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ABSTRACT

Consider a large linear system with random underlying ma-
trix:

xn = 1n +
1

αn
√
βn
Mnxn ,

where xn is the unknown, 1n is a vector of ones, Mn is a ran-
dom matrix and αn, βn are scaling parameters to be specified.
We investigate the componentwise positivity of the solution
xn depending on the scaling factors, as the dimensions of the
system grow to infinity.

We consider 2 models of interest: The case where ma-
trix Mn has independent and identically distributed standard
Gaussian random variables, and a sparse case with a growing
number of vanishing entries.

In each case, there exists a phase transition for the scaling
parameters below which there is no positive solution to the
system with growing probability and above which there is a
positive solution with growing probability.

These questions arise from feasibility and stability issues
for large biological communities with interactions.

Index Terms— Linear equation, Large Random Matri-
ces, Extreme values, Lotka-Volterra equations, feasibility and
stability in foodwebs.

1. INTRODUCTION

Consider a large linear system with random matrix Mn:

xn = 1n +
1

αn
√
βn
Mnxn , (1)

where [n] = {1, · · · , n}, xn = (xk)k∈[n] is a n× 1 unknown
vector, 1n is a n × 1 vector of ones, Mn = An � Xn is a
n × n random matrix, where An represents a deterministic
adjacency matrix of a given graph, accounting for the sparsity
of Mn, and Xn is a n × n matrix of independent and iden-
tically distributed (i.i.d.) standard Gaussian N (0, 1) random
variables. The Hadamard product Mn = An �Xn accounts
for the entrywise product Mij = AijXij , hence An acts as a
deterministic sparsity pattern over the random matrix Xn.
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The sequences αn and βn are two deterministic positive
sequences going to infinity with different roles: βn is such
that the spectral norm of matrix β−1/2n Mn is of order 1, while
the parameter αn represents the extra normalization needed
to obtain a positive solution xn.

In the following, we investigate the componentwise pos-
itivity of the solution xn for two specific models: the full
matrix model (FMM), where

An = 1n1
T
n , Mn = Xn and βn = n . (2)

For this model, we will state a theorem established in [1].
We also consider a sparse matrix model (SMM) whereAn

is the adjacency matrix of a d-regular graph. For this model,
we present a conjecture and some simulations.

The positivity of the xk’s is a key issue in the study of
Large Lotka-Volterra systems, widely used in mathematical
biology and ecology to model populations with interactions.

Consider for instance a given foodweb and denote by
xn(t) = (xk(t))k∈[n] the vector of abundances of the various
species within the foodweb at time t. A standard way to
connect these abundances is via a Lotka-Volterra (LV) system
of equations that writes

dxk(t)

dt
= xk(t)

rk − θxk(t) + 1

αn
√
βn

∑
`∈[n]

Mk`x`(t)


(3)

for k ∈ [n]. In this equation, rk represents the intrinsic
growth rate of species k, θ is a coefficient reflecting intraspe-
cific competition, and Mk` is the per capita effect of species
` on species k. In the absence of any prior information, the
interactions Mk` can be modelled as random.

Remark 1. Notice that without interactions (Mn = 0), equa-
tion (3) is simply a logistic differential equation.

In the following, we will focus on the idealized model
where rk = θ = 1.

At the equilibrium dxn

dt = 0, the abundance vector xn is
solution of (1) and a key issue is the existence of a feasible
solution, that is a solution xn with positive components xk.

A major motivation for the present study comes from the
paper [2] where it is established that for the full matrix case
and under the standard normalization αn = α fixed and βn =
n, there are no feasible solutions.



2. THE FULL MATRIX MODEL

In the FMM (2), the convergence of the spectral norm

‖n−1/2Xn‖
a.s.−−−−→
n→∞

2 (4)

is well-known (see [3]) hence the normalization βn = n. The
following phase transition phenomenon occurs:

Theorem 1. Let αn → ∞ and denote by α∗n =
√
2 log(n).

Consider the solution

xn = 1n +
Mn

αn
√
n
xn ⇔ xn =

(
In −

Mn

αn
√
n

)−1
1n ,

where Mn = Xn.

• If there exists ε > 0 such that αn ≤ (1− ε)α∗n eventu-
ally, then

P
{
min
k∈[n]

xk > 0

}
−−−−→
n→∞

0 . (5)

• If there exists ε > 0 such that αn ≥ (1 + ε)α∗n eventu-
ally, then

P
{
min
k∈[n]

xk > 0

}
−−−−→
n→∞

1 . (6)

Theorem 1 has been established in [1].

Remark 2. Notice that if αn = α is fixed, the solution of the
system (1) has already been studied by Hwang and Geman [4]
for non-Gaussian i.i.d. standardized entries. A major conclu-
sion of this work is the asymptotic independence and Gaus-
sian fluctuations of any finite number of xn’s components:

(x1, · · · , xM )T
D−−−−→

n→∞
NM

(
1M , σ

2
αIM

)
, (7)

where M is fixed, NM represents a M -valued Gaussian vec-
tor and σ2

α > 0. An easy consequence of (7) yields (5). This
result has been exploited in [2] to state the absence of feasible
solution to (3) if αn = α > 0 is fixed.

