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Inflammasomes are molecular complexes that trigger an inflammatory response upon

detection of pathogens or danger signals. Recent studies suggest that they are

also involved in cancer progression. However, their roles during tumorigenesis remain

poorly understood and controversial. Here, we investigated whether inflammasome

activation supports mammary tumor growth. Using mouse models of invasive breast

cancer, our results demonstrate that the absence of a functional inflammasome

impairs tumor growth. Importantly, tumors implanted into inflammasome-deficient

mice recruited significantly less neutrophils and more natural killer (NK) cells, and

these latter cells displayed a more active phenotype. Interestingly, NK cell depletion

abolished the anti-tumoral effect observed in inflammasome-deficient mice, although

inflammasome-regulated cytokine neutralization had no effect. Thus, our work identifies

a novel role for the inflammasome in supporting mammary tumor growth by attenuating

NK cell recruitment and activity. These results suggest that inflammasome inhibition could

be a putative target for treating invasive breast cancers.
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INTRODUCTION

Breast cancers are often infiltrated with immune cells that have pro- or anti-tumoral functions
(1, 2). The composition of the immune infiltrate and the level of infiltration have been correlated
with patient prognosis in several types of cancers (3–7). Chronic inflammation taking place within
tumors can promote tumor progression by stimulating angiogenesis or inhibiting anti-tumoral
immunity (8, 9).

Within injured tissues, innate immune cells sense pathogen- or danger-associated molecular
patterns (PAMPs, DAMPs) using germline-encoded pattern recognition receptors (PRRs) that drive
inflammation to restore homeostasis. Among these PRRs, specific NOD-like receptors (NLRs, such
as NLRP3) and hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats
(HIN200) protein families, operate by forming multiprotein complexes named inflammasomes.
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Besides PRRs, inflammasomes are composed of the adaptor
protein associated speck-like containing a CARD protein (ASC)
and of the cysteine protease caspase-1 (10). Once activated within
the inflammasome complex, caspase-1 cleaves and activates two
major pro-inflammatory cytokines namely the pro-IL-1β and
the pro-IL-18, and drives an inflammatory cell death known as
pyroptosis through gasdermin D cleavage (11, 12).

In the context of cancer, the role of the inflammasome is
complex as it can both promote anti- and pro-tumoral responses.
For instance, Nlrp3-, Nlrc4-, and Caspase-1-deficient mice are
more sensitive to colorectal cancer induced by DSS-AOM
treatment, suggesting an anti-tumoral role for the inflammasome
in the gut (13–15). This protective role is mediated by the
production of IL-18, which is involved in maintaining the
intestinal epithelial barrier integrity. Conversely, IL-18 is a
critical driver of immune suppression in a model of multiple
myeloma, in which it fuels the development of myeloid-
derived suppressor cells (MDSCs) (16). Moreover, the NLRP3
inflammasome was shown to promote tumor growth in models
of carcinogen-induced sarcoma and skin papilloma through the
release of IL-1β (17, 18). Thus, inflammasome activation may
dampen or promote anti-tumor responses depending on the
tumor type, the stage of tumorigenesis and the model studied.
This intricacy is reinforced by the wide range of expression
of some inflammasome components in immune and non-
hematopoietic cells. For instance, in a carcinogen-induced skin
cancer model, ASC depletion in keratinocytes facilitates tumor
development, whereas its loss in myeloid cells impairs it (19).

With respect to breast cancer, the presence of IL-1β
within the tumor microenvironment is frequently associated
with poor prognosis, suggesting a pro-tumoral role for this
cytokine (20–24). For instance, in the MMTV-NeuV664E BALB/c
model, the invasive conversion of the mammary tumors was
associated with an upregulation of the IL-1β transcriptional
signature (25). In the 4T1 murine model, which is used as a
preclinical model for invasive breast cancer, IL-1β promotes
tumor growth and the capacity of cells to metastasize (26,
27). Yet, the role of inflammasomes is not limited to IL-
1β production and the overall impact of this pathway in
the anti-breast cancer response remains unclear. We thus
tested whether the inflammasome supports invasive breast
cancer development in vivo by using mice deficient in major
inflammasome components.

