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Consider a large linear system with random underlying matrix:

where x n is the unknown, 1 n is a vector of ones, M n is a random matrix and α n , β n are scaling parameters to be specified. We investigate the componentwise positivity of the solution x n depending on the scaling factors, as the dimensions of the system grow to infinity. We consider 2 models of interest: The case where matrix M n has independent and identically distributed standard Gaussian random variables, and a sparse case with a growing number of vanishing entries.

In each case, there exists a phase transition for the scaling parameters below which there is no positive solution to the system with growing probability and above which there is a positive solution with growing probability.

These questions arise from feasibility and stability issues for large biological communities with interactions.

INTRODUCTION

Consider a large linear system with random matrix M n :

x n = 1 n + 1 α n √ β n M n x n , (1) 
where

[n] = {1, • • • , n}, x n = (x k ) k∈[n]
is a n × 1 unknown vector, 1 n is a n × 1 vector of ones, M n = A n X n is a n × n random matrix, where A n represents a deterministic adjacency matrix of a given graph, accounting for the sparsity of M n , and X n is a n × n matrix of independent and identically distributed (i.i.d.) standard Gaussian N (0, 1) random variables. The Hadamard product M n = A n X n accounts for the entrywise product M ij = A ij X ij , hence A n acts as a deterministic sparsity pattern over the random matrix X n .
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The sequences α n and β n are two deterministic positive sequences going to infinity with different roles: β n is such that the spectral norm of matrix β -1/2 n M n is of order 1, while the parameter α n represents the extra normalization needed to obtain a positive solution x n .

In the following, we investigate the componentwise positivity of the solution x n for two specific models: the full matrix model (FMM), where

A n = 1 n 1 T n , M n = X n and β n = n . (2) 
For this model, we will state a theorem established in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF].

We also consider a sparse matrix model (SMM) where A n is the adjacency matrix of a d-regular graph. For this model, we present a conjecture and some simulations.

The positivity of the x k 's is a key issue in the study of Large Lotka-Volterra systems, widely used in mathematical biology and ecology to model populations with interactions.

Consider for instance a given foodweb and denote by x n (t) = (x k (t)) k∈[n] the vector of abundances of the various species within the foodweb at time t. A standard way to connect these abundances is via a Lotka-Volterra (LV) system of equations that writes

dx k (t) dt = x k (t)   r k -θx k (t) + 1 α n √ β n ∈[n] M k x (t)   (3) for k ∈ [n].
In this equation, r k represents the intrinsic growth rate of species k, θ is a coefficient reflecting intraspecific competition, and M k is the per capita effect of species on species k. In the absence of any prior information, the interactions M k can be modelled as random.

Remark 1. Notice that without interactions (M n = 0), equation (3) is simply a logistic differential equation.

In the following, we will focus on the idealized model where r k = θ = 1.

At the equilibrium dxn dt = 0, the abundance vector x n is solution of (1) and a key issue is the existence of a feasible solution, that is a solution x n with positive components x k .

A major motivation for the present study comes from the paper [START_REF] Dougoud | The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate[END_REF] where it is established that for the full matrix case and under the standard normalization α n = α fixed and β n = n, there are no feasible solutions.

THE FULL MATRIX MODEL

In the FMM (2), the convergence of the spectral norm

n -1/2 X n a.s. ----→ n→∞ 2 (4) 
is well-known (see [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]) hence the normalization β n = n. The following phase transition phenomenon occurs:

Theorem 1. Let α n → ∞ and denote by α * n = 2 log(n). Consider the solution

x n = 1 n + M n α n √ n x n ⇔ x n = I n - M n α n √ n -1 1 n ,
where

M n = X n . • If there exists ε > 0 such that α n ≤ (1 -ε)α * n eventu- ally, then P min k∈[n] x k > 0 ----→ n→∞ 0 .
(5)

• If there exists ε > 0 such that α n ≥ (1 + ε)α * n eventu- ally, then P min k∈[n] x k > 0 ----→ n→∞ 1 . (6) 
Theorem 1 has been established in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF].

