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Abstract: Fretting fatigue crack propagation in aluminium strands was investigated through experimental 

tests and FEM simulations.  Fretting fatigue tests revealed that crack nucleation predictions are not 

sufficient to fully predict the total strand failure, and crack arrest conditions may be reached for nucleated 

cracks. The geometry of arrested cracks was characterized and used to perform simulations using FEM in 

order to dedude Stress Intensity Factor (SIF) distributions along the crack front. These results showed that 

even in a fully compressive state, cracks are still able to propagate to a certain extent, and a mode II SIF 

threshold has been proposed. 
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1. Introduction 

The lifetime assessment of overhead conductors is becoming a key point for any Transmission System 

Operator (TSO) in charge of a power grid. In order to adapt their maintenance and repair protocols, they 

need to be able to predict the mechanical behavior of their power lines with physical comprehension.  

Among all the damaging loadings that affect the total lifetime of a conductor, the one addressed in this 

work is fretting fatigue. A typical conductor is a wire rope assembly, constituted of several layers of 

helical strands (figure 1a) that can be made of steel, aluminium alloys or quasi-pure aluminium. When this 

complex assembly is subjected to external loadings such as wind vibrations, it may cause a small 

oscillatory movement within all the contacts between neighboring strands. This specific tribological load 

is defined as fretting, and the combination of this phenomenon with the fatigue induced by the conductor’s 

motion results in fretting fatigue. In such a configuration, fretting nucleates cracks in the contact zone, and 

the fatigue bulk stress propagates these cracks until total failure.  

 It has been frequently reported in the literature that this process reduces the total lifetime of overhead 

conductors [1]–[4] . Moreover, studies are widely focused on the clamping zone, as most of the strand 

failures observed on the grid were located in this particular area (figure 1c) [5], [6]. Thus, in a previous 

work, a numerical and experimental strategy has been proposed to predict the crack nucleation risk within 

a conductor subjected to both the clamping force and an oscillating bending movement [7]. This work was 

also specifically focused on the contacts between the two aluminium outer layers. To achieve this 

prediction, two numerical models have been developed: a macroscopic model, as it has also been proposed 

in other studies [8]–[10], as well as a local model [11], [12]. The introduced macroscopic model represents 

a full portion of a conductor and its interactions with a clamp (figure 1b), using volume hexahedra 

elements and the ABAQUS Explicit solver. Even if this model has a high computational cost and isn’t 

suitable with implicit calculations, it is easy to handle and is meant to give a first evaluation of the fretting 
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loading conditions between the aluminium strands. On the other hand, the local model stands for a single 

contact between two individual strands. It also uses volume hexahedra elements with a refined mesh in the 

contact zone, and is suitable with implicit calculation.  

The crack nucleation prediction was achieved using the Crossland multiaxial fatigue criterion associated 

with a non-local critical distance lopt approach, as previously applied by several authors [13]–[16]. These 

numerical predictions were then compared to experimental results obtained using a dedicated fretting 

fatigue test bench that recreates the exact same conditions. These comparisons revealed that the numerical 

strategy manages well to predict the occurrence of crack at the contact edges, and the higher the 

equivalent Crossland stress is, the longer the cracks would be. However, it has also been observed that the 

presence of such cracks is not enough to conclude whether the strand will display total failure or not. 

Finally, further numerical analyses showed a possible strong link between an increase of normal force and 

the propagation behavior, with high compressive stress around the crack tip. This stands as the starting 

point of the current analysis. Only considering crack nucleation may not be enough to predict 

comprehensively the total failure of an aluminium strand under fretting fatigue loading. Thus, the 

proposed work investigates crack propagation with crack closure effects, induced by compressive 

hydrostatic pressure. Fretting fatigue tests were carried out to study experimental crack arrests conditions, 

and numerical simulations were achieved with a fully meshed crack to proceed to Stress Intensity Factors 

(SIF) calculations. The main purpose of this study is to propose a SIF based criterion in order to predict 

the crack arrest phenomenon. 
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Figure 1 (a) 3D rendered view of an Aluminium Conductor Steel Reinforced (ACSR) structure, with inner steel layers and outer 

aluminium layers; (b) close-up view of potential fretting scar observed in a clamping zone; (c) fully meshed conductor-clamp 

assembly used for the global FEM model;  

 

2. Crack nucleation prediction on a single contact 

As mentioned in the introduction, a previous research work has been conducted to propose a prediction of 

the crack nucleation risk within an aluminium-aluminium mono contact. Thus, this section will sum up the 

main results from these previous predictions and highlight the conclusions that led to investigate further 

the crack arrest phenomenon.  

(b) (c)

(a)

steel strands

aluminium strands
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2.1. Conductor and material 

Most elder power lines use Aluminium Steel Reinforced Conductors (ACSR, figure 1a) with aluminium 

strands (purity >99%) for electricity transportation and steel strands to ensure the mechanical strength of 

the conductor. These aging lines are the most likely to be replaced by the next decade, which is why the 

study focuses on this specific type of conductor. Even among ACSR, various designs and geometry exist. 