MATERIALS AND METHODS

Mouse Tumor Cell Lines
4T1 and YAC-1 cells were cultured in RPMI medium
supplemented with 10% (v/v) heat-inactivated FBS (Life
technologies), 1% (v/v) penicillin/streptomycin, 1% (v/v) L-
glutamine, and 25µM 2-mercaptoethanol (only 4T1 cells) at
37◦C in a 5% CO2 incubator. 4T1 cells were proven to be
mycoplasma-free (MycoAlert Mycoplasma detection kit, Lonza)
before each injection and experiment. Cells were also proven to
be free of mouse infectious agents by Taqman R© PCR testing of
mouse essential panel (Charles River).

Mice
Nlrp3 knockout (KO) mice were obtained from J. Tschopp (28),
Asc KO mice from V. M. Dixit (29), and Caspase-1/Caspase-11
KO mice referred as Caspase-1 KO in the text from R. A. Flavell
(30). MMTV-NeuV664E in the BALB/c from F Cavallo (31). The
three transgenic KO strains were backcrossed with a BALB/c/Ola
(Harlan strain) background for at least nine generations. WT
animals were littermates of the Caspase-1/Caspase-11 knockout,
Asc knockout, or Nlrp3 knockout colonies or imported from
Harlan and maintained in the same cages as KO animals.
Animals were housed in individually ventilated cages under
specific pathogen-free conditions, fed with Harlan Teklad food
pellets and studies were conducted in accordance with the
regulations for animals used for scientific purposes governed by
the European Directive 2010/63/EU. Protocols were validated
by the local Animal Ethic Evaluation Committee (CECCAPP:
C2EA-15, Comité d’Evaluation Commun au PBES, à AniCan, au
laboratoire P4, à l’animalerie de transit de l’ENS, à l’animalerie
de l’IGFL, au PRECI, à l’animalerie du Cours Albert Thomas, au
CARRTEL INRA Thonon-les-Bains et à l’animalerie de transit
de l’IBCP, CLB-2013-019, CLB-2015-015) and authorized by the
French Ministry of Education and Research.

Bone Marrow Mouse Chimera
Five-week-old mice received antibiotics 2 days prior to being
exposed to 6Gy g-irradiations. The day of irradiation, bone
marrow (BM) was flushed with 5mL of RPMI from the
hind legs of mice and CD3+ cells were depleted using
the CD3 MicroBead Kit (Miltenyi biotec). 106 BM cells in
PBS supplemented with 0.1% penicillin/streptomycin were re-
injected intravenously (I.V.). Recipient animals recovered for 4
weeks before tumor injection.

Tumor Growth Assays
Only virgin female BALB/c/Ola mice aged 7 to 10 weeks were
used for in vivo experiments. 20,000 4T1 tumor cells in 100 µL of
sterile PBS were injected orthotopically into the 4th mammary fat
pad. Primary tumor growth was monitored with a digital caliper
measurement and expressed as a tumor volume (ellipsoidal
formula, π/6 × length × width2). Mice were sacrificed when
tumor size reached 1,200 mm3.

MMTV-NeuV664E mice were monitored over time for tumor
appearance through palpation (∼100 mm3).

Cell Suspensions From Spleens or Tumors
Spleens isolated from mice were crushed and filtered through a
40-µmfilter and resuspended in FACS buffer (PBS supplemented
with 5% (vol/vol) FBS, 2mM EDTA). Red blood cells were lysed
in 5mL of erythrocyte lysis buffer (155mM NH4Cl, 12mM
NaHCO3, 0.1mM EDTA) for 5min. After a PBS wash, cells were
then resuspended in FACS buffer.

Seven or 14 days post-injection of 4T1 cells, tumors isolated
from mice were cut into small pieces and incubated with
5mL of DMEM supplemented with DNase 0.02 mg/mL (Sigma
D4513)—Collagenase 1 mg/mL (Sigma C2674) for 30min at
37◦C. Digested tumors were then filtered through a 40-µm filter
and re-suspended in FACS buffer and filtered again twice. Red
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blood cells were lysed in 5mL of erythrocyte lysis buffer for 5min.
After a PBS wash, cells were then resuspended in FACS buffer.

