61)

and βδ = 0.99± 0.01, as we show on Fig. 6.
Using the correspondence between m and α = γ/

√
m,

we estimate from our numerical results that the critical
damping is αc = 1.18882 ± 0.00002, which seems to be
compatible with the results from Ref. [11], even if there

10−4

10−3

10−2

10−1

100

10−4 10−3 10−2 10−1 100 101

v

m−mc with mc = 0.70757

100.54(m−mc)
0.99

Figure 6. Steady-state time-averaged velocity as a function
of the mass above the critical mass, m−mc. With a continu-
ous green line we show a fitted power law, where the exponent
and the critical mass are fitting parameters. Then, we find
mc = 0.70757± 0.00002.

is no explicit numerical value given by the authors. How-
ever, when comparing our estimations from Sec. VF with
the fitted value given by Eq. (61), we only find a mild
agreement. From Eq. (42), we predicted a critical mass
in the range [0.589 . . . , 0.637 . . . ]. This mismatch comes
from the fact that we are using a crude “periodicized ϕ4

potential” approximation of the cosine potential, close
to the triple point of the phase diagram. The numeri-
cal value of mc should depend on the exact properties
of the potential on that point, thus it is not a universal
property of the model and then it can only be partially
estimated using that kind of approximation. The order of
magnitude is correct, and, to go further, one would need
to find the critical trajectory of a better approximation
of the tilted potential.
Besides the critical mass, we also estimate βδ to be

near 1. Since β = 1/2 for this model, this means δ =
2, which is in good agreement with the prediction from
Eq. (30). Moreover, from Eq. (32) and for our choice
of potential parameters, we find f0

c − fc(m) = π4

128 (m −
mc)2 close to the triple point. Comparing this to our
numerical data, using the previously estimated mc, we
find an excellent agreement down to the prefactor, as
can be seen in Fig. 7. This could come as a surprise, as
the prediction for the critical mass was only approximate.
On the one hand, the exponent δ predicted by Eq. (30)
should be a universal exponent, hence more robust in the
approximations made. On the other hand, the prefactor
on Eq. (32) was specialized for the cosine potential, but
even with the other approximations made and the fact
that the prefactor should not be a universal property,
the agreement is remarkably good.
Last, when considering the limit m → ∞, we find the

known behavior from Ref.[13, Eq. (4.6.24)] which, a func-
tion of the damping parameter, as α → 0, is expressed
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10−6

10−5

10−4

10−3

10−2

10−1

100
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f
0 c
−

f c
(m

)

m−mc with mc = 0.70757

π4

128(m−mc)
2

Figure 7. For the potential V (x) = − cos(x), as the mass
of the particle gets close to the critical mass from above, the
difference between the critical forces tends to zero as given
by Eq. (32), indicated by a continuous green line. Here, we
employ a numerical simulation using ` ≡ 2π, γ ≡ 1 and f0 ≡ 1.

0.01

0.1

1

0.01 0.1 1

f c
(α

)

α

4α/π

Figure 8. Critical force as a function of the damping param-
eter α, defined as α = γ/

√
m. The expected behavior, from

Eq. (62), is correct on the limit α� αc.

as:

fc(α) = 4α/π (62)

(see Sec. VI for a simple demonstration). On Fig. 8, we
show that this analytical prediction is in good agreement
with our numerical results.