The current study focuses on one specific conductor geometry, with the following characteristics: 3.6 mm 

of diameter for all aluminium strands while the steel strands diameter is 2.40 mm. Because of their 

respective lay angles, the resulting configuration corresponds to a crossed cylinder system with a total 

relative angle of β = 30°. This choice was motivated by the observation that nearly no failure was 

observed on steel strands on the French grid during service. All samples used for experimental testing 

were taken from a dedicated spool of aluminium strands without their helical shape to avoid successive 

manual handling. This handling would induce additional plastic strain and residual stresses within the 

strands and may ultimately affect the results.  

 

2.2. Numerical local modeling using Finite Element Analysis (FEA) 

2.2.1. FEA model description 

The numerical strategy relies on a 3D model represented in figure 2a. The crossed-cylinder configuration 

is obtained using two half-cylinders to represent the aluminium strands, and are meshed the same way. 

This first model used hexahedra volume elements and ran with the ABAQUS/Implicit solver. Both the 

augmented Lagrangian and Penalty algorithms were tested to describe the contact behavior, and gave 

systematically extremely similar results. Thus, most of the results presented throughout this study were 

obtained using the Penalty algorithm. It can also be mentioned that this local modelling considers straight 

strands, while the actual material has a helical shape, depending on its layer. However, this work focuses 

on the aluminium layer, which displays the lower local curvature and longer laying period (> 160 mm). 



6 

 

Considering that a modeled strand is 6 mm long in this model, the influence of the helical shape was 

considered negligible for this work. 

While the upper strand applies the fretting loading (i.e. the tangential and normal loads), the fatigue bulk 

stress is applied on one end of the lower strand. These boundary conditions are applied through reference 

points during three distinct time steps (figure 2b) throughout a single simulation: 

-Step (1): a very small vertical displacement is applied on the upper strand to initiate the contact and 

ensure the stability of the next steps (especially when the Augmented Lagrangian algorithm is used) 

-Step (2): the static normal force P is imposed on the upper strand while the mean value for the fatigue 

bulk stress is applied on the lower part. 

-Step (3): the normal force remains constant while the tangential and fatigue loadings Q(t) and σ(t) 

describe a sinusoidal cycle. 
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Figure 2: Local model mesh grid modelling a single contact between two aluminium strands; (b): timeframe used for all fretting 

fatigue simulations 

 

This model considers an isotropic and elastic material, for which the Young’s modulus E = 65 GPa and 

Poisson ratio ν = 0.34 were experimentally identified. The partial-to-gross slip transition coefficient µt = 

1.1 was measured using the same procedure as described in [7], this time specifically in fretting fatigue. 

Because of the aluminium softness, it would be relevant to take into account plasticity in the model. 
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However, adding more non-linearity to this 3D problem with contact makes the convergence with the 

implicit solver more difficult.  Another key aspect of a fretting contact concerns the gradient effects. 

Fretting is characterized by severe stress gradients that imply to consider a non-local fatigue stress 

analysis. The critical distance approach is currently applied, using a reverse post-processing analysis of 

plain fretting experiments to find the critical distance lopt = 130 µm [7]. By considering a subsurface stress 

state (reaching quasi elastic stress conditions) the given critical distance fatigue stress analysis is in fact 

less affected by plasticity and gradient effects and the proposed 3D elastic investigation remains 

representative.  

Figure 3 shows a typical crack nucleation risk distribution [17], [18], which shows the location of the 

hotspots where cracks are more likely to initiate.  This crack nucleation risk is evaluated by comparing the 

equivalent Crossland stress σC with the torsion fatigue limit noted τd. Moreover, σC also depends on the 

tension/compression fatigue limit noted σd, and is expressed as follows: 

     √                        (1) 

With       
       √ 

   √ 
           

J2,a represents the second invariant of the deviatoric stress amplitude during a loading cycle, and σH,max is 

the maximum hydrostatic stress σH during the same cycle. The two fatigue limits were identified using 

plain fatigue tests as described in [7]. According to the Crossland criterion, there is crack nucleation thus 

risk of failure when σC ≥ τd. 

Besides the crack nucleation prediction, figure 3b focuses on the multiaxiality aspect usually inherent in a 

fretting contact. The triaxiality ratio η, defined as the ratio between the hydrostatic stress σH and the Von 

Mises equivalent stress σVM, was computed in the contact zone at Q = +Q* and Q = -Q*. As a reference, it 

can be noted that η = 0.33, η = 0 and η = -0.33 correspond to plain tension, plain shear and plain 
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compression, respectively. From these distributions, it can be observed that the triaxiality is stronger in the 

volume beneath the contact edges, where the cracks are systematically located.  