Flow Cytometry
Cell suspensions from spleens or from tumors were washed
in FACS buffer (PBS supplemented with 2mM EDTA and 5%
(vol/vol) FBS) and incubated for 5min with purified anti-mouse
CD16/32 FcBlocks (93; Biolegend). Cells were stained with
fluorochrome-conjugated antibodies (Supplementary Table 1)
at 4◦C for 20min LIVE/DEADTM Fixable Aqua Dead Cell Stain
Kit, 405 nm excitation (Invitrogen L34965) was used to gate on
live cells. For cell surface staining, cells were washed twice in
FACS buffer, fixed in PBS 2% paraformaldehyde and stored in
FACS buffer before analysis. For intracellular staining, cells were
fixed/permeabilized with the Cytofix/Cytoperm kit (554714, BD
Bioscience) for 20min on ice. Cells were washed with PermWash
buffer and stained with fluorochrome-conjugated antibodies
diluted (Supplementary Table 1) in PermWash buffer for 30min
on ice. Cells were washed again in PermWash buffer and kept at
4◦C before analysis. Data were collected on a LSR II Fortessa (BD
Bioscience) and analyzed using the FlowJo software.

Luminex Assay
Tumors were prepared as described above. Digested tumors
were centrifuged and supernatants were used for luminex
assay according to manufacturer protocol (mouse pre-mixed
multianalyte test reference LXAMSM-18 R&Dsystems).

NK Cell Depletion
Mice were injected I.V. (in the retro-orbital sinus) with 50 µL of
the Ultra-LEAFTM Purified anti-Asialo-GM1 (clone: Poly21460,
Biolegend) antibody 1 day prior to tumor cell injection. In order
to maintain NK cell depletion during tumor growth, mice were
injected I.V. every 10 days.

NK Cell Activation
3.106 splenic lymphocytes or tumor cell suspensions were
prepared in complete medium (RPMI + glutamax, 10% SVF,
1% penicillin/streptomycin, 10mM HEPES, 1mM sodium-
pyruvate, 50µM 2-mercaptoethanol) and incubated for 4 h
with cytokines [recombinant mouse IL-12 (Peprotech, 200-12)
(final concentration: 100 ng/mL) and recombinant mouse IL-18
(R&D, B004-5) (final concentration: 20 ng/mL)] or on antibody-
coated plates [anti-NKp46 (29A1; BD Biosciences), anti-Ly49D
(4E5; BD Biosciences), anti-NKG2D (CX5; BD Biosciences), and
GolgiStop (BD Biosciences) in the presence of anti-CD107a
(2B6; BD Biosciences)] or co-cultured with Yac-1 or 4T1 cells
(1:1 ratio).

In vivo Cytokine Depletion
Mice were injected intraperitoneally (I.P.) with 2.5 mg/kg of body
weight (B.W.) of anti-IL-1β antibody (Clone B122, Biolegend,
503504), or 0.25mg/kg of B.W. IL-18 binding protein (IL-18BPd-
FC) (R&D systems, 122-BP), or both, or control IgG 1 day prior
to the tumor cell injection and every 3 days after that. Anakinra
(Kineret R©) was administered I.P. (20 mg/kg of B.W.) prior to
tumor cell inoculation and every 2 days after that. The second
anti-IL-1b (AF-401-NA; R&D Systems) or control isotype was

injected i.p. at a dose of 10 µg per mouse twice a week as
described in (32).

Statistical Analysis
Statistical analysis of each experiment was conducted using
the GraphPad Prism software. One-way or two-way ANOVA
were used followed by Bonferroni’s Post-test to compare tumor
progression and immune cell infiltration.