B. Generic normal forms

Here, we consider the more general periodic pinning
force

−V ′(x) =

(√
π2−Υ

2 Γ
(Υ

2 + 1
))

(1− cos(x))Υ/2

Γ
(Υ+1

2
) − 1

(63)

with Υ > 1, where we have set the constant factors
such that the upper critical force is f0

c ≡ maxx[V ′(x)] =
V ′(xc) = 1 with the marginal points fixed at xc = 2πn
with n integer. Note that for Υ = 2, Eq. (63) reduces
to the pinning force −V ′(u) = − cos(u) or simple wash-
board potential V (u) = V (0) + sin(x). In the α → ∞
overdamped limit this periodic pinning force gives rise to
the normal form ẋ ≈ (f−f0

c )+|x−xc|Υ displaying the de-
pinning transition v ∼ (f −f0

c )β with β = 1−1/Υ. Note
that this result remains valid for α > αc finite damping
and in general

v ∼ B(Υ, α)(f − f0
c )1−1/Υ. (64)

Therefore inertia does not change the critical behavior
of the velocity for all the infinite-period bifurcation line
α > αc although the prefactor may be affected. This
result can be appreciated in Fig. 12, below the critical
mass, i.e., 0 ≤ m ≤ 0.7.
To determine the critical mass mc and the behavior of

fc(m) (particularly near the triple point mc and in the
m� mc limit), instead of integrating Eq. (1) in time we
have solved the equation

dK

dx
= −γ

√
2K
m
− V ′(x) + f, (65)

whereK = mẋ2/2 is the kinetic energy and −V ′(x) is the
general pinning force of Eq. (63). Equation (65), which
follows directly from Eq. (1), is only valid if ẋ ≥ 0 but
allow us to obtain the limit-cycle trajectories directly in
phase space (x, ẋ). We set γ = 1 and for a given f < f0

c

we prepare a limit cycle of the bistable regime, using suit-
able values for m and initial conditions. The smallest
value of the mass, m∗, that makes the limit-cycle trajec-
tory ẋ(x) touch the ẋ = 0 axis in one point (and in all
its periodic images) corresponds to the homoclinic orbit.
The magenta dashed line in Fig. 3(b) illustrates one such
homoclinic orbit. The pair (f,m) ≡ (fc(m),m) found
hence belongs to the homoclinic bifurcation line. The
critical mass mc can be determined from the vanishing
of f0

c −fc(m) as m→ mc. To solve Eq. (65) numerically,
for several values of Υ around the standard value Υ = 2,
we used the Runge-Kutta Fehlberg 78 method [14].
In the insets of Fig. 10, we show that f0

c − fc(m) ∼
(m − mc)δ as m − mc → 0+ for different values of Υ,
with bothmc and δ functions of Υ, as shown in Fig. 9 and
Fig. 10 respectively. As we can appreciate in Fig. 10, δ
is not an independent exponent, and δ ≈ Υ, as predicted
analytically. It is worth noting here that also depinning
exponent β is not an independent exponent, since β = 1−
1/Υ. In other words, the bistable range is controlled by
the normal form exponent corresponding to the infinite-
period bifurcation for m > mc. Summarizing,

f0
c − fc(m) ∼ (m−mc)Υ, m . mc (66)

v ∼ (f − f0
c )1−1/Υ, m > mc, f > f0

c . (67)

In Fig. 9 we show thatmc is a nontrivial function of Υ, for
which we do not have analytical prediction. Interestingly,
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Figure 9. Critical mass mc vs. the normal form exponent Υ
(a) and β = 1 − 1/Υ (b). A fair linear fit is obtained in (b)
in the full range of Υ shown in (a).
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Figure 10. Critical exponent δ, controlling the bistable driv-
ing force range f0

c − fc(m), showing that δ ≈ Υ (main fig-
ure). Insets show two typical power-law fits f0

c − fc(m) ≈
[m−mc(Υ)]δ used to extract δ vs. Υ.

mc displays the behaviormc ≈ a+b(1−1/Υ) ormc(Υ) ≈
mc(2) + b(1/2 − 1/Υ) with b a positive constant in the
neighborhood of the standard Υ = 2 case. Finally, in
Fig. 11, we show that in the homoclinic bifurcation line
satisfies the following scaling form (see insets)

fc(m) ∼ A(Υ)/
√
m, α→ 0 (68)

with A(Υ) a nontrivial prefactor (see main figure). One
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Figure 11. Large mass behavior of the critical force fc(m)
vs. Υ. Insets: Fits to fc(m) ≈ A(Υ)/