Elements of proof. The system (1) writes(
In −

Mn

αn
√
n

)
xn = 1n .

By (4), the spectral norm of α−1n n−1/2Mn goes to zero and
one can safely invert the previous equation, and unfold the

resolvent
(
In − Mn

αn
√
n

)−1
as a matrix infinite series:

xn =

(
In −

Mn

αn
√
n

)−1
1n ,

= 1n +
Mn

αn
√
n
1n +

∞∑
`=2

(
Mn

αn
√
n

)`
1n .

Denote by ek the k-th canonical vector and keep the first two
terms in the previous expansion, then xk writes

xk = eTk xn = 1 + eTk
Mn

αn
√
n
1n + · · ·

= 1 +
1

αn

∑n
j=1Xkj√
n

+ · · ·

Notice that Zk = n−1/2
∑n
j=1Xkj is exactly N (0, 1)-

distributed and that the Zk’s are independent. In particular,

min
k∈[n]

xk ≈ 1 +
mink∈[n] Zk

αn
≈ 1−

√
2 log(n)

αn

by standard extreme value theory1. This immediatly yields
the conclusions of the theorem by comparing the relative po-
sitions of α∗n =

√
2 log(n) and αn.

The main input of [1] is to establish that the remaining
term

Rk = eTk

∞∑
`=2

(
Mn

αn
√
n

)`
1n

has no effect on the positivity of xn and can be neglected.

3. THE SPARSE MATRIX MODEL

We focus on the following SMM: consider a deterministic n×
n adjacency matrix An of a d-regular (directed) graph, that is
a matrix whose entry Aij equals 1 if the edge (ij) belongs
to the graph of order n, and zero else, and where each vertex
1, · · · , n has exactly d neighbours. This in particular implies
that there are exactly d non-null entries in each row and each
column of An, and the total number of non-null entries of
matrix An is nd.

The spectral radius of Mn. Depending on the magnitude
of d = dn, the order of the spectral radius of Mn varies.
The following two extreme cases illustrate this fact: consider
A

(1)
n = diag(1) and A(2)

n = 1n1
T
n . In the first case, d = 1

and

‖M (1)
n ‖ = ‖A(1)

n �Xn‖ = max
i∈[n]
|Xii| ∼

√
2 log(n) .

In the second case, d = dn = n and

‖M (2)
n ‖ = ‖A(2)

n �Xn‖ ∼ 2
√
n .

This simple example illustrates the fact that the tuning of βn
is non-trivial in the sparse case: if d = 1 then βn = 2 log(n)
while if d = n then βn = dn = n. In fact, the following
phase transition, established by Bandeira and Van Handel in
[6], holds:

1It is well-known that if the Zk’s are i.i.d. N (0, 1), then
Emaxk∈[n] Zk = −Emink∈[n] Zk ∼

√
2 log(n), see for instance [5].



• If dn � log(n) then E‖Mn‖ ∼
√
dn,

• If dn � log(n) then E‖Mn‖ ∼
√
log(n).

To be more specific, the result by Bandeira and Van Handel
[6] writes in our context:

E‖Mn‖ ≤ (1 + ε)

{
2
√
dn +

5√
log(1 + ε)

√
log(n)

}

for any 0 < ε ≤ 1/2 and

E‖Mn‖ ≥K 2
√
dn +

√
2 log(dnn) ,

where an ≥K bn means that there exists a constant indepen-
dent from n such that an ≥ Kbn.

Positivity of the solution xn. Based on the previous analy-
sis of the spectral norm of ‖Mn‖, we shall consider the fol-
lowing regime dn � log(n) where ‖Mn‖ ∼

√
dn. We fix

βn = dn. Based on simulations (see below), we state the
following conjecture:

Conjecture 1. Let αn → ∞ and α∗n =
√
2 log(n). Let

Mn = An�Xn withAn the adjacency matrix of a dn-regular
graph, with dn � log(n). Consider the solution

xn = 1n+
Mn

αn
√
dn

xn ⇔ xn =

(
In −

Mn

αn
√
dn

)−1
1n ,

then

• If there exists ε > 0 such that αn ≤ (1− ε)α∗n eventu-
ally, then P

{
mink∈[n] xk > 0

}
−−−−→
n→∞

0 .

• If there exists ε > 0 such that αn ≥ (1 + ε)α∗n eventu-
ally, then P

{
mink∈[n] xk > 0

}
−−−−→
n→∞

1 .

Remark 3. The conjecture can be settled in the case where
d ∝ n, i.e. where dn−1 → c > 0. It suffices to follow the
lines of the proof of Theorem 1 in this regime.