RESULTS

The Absence of a Functional
Inflammasome Impairs Mammary Tumor
Growth in Mice
To assess the impact of the inflammasome on mammary
cancer progression in vivo, MMTV-NeuV664E mice were bred
with Caspase-1 knock-out (KO) mice, the main inflammasome
effector, and the number of tumor-free mice was monitored
over time. As shown in the Figure 1, the absence of caspase-
1 significantly delayed tumor onset in mice suggesting a pro-
tumoral role for the inflammasome. The difference in the age
of onset was however, modest and could be due to the fact
that caspase-1 is well-expressed in different tissues including
mammary cells and could display opposite functions as described
above for ASC (19). We thus decided to use syngeneic 4T1
carcinoma cells to explore the effect of the presence of the
inflammasome within the tumor microenvironment on tumor
progression. The cells were injected into the mammary fat pad
of WT, Caspase-1 KO and Asc KO BALB/c mice, respectively,
and tumor growth was monitored over time. While inoculation
of female WT BALB/c mice with cancer cells gave rise to large
tumors within 30 days, the absence of caspase-1 or ASC resulted
in significantly smaller tumors (Figures 2A,B), suggesting that
inflammasomes likely support mammary tumor growth. To
ascertain whether NLRP3 was also involved, we compared 4T1
cell growth in Nlrp3-deficient and Nlrp3-sufficient WT mice.
Indeed, NLRP3 appeared to be a good candidate as this receptor
is well-described to sense DAMPs, such as ATP or uric acid
released by necrotic cells, and since necrosis of tumor cells
is frequent during cancer progression (33, 34). As shown in
Figures 2C,D, tumor sizes were similar between WT and Nlrp3
KO mice, indicating that NLRP3 does not support mammary
tumor growth in vivo, unlike caspase-1 and ASC.

Inflammasome Expression in the
Hematopoietic Compartment Supports
Tumor Growth
As previously mentioned, caspase-1 is the main catalytic subunit
of the inflammasome. Its expression is not restricted to immune
cells as it is also expressed by many non-hematopoietic cell
types such as epithelial cells or adipocytes (35, 36). To evaluate
the role of inflammasome components in tumor growth in
immune vs. non-immune cells, we first generated a series of
bone marrow chimeric mice to obtain different combinations
of caspase-1 expression in immune and non-immune cells as
indicated in Figure 3A. Thirty days post reconstitution, mice
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FIGURE 1 | Caspase-1 deficiency delays tumor appearance in MMTV-NeuV664E BALB/c mouse model. Kaplan–Meier curves depicting tumor growth latency of

MMTV-NeuV664E mice, defined as time from birth until appearance of the first palpable tumor. **P < 0.01 (Comparison of survival curves: Gehan–Breslow–Wilcoxon

test).

FIGURE 2 | Loss of caspase-1 and ASC expression reduces 4T1 tumor growth in BALB/c mice. (A) WT, Caspase-1 KO, and Asc KO mice (n = 5) were injected

orthotopically with 4T1 mammary tumor cells. Tumor growth was measured over 30 days. (B) Individual growth curves depicted in A. (C) WT, Caspase-1 KO, and

Nlrp3 KO mice (n = 8) were injected orthotopically with 4T1 mammary tumor cells. Tumor growth was measured over 30 days. (D) Individual growth curves depicted

in C. Data represent mean ± SD ***P < 0.001 (Two-way ANOVA analysis; n.s, non-significant).
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FIGURE 3 | The presence of the inflammasome in the hematopoietic compartment promotes mammary tumor growth. Irradiated mice of indicated genotypes were

grafted with bone marrow stem cells from WT or Caspase-1 KO mice and were injected with 4T1 mammary tumor cells 28 days later. (A) Tumor growth was

measured over 30 days. (B) Individual growth curves depicted in A. Data represent mean ± SD ***P < 0.001 (Two-way ANOVA analysis).

were inoculated with 4T1 cells and tumor growth was monitored.
The growth rate of 4T1 cells was determined by the expression
of caspase-1 in immune cells, and independent of its expression
in non-immune cells, as illustrated in Figures 3A,B in recipient
mice with different genotypes. Thus, the absence of caspase-
1 in the hematopoietic cell lineage is responsible for the delay
in tumor growth, suggesting that caspase-1-expressing immune
cells support cancer progression.

The Inflammasome Impairs NK Cell
Recruitment to the Tumor
Activation of the inflammasome has been shown to modulate the
composition of the tumor immune infiltrate (37). To address this
finding in our model, we analyzed the tumor immune infiltrate in
the mammary gland at days 7 and 14 post-injection in WT, Asc-
, and Caspase-1-deficient mice. Different myeloid and lymphoid
cell subtypes were studied by flow cytometry.

With respect to the myeloid compartment, our analysis of
the CD45+ infiltrate showed that the frequency of neutrophils
(defined as Ly6Cint-Ly6Ghigh) was significantly decreased at both
time points in Caspase-1- or Asc- deficient mice compared to
control mice, while the abundance of monocytes, macrophages,
dendritic cells (DC) and eosinophils was similar in all mouse
groups (Figures 4A,B and Supplementary Figures 1A,C).

Regarding lymphoid cells, no significant difference in
CD4+ or CD8+ T lymphocyte recruitment was observed
between WT and inflammasome-deficient mice at day 7 and
day 14 post-injection and very few B cells had infiltrated
the tumors (Figures 4C,D and Supplementary Figure 1D).
However, the frequency of infiltrating NK cells (NKp46+ cells)
was significantly higher in tumors implanted in Caspase-1 and
Asc KO mice compared with WT mice at day 7 and day 14
(Figures 4C,D and Supplementary Figure 1B). Differences in
tumor infiltrates between the groups of mice were not due to pre-
existing differences in these mice, as the immune composition of

the spleen of tumor-bearing mice was similar in WT, Asc, and
Caspase-1 KOmice at day 14 (Supplementary Figures 1E,F).

Inhibition of Inflammasome-Regulated
Cytokine Production Does Not Affect the
Rate of Tumor Growth
The inflammasome controls the production of IL-1β and IL-
18 and both cytokines are involved in tumor development
or control. We wondered whether blocking IL-1β and IL-18
would impact the ability of 4T1 cells to grow in WT mice.
Surprisingly, treatment with either the anti-IL-1β antibodies
or the IL-18 binding protein (BP) or both did not affect the
rate of tumor growth (Figure 5A, Supplementary Figure 2).
Similarly, Anakinra (recombinant IL-1Ra) injection did not delay
tumor growth in WT mice, suggesting that inflammasome-
regulated cytokines are not essential for controlling 4T1 cell
growth in vivo (Figure 5B) (24, 32, 38). Finally, cytokine
measurement using multiplex technology of tumor supernatants
at day 14 showed no difference in the amount of IL-1β, IL-33,
CCL3/MIP1α, KC or β-FGF, between WT and Caspase-1 KO,
while CCL5/RANTES was significantly increased in Caspase-1
KO (Supplementary Figure 3).

Caspase-1 Deficiency Improves NK Cell
Anti-tumor Activity
Since NK cells, which are important anti-tumor effectors (39, 40),
were preferentially recruited into the tumors of inflammasome-
deficient mice, and since increased levels of CCL5 within the
tumor microenvironment were detected, we tested whether
NK cells were responsible for the reduction in tumor growth.
Caspase-1 KO and WT mice were depleted of NK cells by
I.V. injection of the anti-Asialo GM1 antibody before being
inoculated with 4T1 cells. Upon NK cell depletion, tumors
grew at the same rate in both groups of mice, demonstrating
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FIGURE 4 | Caspase-1 or ASC deficiency improves NK cell recruitment 14 days post-injection. (A) Flow cytometry analysis of myeloid cell populations in 4T1 tumors

at day 14 post-injection from WT (n = 6), Caspase-1 KO (n = 6), and Asc KO (n = 6) mice. The displayed dotplots were obtained by gating live and CD45+ cells. (B)