√
m. Main figure: A(Υ)

for a range of Υ around the standard Υ = 2 [or − cos(u)
potential].

recovers as expected the Guckenheimer and Holmes pre-
diction A(Υ = 2) = 4/π, whose derivation is detailed
in Sec. VI. The low-damping scaling fc(m) ∼ 1/

√
m (or

fαc ∼ α) is hence robust under changes of Υ, at variance
with the m → mc critical behavior which displays the
Υ-dependent exponent δ = Υ. All these results agree
with the analytical arguments made for the more general
pinning force in Sec. VI.

VIII. CONCLUSIONS

We have studied the dynamical phase diagram as a
function of the drive and damping of a massive parti-
cle in a periodic potential. The phase diagram consists
of three different regimes, pinned, sliding and bistable,
separated by three bifurcation lines, each one identified
with a different type of depinning transition on driving.
We have obtained analytical descriptions of the homo-
clinic bifurcation line which separates the bistable and
the pinned regimes, both in the triple point and in the
low damping limits.
The asymptotic behavior of the homoclinic bifurcation

line presents interesting universal features. On one hand,
for α − αc → 0+, we find f0

c − fc(α) ∼ (αc − α)Υ, with
Υ representing an infinite family of periodic potentials
solely characterized by the normal form describing the
shape of the periodic force near its minima. The critical
mass depends in a non critical way with Υ. For the cosine
potential in particular, corresponding to Υ = 2, we were
able to obtain analytical estimates of the critical mass.
On the the other hand, for α → 0, we find fc(α) ∼ Nα
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and obtain an expression for N . This scaling result was
already known for Υ = 2. Nevertheless, we presented
a physical argument which allows us to recover the pre-
diction by Guckenheimer and Holmes in this particular
case [13]. Interestingly, this scaling result is more robust
than the triple point scaling, as it appears to be indepen-
dent of the normal form exponent Υ. To the best of our
knowledge many of these properties were not reported
before, particularly regarding the proximity of the triple
point.

Using standard numerical methods, we have validated
our analytical predictions. In the case of the cosine po-
tential, near the triple point, the analytical result for
f0
c − fc(m) given by Eq. (32) is in excellent agreement
with numerical data, down to the prefactor. However,
the numerical result for the critical mass is close but
it does not match the analytical prediction—which was
an approximation—given that the critical mass is not a
universal property of the model. For the generic nor-
mal forms parametrized by the exponent Υ we have
also found a good agreement on the Υ-dependent pre-
dicted exponents. In the latter case the critical mass
follow a simple but nontrivial linear relation near Υ = 2,
mc ∼ a + bβ, with β = 1 − 1/Υ the velocity critical ex-
ponent for m < mc. Since we do not have an analytical
prediction for this behavior, it would be interesting to
tackle this problem in the future.

The analytical estimates, which we reported and val-
idated numerically, are obtained by a nonstandard ap-
proach. This consists in mapping exact static soliton
solutions in a modified tilted washboard potential to the
homoclinic orbit, which separates the bistable and the
pinned regimes in the original dynamical model. This
approach appears to be a particularly useful alternative
for an accurate description of underdamped nonuniform
oscillators driven near their triple point.

Regarding possible applications of our results to con-
crete physical systems, it would be interesting to investi-
gate how thermal fluctuations affect the dynamics, par-
ticularly near the triple point—either for the model we
considered, or for other nonlinear dynamics that present
a coupling with an inertia-like degree of freedom, e.g.,
in simple models of spintronic devices [15, 16]. Vollmer
and Risken used a functional continued fraction approach
to study the small-damping limit in presence of a noise
[9, 17–19] but it would be interesting to determine if it
can describe the critical regime close to the triple point.