Remark 2. Notice that if α n = α is fixed, the solution of the system (1) has already been studied by Hwang and Geman [START_REF] Geman | A chaos hypothesis for some large systems of random equations[END_REF] for non-Gaussian i.i.d. standardized entries. A major conclusion of this work is the asymptotic independence and Gaussian fluctuations of any finite number of x n 's components:

(x 1 , • • • , x M ) T D ----→ n→∞ N M 1 M , σ 2 α I M , ( 7 
)
where M is fixed, N M represents a M -valued Gaussian vector and σ2 α > 0. An easy consequence of (7) yields (5). This result has been exploited in [START_REF] Dougoud | The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate[END_REF] to state the absence of feasible solution to (3

) if α n = α > 0 is fixed.
Elements of proof. The system (1) writes

I n - M n α n √ n x n = 1 n .
By (4), the spectral norm of α -1 n n -1/2 M n goes to zero and one can safely invert the previous equation, and unfold the resolvent

I n -Mn αn √ n -1
as a matrix infinite series:

x n = I n - M n α n √ n -1 1 n , = 1 n + M n α n √ n 1 n + ∞ =2 M n α n √ n 1 n .
Denote by e k the k-th canonical vector and keep the first two terms in the previous expansion, then x k writes

x k = e T k x n = 1 + e T k M n α n √ n 1 n + • • • = 1 + 1 α n n j=1 X kj √ n + • • • Notice that Z k = n -1/2 n j=1
X kj is exactly N (0, 1)distributed and that the Z k 's are independent. In particular,

min k∈[n] x k ≈ 1 + min k∈[n] Z k α n ≈ 1 - 2 log(n) α n
by standard extreme value theory 1 . This immediatly yields the conclusions of the theorem by comparing the relative positions of α * n = 2 log(n) and α n .

The main input of [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] is to establish that the remaining term

R k = e T k ∞ =2 M n α n √ n 1 n
has no effect on the positivity of x n and can be neglected.

THE SPARSE MATRIX MODEL

We focus on the following SMM: consider a deterministic n× n adjacency matrix A n of a d-regular (directed) graph, that is a matrix whose entry A ij equals 1 if the edge (ij) belongs to the graph of order n, and zero else, and where each vertex 1, • • • , n has exactly d neighbours. This in particular implies that there are exactly d non-null entries in each row and each column of A n , and the total number of non-null entries of matrix A n is nd.

The spectral radius of M n . Depending on the magnitude of d = d n , the order of the spectral radius of M n varies.

The following two extreme cases illustrate this fact: consider A

n = diag(1) and A

(2)

n = 1 n 1 T n .
In the first case, d = 1 and

M (1) n = A (1) n X n = max i∈[n] |X ii | ∼ 2 log(n) .
In the second case, d = d n = n and

M (2) n = A (2) n X n ∼ 2 √ n .
This simple example illustrates the fact that the tuning of β n is non-trivial in the sparse case:

if d = 1 then β n = 2 log(n) while if d = n then β n = d n = n.
In fact, the following phase transition, established by Bandeira and Van Handel in [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF], holds:

• If d n log(n) then E M n ∼ √ d n , • If d n log(n) then E M n ∼ log(n).
To be more specific, the result by Bandeira and Van Handel [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF] writes in our context:

E M n ≤ (1 + ε) 2 d n + 5 log(1 + ε) log(n) for any 0 < ε ≤ 1/2 and E M n ≥ K 2 d n + 2 log(d n n) ,
where a n ≥ K b n means that there exists a constant independent from n such that a n ≥ Kb n .

Positivity of the solution x n . Based on the previous analysis of the spectral norm of M n , we shall consider the following regime d n log(n) where M n ∼ √ d n . We fix β n = d n . Based on simulations (see below), we state the following conjecture:

Conjecture 1. Let α n → ∞ and α * n = 2 log(n). Let M n = A n X n with A n the adjacency matrix of a d n -regular graph, with d n log(n).
Consider the solution

x n = 1 n + M n α n √ d n x n ⇔ x n = I n - M n α n √ d n -1 1 n , then • If there exists ε > 0 such that α n ≤ (1 -ε)α * n eventu- ally, then P min k∈[n] x k > 0 ----→ n→∞ 0 . • If there exists ε > 0 such that α n ≥ (1 + ε)α * n eventu- ally, then P min k∈[n] x k > 0 ----→ n→∞ 1 .
Remark 3. The conjecture can be settled in the case where d ∝ n, i.e. where dn -1 → c > 0. It suffices to follow the lines of the proof of Theorem 1 in this regime.