Quantification and analysis of myeloid cell populations in the different mouse genotypes. (C) Flow cytometry analysis of lymphoid cell populations in 4T1 tumors from

the same mice as in A. The displayed dotplots were gated from live and CD45+ cells. (D) Quantification and analysis of lymphoid cell populations in the different

mouse genotypes. Data represent mean ± SD *P < 0.05; **P < 0.01 (One-way ANOVA test followed by Bonferroni’s Multiple Comparison Test).
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FIGURE 5 | IL-1β, IL-18 or IL-1R inhibition does not affect 4T1 tumor growth

in vivo. (A) WT (n = 5) were injected with IgG control, anti-IL1β antibody,

IL-18BP, or both anti-IL1β and IL-18BP the day before tumor inoculation and

then every 3 days. Treated mice were orthotopically injected with 4T1

mammary tumor cells. Tumor growth was measured over 28 days. (B) WT,

caspase-1 KO were injected with PBS or Anakinra (IL-1 receptor inhibitor) the

day before tumor inoculation and then every 2 days. Treated mice were

orthotopically injected with 4T1 mammary tumor cells. Tumor growth was

measured over 14 days. Data represent mean ± SD *P < 0.05 (Two-way

ANOVA analysis; n.s, non-significant).

a major role for NK cells in mammary tumor growth control
(Figures 6A,B).

We then asked whether caspase-1 expression within the
immune compartment could affect NK cell phenotype and
activation. As shown in Figure 6C, NK cells infiltrating the
mammary tumors of Caspase-1 KO were larger (according to
FSC parameters) than those infiltrating WT mice, a feature
which is commonly associated with a stronger activation
status (41). Furthermore, NK cells present in the tumor of
Caspase-1-deficient hosts expressed higher levels of NK cell
activation markers NKG2D, Granzyme B (GZB), CD69 and
CD98 (Figure 6D) (42). With the exception of NKG2D, few
differences were detected between splenic NK cells from WT
and Caspase-1-deficient tumor-bearing mice, indicating that the
tumor microenvironment directly impacts NK cell phenotype
(Figure 6E).

We then investigated the ability of tumor infiltrating NK
cells to be activated when re-stimulated in vitro. Tumor cell

suspensions fromWTorCaspase-1KOmice were incubated with
a combination of IL-12+IL-18 cytokines, or with crosslinking
antibodies against activating receptors (NKp46, Ly49D, NKG2D)
or with different tumor cell lines (4T1, and YAC1 cells, a classical
NK cell target). Interestingly, NK cells from tumors growing
in Caspase-1 KO mice displayed an increased expression of
IFN-γ following activation compared to those from tumors
growing inWTmice, irrespective of the stimulus used (Figure 6F
and Supplementary Figure 4A). In addition, in the tumor
cell suspension from Caspase-1 KO mice, significantly more
NK cells were activated (positive to IFN-γ) in response to
YAC-1 or 4T1 stimulation compared with WT (Figure 6G
and Supplementary Figure 4B). These results suggest that the
absence of caspase-1 from the tumor immunemicroenvironment
promotes NK cell activation.

DISCUSSION

The role of inflammasome activation in cancer (15, 43)
remains largely undefined and can be either pro-tumoral
or anti-tumoral. The data presented here suggest that the
inflammasome promotes the growth of invasive breast cancer in
two mouse models, the MMTV-Neu and 4T1 cells. Interestingly,
bone marrow chimeric mouse experiments demonstrated
that caspase-1-expressing immune cells promote mammary
tumor progression.

Despite the fact that necrotic cell death occurs during
tumor progression releasing DAMPs, such as ATP, or uric
acid, tumor growth was independent of NLRP3, suggesting
either redundancy or the involvement of another PRR. Other
innate immune receptors such as AIM2 or NLRC4 can form
inflammasome platforms. AIM2 is a DNA sensor, which can
be activated by circulating-free DNA released by dying cells
(44, 45). And NLRC4 was recently shown to promote mammary
tumor growth in a model of high fat diet-induced obesity via the
production of IL-1β (46). Further experiments would be required
using KO animals in the BALB/c background to determine
their putative involvement in tumor progression of invasive
breast cancer.

NK cells are an important aspect of the anti-tumor arsenal
and their presence is associated with good prognosis in several
types of cancers (47, 48). However, during cancer progression
malignant cells develop different strategies to escape or to
dampen NK cell functions (39, 49). Indeed, NK cell activity was
shown to be reduced in the blood of primary and metastatic
breast cancer patients (50).

With respect to the role of the inflammasome on NK
cell function, former studies mostly addressed its involvement
in mouse models of cancer metastasis (15). For instance,
Nlrp3-deficient mice displayed reduced number of melanoma
lung metastasis due to more active NK cells in a caspase-1-
independent way, while in the context of colon metastasis to
the liver, caspase-1 and NLRP3 were protective by promoting
more active NK cells in the livers of WT mice compared
with Caspase-1-deficient mice (17, 37). Here, we showed for
the first time that the absence of a functional inflammasome
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FIGURE 6 | NK cells control tumor growth and are more active in caspase-1 KO mice. (A) Tumor growth of 4T1 cells was measured in NK-depleted (anti-asialo GM1)

or PBS-treated WT and caspase-1 KO mice (n = 5). Each value represents mean ± SD **P < 0.01; ***P < 0.001 (Two-way ANOVA analysis). (B) Individual growth

curves depicted in (A). (C–E) Flow cytometry analysis of NK cell size in tumors and spleens (C) and activation markers in 4T1 tumors (D) and in spleen (E) from WT (n
= 5) and Caspase-1 KO (n = 5) mice at day 7 post-injection. (F) Cell suspensions from digested tumors of the indicated mouse genotype were cultured in the

presence of cytokines (IL-12/IL-18), antibodies (NKp46, Ly49D, NKG2D) or tumor cells (YAC-1, 4T1) and NK cell IFN-γ production (F) or IFN-γpositive cells (G) were

measured by flow cytometry. Data from (C–G) represent mean ± SD *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 (Two-way ANOVA test followed by

Bonferroni’s Post-test; ns, non-significant).

improved NK cell recruitment and activation in the mammary
tumor microenvironment. Higher levels of CCL5 were also
detected in the tumor supernatant of Caspase-1-deficient tumors
consistent with an increase inNK cells recruitment and activation
(51, 52). We further showed that NK cells from Caspase-1-
deficient mice responded better to ex vivo re-stimulations, and
NK cell depletion in WT and Caspase-1-deficient mice resulted

in similar tumor growth rates, demonstrating the major role of
NK cells on tumor growth control. Since the phenotype of NK
cells was similar in WT and in Caspase-1 KO mouse spleens,
our results suggest that the tumor microenvironment directly
modulates NK cell anti-tumor response, as previously described
in invasive breast cancer and non-small cell lung cancer (NSCLC)
models (53, 54).
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Our observations also revealed that Ly6Cint-Ly6Ghigh

neutrophils were less abundant in the tumor microenvironment
of inflammasome-deficient mice. Several studies have described
these tumor infiltrating cells as myeloid-derived suppressor cell
(MDSC) populations, due to their ability to down-regulate the
anti-cancer immune response (55, 56). For instance, MDSC
recruited within the tumor bed are able to suppress NK
cell cytotoxicity, IFN-γ production and NKG2D expression
(57). MDSCs promote primary and metastatic 4T1 tumor
progression (26), and impairing their recruitment to the tumor
microenvironment limits tumor growth (22, 58). Intriguingly,
Chow et al. reported in Nlrp3 KO lungs the presence of a
CD11b+ Gr-1int population which, upon adoptive transfer into
WT animals, suppressed lung metastasis of melanoma cells
(17). Moreover, those cells secreted CCL5. However, we did not
observe the recruitment of a similar population in the mammary
immune infiltrate of Caspase-1 or Asc KO mice. Thus, our
data suggest that the inflammasome supports tumor growth by
recruiting Ly6Cint-Ly6Ghigh cells to the tumor bed preventing
NK cell infiltration and activation.