ACKNOWLEDGMENTS

We acknowledge the France-Argentina project ECOS-
Sud No. A16E03. V.H.P. acknowledges hospital-
ity at LIPhy and UGA, where this project was kick
started. V.L. acknowledges support by the ERC Starting
Grant No. 680275 MALIG, the ANR-18-CE30-0028-01
Grant LABS and the ANR-15-CE40-0020-03 Grant LSD.
A.B.K. acknowledges partial support from Grants No.

10−3

10−2

10−1

100

101

10−5 10−4 10−3 10−2 10−1

β ≡ 1/2

v

f − fc(m)

m = 0
m = 0.1
m = 0.3
m = 0.5
m = 0.7
m = 0.71
m = 0.75
m = 0.80
m = 0.85

Figure 12. On the cosine potential, the steady-state time-
averaged velocity, as a function of the force, undergoes differ-
ent depinning transitions depending on the mass of the parti-
cle. For zero-mass, the black dashed line shows the analytical
result, with β = 1/2. For masses above mc, we can only see
a mild tendency toward the regime β → 0 that describes the
expected behavior v ∼ {ln[f − fc(m)]}−1.
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IX. APPENDIX

A. Implementation of the numerical integration

From the computational point of view, this model does
not present major difficulties when studying the cosine
potential. Nevertheless, since the inertial term has a sec-
ond order derivative, we employ a Verlet’s integration
method to solve the dynamics. We use a Leapfrog algo-
rithm, performing the integration in two steps: First, we
calculate the velocity v(t), as v(t) ≡ ẋ, and then the re-
sulting position, at each time step. That means, at each
time step dt we update the velocity of the particle, as

v(t+ dt) = v(t) + [Fcos(x, t)− v(t)] dt
m
, (69)

with Fcos(x, t) as defined on Eq. (19). Then we update
the position by using the updated velocity,

x(t+ dt) = x(t) + v(t+ dt) dt. (70)

To guarantee the stability of this method, we use a
zero-acceleration initial condition for the particle, i.e.,
ẍ ≡ 0. For the initial position and velocity, we fix

x(0) = 0, v(0) = Fcos(0, 0) = f. (71)

By using this initial condition, we study the dynamics of
a particle under a range of driving forces and different
values for its mass.
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Figure 13. Using Eq. (60), we fit the exponent by propos-
ing different values for the critical mass. Here we show the
resulting reduced chi-square for each value, as a test for the
goodness of fit. From the lowest value of the reduced reduced
chi-square, we estimate mc = 0.70757± 0.00002.

Close to the depinning point, we expect different be-
haviors, depending on the mass of the particle. On
the one hand, below the critical mass, the depinning
exponent is β = 1/2. On the other hand, above
the critical mass, the steady-state time-averaged ve-

locity undergoes an abrupt transition, proportional to
{ln[f − fc(m)]}−1 [1, Sec. 8.5]. Hence, we expect β → 0
in this case. However, the finite precision of a computer
makes it very tedious to obtain such a inverse-logarithmic
behavior. In Fig. 12, we illustrate how the depinning
transition close to the critical mass is manifested in prac-
tice, on the velocity-force characteristics. As the mass
increases, above the critical one, we observe a tendency
of the critical velocity characteristics toward a regime
where β → 0 (i.e., toward a horizontal line) but study-
ing regimes with much smaller values of f −fc(m) would
be required in order to observe numerically the inverse-
logarithmic behavior.

B. Numerical method to find the critical mass

From the steady-state time-averaged velocity as a func-
tion of the mass, for a particle driven by f = f0

c , we
can fit the critical mass and a critical exponent using
Eq. (60). Since one of the fitting parameters, mc, is part
of the argument of the power law, the fitting method
is not straightforward. In our case, we fitted the data
proposing different values of mc, using only the expo-
nent as fitting parameter. Besides the estimation for the
latter, for each mc we test the quality of the fit using the
reduced chi-square. Then, to estimate the critical mass,
we simply choose the best fit, as we show in Fig. 13.
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