Arguments. The same argument as Theorem 1 applies when unfolding x n :

x k = e T k x n = 1 + 1 α n n j=1 A kj X kj √ d n + • • • Introduce Z k = d -1/2 n n j=1
A kj X kj and notice that since

#{A kj = 1, 1 ≤ j ≤ n} = d n , Z k is N (0, 1)-distributed and the Z k 's are independent. Now min 1≤k≤n x k ≈ 1 + min 1≤k≤n Z k α n ≈ 1 - 2 log(n) α n .
The conclusion follows as previously.

Although simulations tend to indicate that the remainder term

R k = e T k ∞ =2 M n α n √ d n 1 n
has no influence on the positivity of x n , a direct mathematical proof is currently beyond our reach for d n n.

DISCUSSION

The results presented here lie between Random Matrix Theory (RMT) and perturbation theory, slightly outside the range of RMT. In fact, consider

x n = I n - M n α n √ β n -1 1 n
In RMT, the random matrix part is supposed to have a limiting macroscopic effect, and this is indeed the case if α n = α is a constant and

M n √ β n ∼ O(1) as n → ∞ .
From a perturbation theory point of view, the random matrix part vanishes asymptotically as it is the case if α n → ∞:

1 α n M n √ β n ----→ n→∞ 0 .
As demonstrated in Table 1, the vanishing effect of the random part α - 

SIMULATIONS

In this section, we illustrate the phase transition phenomenon toward a positive solution x N depending on the scaling α N , β N being either fixed at N (FMM) or d N (SMM).

In Figure 1, we consider the transition toward feasibility for the full matrix model. We consider different values of N , respectively 400 (dashed), 1000 (solid). For each N and each κ on the x-axis, we simulate 10000 N × N matrices M N and compute the solution x N of (6) at the scalings α N (κ) = κ log(N ) and β N = N . Each curve represents the proportion of feasible solutions x N obtained for 10000 simulations. The red dotted vertical line corresponds to the In Figure 2, we consider the transition toward feasibility for the SMM. In this case, N is fixed N = 1000 while d n varies from 1 to 500. The phase transition is similar to the FMM. Notice in particular that in this case simulations tend to validate the phase transition phenomenon even for d < log(1000) = 6, 90.

ADDITIONAL RESULTS

We now illustrate two aspects of the phase transition not covered by the results presented so far.

In Figure 3, the phase transition is shown to hold for the FMM with Bernoulli ±1 entries. Although the Gaussiannity of the entries is mathematically important for the proofs, these simulations tend to show that this assumption is merely technical but not necessary.

In Figure 4, we illustrate the phase transition phenomenon for the FMM for a non-homogeneous linear system: where r n = (r k ) a n × 1 deterministic vector with positive components. In this non-homogeneous case, the phase transition is not as clean-cut as in the homogeneous case but there is a buffer zone where the transition occurs. We formalize this with the help of the following notations: Assume that ρ min , ρ max are independent from n and 0 < ρ min ≤ r min ≤ σ r ≤ r max ≤ ρ max < ∞ . 

x n = r n + 1 α n √ n M n x n , (8) 
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Table 1 .

 1 The quantity1 

	1 n β	-1/2 n	M n is extremely slow.
	n	10 2	10 3		10 4	10 5	10 6
	1 α * n	0.33 0.27 0.23 0.21 0.19
				α * n	=	√	1 2 log n vanishes extremely
	slowly as n increases.			

It is well-known that if the Z k 's are i.i.d. N (0, 1), thenE max k∈[n] Z k = -E min k∈[n] Z k ∼

log(n), see for instance[START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF].