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In their comment, Comtet and Texier propose two in-
teresting test cases of the formula NADJMF(E) ≈ N(E)
introduced in [1]. Here N(E) is the counting function
(or IDOS) and NADJMF(E) (called hereafter NW ) is ob-
tained by replacing in the asymptotic Weyl formula the
original potential V by the effective potential W ≡ 1/u, u
being the localization landscape. Although this effective
potential brings out a “classical” interpretation of the
disorder-induced quantum confinement, consistent with
the use of Weyl’s law even at low energies, we did not ex-
pect the above formula to be a universal. Nevertheless,
the efficiency of this formula has been tested in [1] and
successfully applied to disordered semiconductors [2, 3].

More recent works of our team help us to answer the
authors’ comment. It was observed in [4] that the min-
imum of W inside a localization region, Wmin,i, often
offers a very good approximation of the fundamental
eigenvalue E0,i of the same region through the relation
E0,i = (1 + d/4)Wmin,i, d being the dimension. In the
case of a one-dimensional infinite square well of width a,
this prediction gives (~2/2m)(10/a2), remarkably close
to the exact value (~2/2m)(π2/a2).

The potential of the “pieces” model is a sum of Dirac
functions of infinite weights, which amount to partition-
ing the domain into many infinite square wells of various
sizes. The resulting IDOS is a superposition of the IDOS
of these wells. Its low energy asymptotics is dominated
by the lower eigenvalues of the larger wells. This ex-
plains why the factor found in the asymptotics of NW
is exp

(
−
√

8ρ/k
)

instead of exp(−πρ/k). Accounting for
the aforementioned factor (1 + d/4) would lead instead
to an asymptotic factor exp

(
−
√

10ρ/k
)
, much closer to

the real one (
√

10 ≈ 3.16 ≈ π). In addition, despite the
difference between the analytic formulas for N(E) and
NW (E), Fig. 1 shows that they are remarkably close on
a wide range of values of E.

It has to be underlined that recent developments
on the landscape theory introduced a new approxima-
tion Nu(E), called “landscape law” [5], which provides

Figure 1. Counting functions N(E) and NW (E) computed on
an interval of length L = 3.106 for ρ = 1, superimposed with
the corresponding predicted analytical formulas.

bounds to N(E) at all energies in the form

C1Nu(αE) ≤ N(E) ≤ C2Nu(E) . (1)

This rigorous estimate confirms that the landscape-based
formula Nu(E) accurately captures the scaling of the
counting function.

In the second example (called “supersymmetric”) the
distribution of values of the landscape u is found to fol-
low a power law, P (u) ∝ u−|µ|−1, leading to NW (E) =
L
π

∫ +∞
1/E

√
(E − 1/u) P (u) du ∝ E|µ|+

1
2 which differs

from the theoretical behavior N(E) ∝ E|µ| found in
the literature [6]. Interestingly in this case, we can
evaluate the aforementioned Nu(E) with a back-of-the
envelope calculation. Nu(E) is defined as the number
of sub-intervals of length 1/

√
E where the maximum

of u is larger than 1/E. The probability of u being

larger than 1/E is
∫ +∞
1/E

P (u) du and the total num-

ber of sub-intervals is about L
√
E which, assuming in-

dependence of the sub-intervals, means that Nu(E) ≈
L
√
E
∫ +∞
1/E

P (u) du ∝ E|µ|+ 1
2 . According to Eq. (1), the

actual IDOS N(E) should follow the same behavior. The



2

W -based formula NW (E) is then consistent with the scal-
ing of N(E).

We can imagine several reasons for the discrepancy be-
tween NW and the scaling of N found in [6]. Among
others, the independence assumption above may fail due
to the possible clustering of the minima of 1/u. Also, the
potentials presented in both examples are much more
singular than those considered in [1, 5].

More generally, the comment raises the question of
the domain of validity of NW (E) which has proved to
be very efficient in surprisingly many cases. We reiter-
ate, however, that the new landscape law [5], rigorously
proven for all potentials bounded from below provides
the correct scaling independently of energy. On the other
hand, what are the precise prefactors, which approxima-
tion gives a better asymptotics in concrete examples, and
why remains to be seen.
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