 

Figure 3(a): Typical Von Mises stress distribution in the contact with a close-up view of the Crossland stress distribution (Q = 

150 N, P = 200 N) on the contact surface. Hotspots are located at the edges of the contact; (b): overview of a cross-section of the 

triaxiality ratio η distribution at Q = +Q* and Q = -Q* 

 

2.2.2. Application to crack nucleation risk assessment and link to failure 

With this local model calibrated to predict the crack nucleation risk at the hotspots, the following step 

consists in applying it to fretting fatigue loadings extracted from the global model illustrated figure 1b. As 

the description of this macroscopic model is not a topic of the current study, only the corresponding 

outputs will be considered here. Five representative loading cases were selected to account for as many 

crossland stress distribution
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fretting fatigue configurations as possible, and the associated conditions are listed in table 1. All these 

cases are considered as realistic conditions, which is why they are relevant to investigate. 

 

Table 1: Description of five realistic fretting fatigue loading conditions 

LOADING 

CASE 

P 

(N) 

Q* 

(N) 

       

(MPA) 

1 71 17 99 

2 117 41 35 

3 320 70 60 

4 777 199 3 

5 64 18 98 

 

Based on these conditions, the local model described in the previous section has been used to simulate the 

same configurations. Then, the equivalent Crossland stress σC was computed below the hotspot at the 

critical distance lopt and compared to the torsion fatigue limit τd. The corresponding results are displayed 

figure 4, and highlight the fact that 4 configurations among 6 are likely to nucleate thus to ultimately fail 

according to the current numerical methodology. 

The final step of the initial strategy was to test these conditions experimentally using a dedicated fretting 

fatigue test bench that will be presented in detail in the next section. This bench is meant to recreate the 

single contact configuration between two aluminium strands and is illustrated in figure 5. The associated 

tests that were conducted to recreate the same loading cases revealed two key points: 

- No total failure was observed on all 5 cases after 10
7
 cycles of fretting fatigue 
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- Optical analyses on processed samples revealed the occurrence of cracks for cases 2, 3 and 4, as 

predicted by the Crossland criterion, while nothing was observed on cases 1 and 5. 

 

Figure 4 comparisons between FEM critical distance Crossland stress analyis (lopt = 130 µm) and experiments 

 

This presence of cracks associated with the absence of total failure even after 10
7
 cycles strongly suggests 

that there may be a crack arrest phenomenon involved. This new hypothesis implies that the sole 

consideration of the crack nucleation risk is not sufficient to fully predict the fretting fatigue response of 

the considered material, and the crack propagation behavior needs to be addressed. The following details 

will focus on the investigations achieved on this topic, with a special attention given to the influence of the 

fretting normal load. The goal of the present work is to complete the initial crack nucleation strategy by 

identifying a Stress Intensity Factor (SIF) threshold to account for possible crack arrest phenomena.  
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3. Experimental crack arrest investigation and normal force effects 

3.1. Experimental setup 

The hydraulic fretting fatigue rig used for this work was initially designed to recreate the same conditions 

as those predicted by the numerical strategy described in the previous section. However, thanks to its 

double actuator configuration, it is perfectly suited to investigate various behaviors by controlling fretting 

and fatigue separately. The lower actuator (figure 5a) is force controlled and imposes the fatigue loading 

σf(t), while the upper actuator is displacement controlled to ensure the test stability. The tangential force is 

measured using two force sensors: one placed at each end of the fatigue sample. Then, the tangential force 

Qdiff(t) corresponds to the difference between the two forces. If there is no contact, both sensors will 

measure the same value (the fatigue loading) and their difference will be null. For each test, the frequency 

was fixed at 20 Hz for a limit lifetime of 10
7
 cycles.  

Figure 5c represents how the vertical fatigue sample is loaded. The fretting contact is obtained using a 

separate and shorter aluminium strand with the relative angle β = 30°. To avoid any bending, a counter 

body is placed on the opposite side of the fatigue sample. This counter body consists in a PTFE polymer, 

which displays a very low partial-to-gross slip transition coefficient against aluminium. Prior to the 

fretting fatigue tests that will be discussed in the following section, tests with two PTFE-aluminium 

contacts were conducted to characterize the fretting response for this kind of contact. From these 

preliminary tests, it was deduced that one PTFE-aluminium contact has a friction coefficient µPTFE/al =0.04. 

It means that for P = 200 N, the PTFE-aluminium contact induces less than 10 N whatever the slipping 

regime. This value was kept in mind for all following fretting fatigue tests, and the actual Q* 

corresponding to the aluminium/aluminium contact would be deduced as follows: 

          
                       (2) 
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 While the lower actuator applies the fatigue loading, the fretting displacement amplitude δ(t) is manually 

increased until the tangential force Q* reaches the targeted value.  

 

 

Figure 5 (a): double actuator fretting fatigue rig used; (b): close up view of the contact area; (c) schematic view of the contact 

zone 
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Figure 6: failed aluminium strand tested in fretting fatigue (Q= 150 N, P=200 N, σfmax = 60 MPa, R = 0.5) 

 

3.2. Results and influence of normal force 

Four series of tests were performed, and all the corresponding conditions are listed in table 2. For all tests, 

the fatigue loading ratio R = σf,min/σf,max was fixed at R = 0.5. Figure 7 plots the results obtained and shows 

how the fretting fatigue life of a strand is affected by an increase of normal force P. The two fatigue 

loadings tested were chosen to get the most significant results. Lower fatigue stresses, for example σf,max < 

50 MPa, would not ensure strand failure within 10
7
 cycles even with high tangential forces. On the 

contrary, it has been witnessed that σf,max > 80 MPa may induce plain fatigue failures around the upper 

fatigue jaw. For the fatigue stresses listed in table 1, failures were systematically located in the contact 

area.  

2.5 mm
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Table 2: list of all fretting fatigue conditions tested, with associated lifetimes 

 

 

      

(MPa)
R = 0.5

Q (N) P (N)
Lifetime 

(   

cycles)

60 150 150 3

60 150 200 3.2

60 150 250 6

60 150 275 9.5

60 150 300 >10

60 150 320 >10

60 200 300 3.3

60 200 350 2.8

60 200 400 2.4

60 200 410 3.1

60 200 420 7.8

60 200 450 >10

60 200 470 >10

70 150 150 4.4

70 150 200 2.3

70 150 210 2.4

70 150 230 9.2

70 150 250 >10

70 150 300 >10

70 200 350 3.9

70 200 400 3

70 200 415 3.5

70 200 450 >10

70 200 470 >10
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Figure 7 (a): fretting fatigue lifetime evolution versus the normal force P for σf,max = 60 MPa; fretting fatigue lifetime evolution 

versus the normal force P for σf,max = 70 MPa 

These plots illustrate the concrete influence of the normal force and hydrostatic pressure on the actual 

fretting fatigue life of aluminium strands. It shows how an increase of the normal force, while keeping all 

other parameters constant, can delay or prevent the strand failure. It may also be noticed that there seem to 

be a threshold effect:  while P remains below a threshold normal force noted PCA, the lifetime evolution 

doesn’t seem deeply affected. Then, when P gets near this threshold PCA, the lifetime before failure 

exhibits a sharp increase, as it can be seen especially for tests with σf,max = 60 MPa (figure 7a).  
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Eventually, for P ≥ PCA the strand lifetime is higher than 10
7
 cycles. This specific behavior suggests once 

again that an increase of normal force and compressive hydrostatic pressure may be related to crack arrest 

and closure effects. Another interesting observation coming from these data concerns the experimental 

lifetimes for P < PCA. Whatever the fatigue and tangential loadings, the fretting fatigue life to failure is 

stable with most occurrences between 2 and 4 millions of cycles.  

 

Table 3: normal force thresholds PCA values for various fretting fatigue loadings 

 

 

The most significant results extracted from these plots are the threshold values PCA for the normal force, 

and are displayed in table 3. According to all four series of tests, the tangential force amplitude Q* has a 

way greater influence on this threshold than the fatigue stress σf. For Q* = 200 N, it remains the same at 

PCA,200 = 450 N for both fatigue loads. For Q* = 150 N, fatigue has a slight influence with PCA,150 ranging 

from 250 N for σf,max = 60 MPa to PCA,150 = 300 N for σf,max = 70 MPa. Still, fatigue doesn’t stand out as a 

key parameter for this threshold value. On the contrary, a raise of about 30% of tangential force Q induces 

an increase of 60 % for the crack arrest threshold PCA. It suggests that the shear stress generated in the 

fretting contact has much more influence than the fatigue bulk stress. Further post-processing analyses of 

non-failed samples also revealed that the associated crack depths were systematically between 170 and 

250 µm (figure 8). This tends to confirm that the crack arrest phenomenon is quickly reached in the 

contact zone, where fretting induced stresses are predominant compared to the fatigue stress. In addition to 

σf,max = 60 MPa σf,max = 70 Mpa

Q* = 150 N PCA = 300 N PCA = 250 N

Q* = 200 N PCA = 450 N PCA = 450 N
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these lengths, figure 8 also highlights the diving angle α that displays a rather low discrepancy among all 

observed nucleated cracks, with values close to α = 30°. This consistency among all post-processed cracks 

helps to establish a typical crack geometry corresponding to the crack arrest state. This will be used in the 

next section with proper crack modeling. It is also interesting to note that the projected crack depths (bCA = 

200 – 250 µm) related to the crack arrest condition is nearly twice the critical distance lopt = 130 µm. This 

experimental correlation seems to confirm the Taylor assumption and former lopt – bopt stratey developed 

by Gandiolle et al [15]: lopt = bCA/2 

With these data and especially the PCA values, the next step is to proceed to Stress Intensity Factor 

calculations using finite element analysis and 3D modeling.  
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Figure 8 (a): cross-sectionnal observation along the contact median plane for Q = 200 N, P = 450 N, σf,max = 70 MPa; (b) cross-

sectionnal observation along the contact median plane for Q = 150 N, P = 300 N, σf,max = 60 MPa 

 

 

4. Numerical modeling of the propagation behavior 

4.1. 3D model with embedded crack 
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α

diving angle
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In order to evaluate the Stress Intensity Factors along a crack tip in a fretting configuration, a crack 

geometry has to be considered in the previous 3D model. The chosen method to achieve that was to 

include a fully meshed crack inserted into the initial mesh, using the Z-cracks tool. Z-cracks is a part of 

the Z-set suite that allows to study the cracking behavior in various 3D configurations, and is suitable with 

FEA solvers like the ABAQUS/Implicit solver used in this work. In the following section, two tools from 

Z-cracks have been used: 

- The remeshing utility. It can insert a user-defined crack geometry, insert a crack into a sane mesh 

and remesh the model only using tetrahedral elements. The newly created mesh is refined around 

the crack front to account for its inherent discontinuity. For this study, this tool takes as input both 

a crack geometry (figure 9a) and an ABAQUS templated input file. The output is then a new 

ABAQUS templated input file corresponding to the cracked model. 

- The SIF post-processing utility: It computes the SIF distribution from Linear Elastic Fracture 

Mechanics (LEFM) along the crack tip. Fracture modes I, II and III are accounted by KI, KII and 

KIII respectively. This utility takes as input an FEA output database and returns SIF values along 

the crack front for every time frame available. The relations used for these calculations are 

expressed in the equations below. 

The LEFM-based SIF processing is based on the energy release G. It is related to the SIFs following the 

IRWIN relation: 

   
     

 
    

      
    

    
 

  
,  where    

 

      
     (3) 

G is then computed using the G – theta method [19], [20]. To deduce the values of KI, KII and KIII from 

this energy release rate, any pure mode I, II or III Westergaard displacement solution v
I, II, III

 can be 

introduced. These solutions are associated with the corresponding virtual energy release rates G
v, I, II, III

, 

which gives the following relations: 
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     √
 

     
                (5) 

     √                    (6) 
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Figure 9(a): illustration of the geometric angles used to define the inserted crack; (b) close-up schematic view of the crack front 

and how the angular position θ is defined 
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Figure 10: penny shaped crack mesh before insertion; (b) sane mesh before insertion; (c) cracked mesh and hotspot location; (d): 

close up view of the hotspot area with the highlighted crack front; (e) cross-sectionnal view at the crack location 

 

The last key aspect of this modeling is the crack itself. The crack geometry described here is based on all 

experimental observations made on failed and unfailed strands after testing and described in section 3.2. 

Furthermore, these cracks do not seem to bifurcate even in fretting fatigue and on failed strands (figure 6), 

as it is often observed when propagation becomes only driven by the fatigue bulk stress. The explanation 

for this specific behavior may be related to microstructural and residual stress effects induced by the 

manufacturing process, and especially wire drawing. However, the purpose of the present work is not to 

propose a physical explanation for these orientations but rather investigate on the consequences of this 
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geometry in a fretting configuration. No outplane propagation criterion was used to try to predict the crack 

path: the fully-elastic and isotropic behavior used to describe the material would not be able to account for 

any effect of the microstructure or residual stress. Thus, the crack geometry used was directly based on 

experimental cracks observed on unfailed samples after 10
7
 cycles (i.e. above the crack arrest threshold P 

> PCA illustrated in figure 7). Three distinct angles are used to describe the crack orientation, which are 

illustrated figure 9: 

- The diving angle α already defined earlier based on optical observations. It was set to α = 30°. 

- To quantify the angle between the strand axis and the actual direction of propagation, δ was 

defined. Cracks propagate below the contact along the median plane M (figure 3) rather than 

along the strand axis. As it is a direct consequence of the relative angle β between the strands, δ = 

β/2 = 15°. 

- The crack front angular position θ is used to define any point along the crack front. When θ = 0°, 

the considered point is located at the crack tip, on the median plane M. On the other hand, when θ 

= -90° or θ = 90°, the point is at the strand surface (figure 9b). 

 Figure 10 shows how a crack geometry is inserted into the given mesh. In this case, the crack was chosen 

with a “penny shape”, corresponding to a disk surface. The center of this disk was placed on the hot spot 

location, whose coordinates were also extracted from previous simulations (figure 3). Thus, all the 

following section will focus on a penny shaped crack with a 400 µm radius. This geometry implies a 

maximum projected crack depth bCA = 200 µm to match with the experimental crack arrest depth. It is also 

worth mentioning that in this configuration, bCA > lopt = 130 µm (introduced section 2.2.1.). This gives a 

first guarantee that gradient effects may not affect too deeply the following SIF calculations.   

Finally, this model has to consider two distinct friction coefficient: the friction coefficient µ between the 

two aluminium strands, same as in the sane model described in the previous section, and a new friction 

coefficient µCL corresponding to the contact between the two crack lips. In this new configuration, both 

contacts were simulated using the ABAQUS Penalty algorithm. This new coefficient μCL cannot be easily 
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identified through experimental tests, so the first following simulations using Z-cracks will focus on the 

µCL influence.  

For most of the next simulations, a complete fretting fatigue cycle was considered. Then, all SIF 

amplitudes were directly defined using the following expression: 

                                                 (7) 

When these values are mentioned to be located at the crack tip, it means that it corresponds to a crack 

front angular position θ = 0°. 

4.2. Influence of friction coefficient between the crack lips µCL 

As it was earlier intuited, the crack arrest phenomena observed with fretting fatigue tests may be related to 

crack closure effects due to compressive hydrostatic pressure. In that context, it appears crucial to properly 

address the friction behavior of the crack lips themselves, as they might be in contact during a cycle and 

try to slide onto each other. Thus, the first SIF results presented will focus on this topic. Furthermore, 

shear contributions are likely to have a key role in the driving mechanisms of such cracks, which is why 

ΔKII were specifically investigated. This will be also confirmed in the next sections. 

 Figure 14 shows the ΔKII evolutions at the crap tip for various friction coefficients between the crack lips 

from µCL = 0 (no friction at all) to µCL = 2. For both tangential force amplitudes Q*, ΔKII describes similar 

evolutions for a given friction coefficient µCL. In the case of no friction (µCL = 0), ΔKII is much higher than 

for any other µCL. This result can be expected as in this configuration, both lips are sliding onto each other 

and all the shear energy is accumulated at the front of the crack. This induces such high values for ΔKII. 

However, this cannot be considered as a realistic hypothesis. For such a ductile and adhesive material as 

the studied aluminium, the crack lips cannot be assimilated as purely smooth surfaces without interaction 

under closure. This is why non-zero coefficients have to be considered in the modelling. On the other 

hand, it is interesting to note that for µCL ≥ 0.75, the ΔKII plots describe an asymptotic decrease, and also 

quickly converge to the same asymptote as P increases. It means that for P ≥ PCA, ΔKII is not influenced by 
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the friction coefficient µCL, as long as it is higher than 0.75. This last statement legitimates the arbitrary 

choice of µCL = 1.1 which is the same as the friction coefficient used to describe the macroscopic contact 

between the two strands.  

 

Figure 11: ΔKII at the crack tip as a function of the normal force, for various friction coefficients µCL between the crack lips; (a) 

for Q*=150 N and σf,max = 60 MPa ; (b) for Q*=200 N and σf,max = 60 MPa 
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4.3. SIF distribution along the crack front 

Figure 12 typical shows SIF distributions along the crack front with the newly defined µCL for Q = +Q* 

and Q = -Q*. It means that all SIF from figure 12a correspond to Kimax while SIF from figure 12b are 

Kimin. In addition to these SIF data, the normal stress σn was also computed by projecting the stress tensor 

in the vicinity of the crack tip on the normal vector of the crack surface. 

 

Figure 12 (a): Mode I, II and III SIF as well as normal stress σn distributions along the crack front at Q = +Q* = 200 N and P = 

300 N, σf,max = 60 MPa; (b) distributions at Q = -Q* = -200 N and P = 300 N, σf,max = 60 MPa 
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It is interesting to note that at Q = + Q*, the KI evolution along the crack front systematically describes a 

M-shaped curve, reaching its minimum in the median plane of the crack (i.e. the crack tip). This strong 

decrease of mode I Stress Intensity Factor is directly related to the compressive hydrostatic pressure 

induced by the contact. As the crack has a low diving angle α = 30° and its tip is right under the contact, 

the normal force applied by the upper counter-body directly induces high compressive stress and tends to 

close up the crack lips. This phenomenon is amplified at Q = - Q*, as KI follows a sharp V-shaped 

evolution and the crack tip is in a fully compressive state. This first numerical results stands as a first 

qualitative illustration of the phenomenon observed with the fretting fatigue tests in section 3.2. It was 

proposed that the normal force may stop the crack propagation, and these KI evolutions illustrates that this 

normal force promotes crack closure at the crack tip due to high compressive stresses. The difference of 

behaviors between mode I and II also illustrates the multiaxial aspect of the stress state around the crack 

tip, confirming the observation made in section 2.2.1.   

In addition to this first statement, both plots show that KI,max < 0 at the crack tip. It must be noted that such 

values do not have a physical sense and must be considered as theoretical figures based on the calculation 

method used. However, the choice was made to show the associated results as it gives a first estimation of 

the compressive state around the crack tip. Indeed, it implies that during the entire fretting cycle, the crack 

tip is in a compressive state. This compressive state is also confirmed by the plots of the normal stress σn 

along the crack tip. It highlights that even in such a state, KI seems to follow similar tendencies as σn, with 

both behaviors being consistent.  

Still, these observations do not mean that the crack has reached its crack arrest state: these SIF results 

correspond to Q = 200 N, P = 300 N, which displayed failure in fretting fatigue according to the 

experimental tests presented section 2.3.2. The failure can then be explained regarding the values of KII, 

which displays a bell-shaped curve at Q = + Q* (figure 12a), reaching its maximum in the crack tip area. 

This highlights one of the key points of the current study: even in a fully compressive state, a crack can 
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propagate only driven by shear mechanisms and mode II contribution to a certain extent. It can also be 

observed that the crack propagates below the contact, thus its tip is located in the volume with the stronger 

multiaxiality (figure 3b). This highlights the fact that with these multiaxial stress conditions, with 

compressive mode I and strong mode II, the crack still manage to propagate while it would be impossible 

in any uniaxial configuration.  

 The following steps of the present work will then try to propose a quantification of this statement. Before 

that, it can be noted that KImax > 0 when the position is getting closer to the surface. It may suggest that the 

corresponding crack may propagate in mode I in these areas, unlike the crack tip. However, this 

hypothesis does not correspond to experimental observations, where the highest lengths are found in the 

median plane. This can also be explained by the fact that when closer to the surface, numerical results are 

more affected by fretting induced gradient effects discussed before. This is the reason why most of the 

presented results focus on the crack tip. In that sense and regarding KIII and the mode III contribution, as it 

displays rather low values compared to KII around the crack tip, the mode III shear will be considered 

negligible.  

 

As a complement of figure 12, figure 13 emphasizes on the effect of the fatigue force on the fretting 

induced shear behavior, as well as the normal load. It shows the ΔKII evolution along the crack front for 

the same Q* = 200 N and two distinct normal loads: P = 250 N and P = 500 N. Both plain fretting (σf,max = 

0 MPa) and fretting-fatigue (σf,max = 60 MPa) are compared, where the fretting-fatigue case corresponds to 

σf,max = 60 MPa and R = 0.5 to remain consistent with the previous experimental results. For the lower 

normal load (figure 13a), the addition of fretting slightly increases ΔKII especially around the crack tip at 

the top of the bell-shaped curve. On the other hand, for the higher P (figure 13b), fatigue doesn’t seem to 

affect ΔKII at the crack tip anymore. It is consistent with the fact that for P = 500 N, the fretting contact is 

far more stressing, while the fatigue bulk stress remains constant. Thus, fatigue is hardly impacting the 
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stress distribution in the fretting area anymore. It also confirms the experimental observation made in 

section 3.2., where changing the fatigue loading didn’t seem to affect the crack arrest threshold.  

The other key observation arising from these plots concerns the influence of the normal load itself. It 

highlights how an increase of normal load flattens the ΔKII distribution around the crack tip, and sharply 

reduces its peak value. This tendency was also visible in figure 11, with the asymptotic decrease of ΔKII at 

the crack tip when P increases. These new plots give another insight on the pressure induced crack 

closure. The final step is then to try to formalize the crack arrest condition based on experimental tests 

associated with these FEA simulations. 
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Figure 13 (a): ΔKII distributions along the crack front for plain fretting (Q*=200 N) and fretting fatigue (Q*=200N and σf,max = 

60 MPa) for a normal load P = 200 N; (b) same ΔKII evolutions for P = 500 N 

 

4.4. Fretting fatigue ΔKII threshold assessment 

One of the most common methods to predict the crack arrest phenomenon based on SIF calculations relies 

on a stress intensity factor threshold noted ΔK0. It is for instance the case when the Paris Law is applied to 
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model the kinetics of long cracks in a material. Whenever the equivalent ΔKeff gets lower than ΔK0, the 

crack is expected to stop. This methodology was also developed to account for short crack behavior, for 

which it was observed that even for ΔKeff < ΔK0, some propagation would still take place. A more specific 

SIF threshold ΔKth was thus introduced. It was defined so as ΔKth = ΔK0 for long cracks and ΔKth < ΔK0 

for short cracks [21]–[23]. In the latter case, ΔKth would display a non-linear evolution, while it is 

assimilated as a material constant in the former case. However, these methods usually define their 

equivalent SIF ΔKeff based on mode I propagation, with possible adjustments to account for shear and 

friction effects. In some other cases, mode II and III are further investigated, when the shear is high 

enough to prevent bifurcation due to the mode I contribution [24], [25]. This approach cannot be directly 

used in the current work: as stated in section 4.3., the studied cracks are always in compressive state. That 

means that the mode I equivalent SIF amplitude ΔKeff would be systematically equal to zero, thus mode I 

cannot drive any propagation.  

Before focusing specifically on the mode II mechanism when KI,max < 0, Figure 14 illustrates how the 

tangential force amplitude Q* affects the conditions leading to the crack arrest. Figure 14a sums up the 

experimental results obtained in fretting fatigue by stressing the link between Q* and the normal force 

threshold PCA, showing that an increase of Q* sharply raises PCA. On the other hand, figure 14b puts in 

relevance that when P = PCA, the ΔKII value at the crack tip is not influenced by Q*. This gives a first 

argument to consider this specific shear SIF value ΔKII,th as the threshold value to characterize the crack 

arrest under compressive conditions. To deepen this last statement, figure 15 insists on the ΔKII behavior 

versus the normal force ratio P/PCA for both Q*. It also introduces the normal stress σn,CL based on the 

contact pressure existing between both crack lips. For every loading condition at Q = +Q*, this normal 

stress was averaged on the total crack lips surface, and the resulting scalar  ̅    (+Q*) is plotted figure 

15c. These values were obtained using a post-processing routine gathering all nodal pressures specifically 

between the crack lips.  
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Figure 14 (a): Normal force threshold PCA versus the tangential force amplitude Q*; (b) ΔKII evolution versus the tangential force 

ampliude Q* for P = PCA 
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Figure 15(a): ΔKII evolution versus the normal force ratio P/PCA (b): KI,max evolutions versus the normal force ratio P/PCA ; (c): 

averaged normal stress on the crack lips versus the normal force ratio P/PCA 
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This way of plotting ΔKII reveals that for both Q*, the shear state seen at the crack tip is very similar 

before and after the experimental crack arrest condition. This also gives another way of determining 

ΔKII,th, as both curves meet at ΔKII = 1.35 MPa.m
1/2

 approximately when P = PCA (same threshold as 

shown in figure 14b) This can be used to propose a first empirical threshold based on this ΔKII value. 

Furthermore, the KI,max evolutions in the lower part of figure 15 underline that the cracking behavior is 

more consistent when considering only the mode II contribution. Indeed, there is no visible condition to 

characterize the crack arrest by adding into consideration mode I mechanisms, and may even add more 

discrepancy. This may also be explained by the fact that ΔKII already takes into account (indirectly) the 

mode I contribution through friction effects and µCL. As the crack is under closure, the contact pressure 

between the crack lips associated with friction affects the amount of resulting shear energy at the crack 

lips. Finally, the comparison between figure 15b and 15c reveals that even though KI negative values have 

no physical sense, it displays very similar tendencies of evolution when compared to the evolution of the 

averaged pressure between the crack lips. This stands as a confirmation of the link between KI and σn 

observed in figure 12. 

The relevance of the proposed quantification can also be addressed. As seen on figure 15, the slope of the 

ΔKII evolutions are rather low for P = PCA, which can alter the accuracy of the corresponding ΔKII,th value. 

On this regard and in order to be conservative, it appears more reliable to choose a lower value to predict 

the crack arrest phenomenon.  These considerations help to propose a first mode II SIF threshold ΔKII,th = 

1.3 MPa.m
1/2

 identified for this configuration. Still, the existence of the threshold itself can also give 

valuable hints for anyone working with materials that have been processed with coil rolling or wire 

drawing. It is likely that the threshold value is dependent of the aluminium strand geometry and surely the 

material itself, but it highlights the fact that for an equivalent sphere/plane configuration, some materials 

may display specific propagating mechanisms associated with the multiaxiality of loadings. These crack 

would only be driven by shear stresses while the sole study of the crack closure would predict no 
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propagation at all. Nonetheless, the previous results give an interesting insight on the propagating 

behavior of crack suffering lip closure, and how consistent this behavior can be. 

 

Figure 16 : recapitulative framework of the proposed approach, from experiments and simulations to the proposition of a shear 

SIF threshold 
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The present study proposes to extend a former methodology to account for crack propagation in addition 

to nucleation prediction. It was based on the initial observation that the presence of nucleated cracks in an 

aluminium-aluminium strand contact loaded in fretting fatigue does not guarantee the total failure in some 

multiaxial stress states.  Thus, potential crack arrest phenomena have to be considered. Figure 16 sums up 

the whole methodology and emphasizes the main steps. The following aspects were exposed: 
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- A former multi-scale strategy to predict the fretting fatigue life of aluminium strands in an 

overhead conductor was described. It relies on two FEA numerical models: one to account for the 

global scale while the other simulate a single 3D contact. This local model was also used in the 

current work for Stress Intensity Factor calculations. 

 

- Several series of experimental fretting fatigue tests were conducted to study the crack arrest 

occurrence only by modifying the normal force. Normal force Crack Arrest thresholds PCA were 

deduced from these tests. 

 

- A typical crack geometry based on optical observations on unfailed samples was defined to 

characterize the crack arrest state. It gave a projected crack depth bCA = 200 µm and a diving angle 

α = 30°.  

 

- The Z-cracks tool was introduced to add into consideration a fully meshed crack into the 

numerical local model. The previously defined crack was modeled and inserted into the sane 

mesh, before proceeding to fretting fatigue simulations. 

 

- The influence of the friction coefficient between the crack lips µCL has been addressed to justify 

the choice µCL = µ = 1.1 corresponding to an aluminium-aluminium contact previously identified. 

 

Finally, the conclusions of the present work rely on the two following points: 

- SIF distributions along the crack front reveals that this crack geometry systematically implies that 

the crack tip is in compressive state with KI,max < 0. However, this does not mean that they cannot 

propagate further as experiments showed that for some conditions the strand total failure was still 

observed. This SIF analysis also highlighted the predominance of mode II shear mechanisms to 

explain how cracks could propagate under closure. 
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- Finally, a mode II SIF threshold ΔKII,th = 1.3 MPa.m
1/2

 was proposed to predict the crack arrest 

state in the given configuration.  

 

This threshold relies on experimental results and numerical simulations and helps to understand the 

damage mechanisms within overhead conductors. However, the phenomenon exposed in the present study 

does not only apply on this specific case: such behaviors could be observed in any wire rope structure or 

more generally in any material having suffered coil rolling or wire drawing. Furthermore, it is also 

relevant for any application that involves multiaxial stress states with compression. Knowing that, it could 

be relevant to apply a similar strategy on any of those applications in an effort to update design decisions.  
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