Arguments. The same argument as Theorem 1 applies when
unfolding xn:

xk = eTk xn = 1 +
1

αn

∑n
j=1AkjXkj√

dn
+ · · ·

Introduce Zk = d
−1/2
n

∑n
j=1AkjXkj and notice that since

#{Akj = 1, 1 ≤ j ≤ n} = dn, Zk is N (0, 1)-distributed
and the Zk’s are independent. Now

min
1≤k≤n

xk ≈ 1 +
min1≤k≤n Zk

αn
≈ 1−

√
2 log(n)

αn
.

The conclusion follows as previously.

Although simulations tend to indicate that the remainder
term

Rk = eTk

∞∑
`=2

(
Mn

αn
√
dn

)`
1n

has no influence on the positivity of xn, a direct mathematical
proof is currently beyond our reach for dn � n.

4. DISCUSSION

The results presented here lie between Random Matrix The-
ory (RMT) and perturbation theory, slightly outside the range
of RMT. In fact, consider

xn =

(
In −

Mn

αn
√
βn

)−1
1n

In RMT, the random matrix part is supposed to have a limiting
macroscopic effect, and this is indeed the case if αn = α is a
constant and ∥∥∥∥ Mn√

βn

∥∥∥∥ ∼ O(1) as n→∞ .

From a perturbation theory point of view, the random matrix
part vanishes asymptotically as it is the case if αn →∞:

1

αn

∥∥∥∥ Mn√
βn

∥∥∥∥ −−−−→n→∞
0 .

As demonstrated in Table 1, the vanishing effect of the ran-
dom part α−1n β

−1/2
n Mn is extremely slow.

n 102 103 104 105 106

1
α∗

n
0.33 0.27 0.23 0.21 0.19

Table 1. The quantity 1
α∗

n
= 1√

2 logn
vanishes extremely

slowly as n increases.

5. SIMULATIONS

In this section, we illustrate the phase transition phenomenon
toward a positive solution xN depending on the scaling αN ,
βN being either fixed at N (FMM) or dN (SMM).

In Figure 1, we consider the transition toward feasibil-
ity for the full matrix model. We consider different values
of N , respectively 400 (dashed), 1000 (solid). For each N
and each κ on the x-axis, we simulate 10000 N × N matri-
ces MN and compute the solution xN of (6) at the scalings
αN (κ) = κ

√
log(N) and βN = N . Each curve represents

the proportion of feasible solutions xN obtained for 10000
simulations. The red dotted vertical line corresponds to the



Fig. 1. Transition toward feasibility for the FMM
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Fig. 2. Transition toward feasibility for the SMM

critical scaling α∗N =
√
2 log(N) for κ =

√
2. The propor-

tion of feasible solutions ranges from 0 for κ ≤ 1 to 1 for
κ ≥ 2.

In Figure 2, we consider the transition toward feasibil-
ity for the SMM. In this case, N is fixed N = 1000 while
dn varies from 1 to 500. The phase transition is similar to
the FMM. Notice in particular that in this case simulations
tend to validate the phase transition phenomenon even for
d < log(1000) = 6, 90.

6. ADDITIONAL RESULTS

We now illustrate two aspects of the phase transition not cov-
ered by the results presented so far.

In Figure 3, the phase transition is shown to hold for the
FMM with Bernoulli ±1 entries. Although the Gaussiannity
of the entries is mathematically important for the proofs, these
simulations tend to show that this assumption is merely tech-
nical but not necessary.

In Figure 4, we illustrate the phase transition phenomenon
for the FMM for a non-homogeneous linear system:

xn = rn +
1

αn
√
n
Mnxn , (8)

Fig. 3. Non-Gaussian entries, FMM

where rn = (rk) a n × 1 deterministic vector with positive
components. In this non-homogeneous case, the phase transi-
tion is not as clean-cut as in the homogeneous case but there
is a buffer zone where the transition occurs. We formalize this
with the help of the following notations:{
rmin = min1≤k≤n rk ,

rmax = max1≤k≤n rk
and σr(n) =

√
n−1

∑
k∈[n]

r2k .

Assume that ρmin, ρmax are independent from n and

0 < ρmin ≤ rmin ≤ σr ≤ rmax ≤ ρmax <∞ .

Fig. 4. Non-Homogeneous system, full matrix model with the
buffer zone [t1, t2] where t1 =

α∗
nσr(n)
rmax(n)

and t2 =
α∗

nσr(n)
rmin(n)

.

Theorem 2 (Bizeul et al. [1]). Let αn −−−−→
n→∞

∞ and denote

by α∗n =
√
2 log n. Let xn = (xk)k∈[n] be the solution of (8).

• If there exists ε > 0 such that eventually αn ≤ (1 −
ε)
α∗

nσr(n)
rmax(n)

then P
{
mink∈[n] xk > 0

}
−−−−→
n→∞

0 .

• If there exists ε > 0 such that eventually αn ≥ (1 +

ε)
α∗

nσr(n)
rmin(n)

then P
{
mink∈[n] xk > 0

}
−−−−→
n→∞

1 .
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