Activation and secretion of the two pro-inflammatory
cytokines IL-1β and IL-18 are mostly regulated through the
inflammasome. According to previous studies, IL-1β promotes
4T1 tumor growth (26, 27). However, we did no detect
any difference in intra-tumoral IL-1β concentration and the
inhibition of the IL-1R pathway by IL-1Ra administration or
through the immune-depletion of IL-1β in vivo did not impair
4T1 growth. Moreover, injecting the same anti-IL-1β used
by Kaplanov et al. in WT mice did not affect 4T1 growth,
although tumor volumes were globally much smaller in their
study compared with ours (32). In addition, Bruchard et al.
described no decrease in tumor growth in the presence of
IL-1Ra (59). IL-18 inhibition, and the combination of both
IL-1β and IL-18 inhibition also had no impact on tumor
cell growth. The discrepancies observed these different studies
could be explained by the BALB/c strain that we used or
by specific in-house microbiota. Of note, using the aggressive
PyMT mouse model of invasive breast carcinoma inter-
crossed with the Il-1r KO background, Dagenais and colleagues
observed an increase in tumor burden and aggressiveness,
while no effect on the composition of the tumor immune
microenvironment was noted, minimizing the role of the IL-
1R pathway as a main modulator of breast cancer progression
through the modulation of the immune composition (60). Thus,
in our model, the inflammasome may support tumor growth
through as yet understudied effector mechanisms. They could
be pyroptosis, which induces pore formation in the plasma
membrane and the release of the intracellular content, or caspase-
1 mediated eicosanoid storm (12, 61). Eicosanoids, and especially
prostaglandin E2 (PGE2) synthesized by cyclooxygenases, were
known to suppress anti-tumor immunity by inhibiting NK
cell viability and activation, and to promote cancer growth
(51, 62, 63).

Altogether, our study highlights a new role for the
inflammasome in promoting invasive breast cancer progression
by facilitating tumor infiltration with neutrophils, while
impeding the NK cell-associated anti-tumoral response

independently of IL-1β and IL-18. These results suggest that
inflammasome catalytic inhibition could be an interesting
therapeutic approach for breast cancer.
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Supplementary Figure 1 | Caspase-1 and ASC deficiency alters the composition

of the tumor immune infiltrate in tumors but not that of the spleen. (A) Flow

cytometry quantification of CD45 positive cells in 4T1 tumors isolated from WT (n
= 6), Caspase-1 KO (n = 6), and Asc KO (n = 6) mice 14 days post-injection. (B)
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Correlation graph of NK cells vs. neutrophils infiltrated in 4T1 tumors isolated from

WT (n = 6), Caspase-1 KO (n = 6), and Asc KO (n = 6) mice 14 days

post-injection. (C,D) Flow cytometry quantification and analysis of myeloid (C) and

lymphoid (D) cell populations from WT, Caspase-1 KO, and Asc KO mice 7 days

post-injection with 4T1 mammary tumor cells. (E,F) Flow cytometry quantification

and analysis of myeloid (E) and lymphoid (F) cell populations in spleens from WT

(n = 4), Caspase-1 KO (n = 4), and Asc KO (n = 4) mice injected with 4T1

mammary tumor cells at day 14 post 4T1 tumor cell injection. Data represent

mean ± SD ∗P < 0.05, ∗∗P < 0.01 (One-way ANOVA test followed by Bonferroni’s

Multiple Comparison Test).

Supplementary Figure 2 | IL-1β inhibition does not affect 4T1 tumor growth in
vivo. WT mice were injected with IgG control (n = 7) or anti-IL1β antibody (n = 8)

the day before tumor inoculation and then twice a week. Treated mice were

orthotopically injected with 4T1 mammary tumor cells. Tumor growth was

measured over 28 days.

Supplementary Figure 3 | Cytokine measurements in tumor cell supernatants of

WT or caspase-1 KO mice by Luminex technology. Supernatants from tumor

dilacerations of WT (N = 8) and caspase-1 KO (N = 8) mice were analyzed by

Luminex assay for CCL5 IL-1β, CCL3, IL-33, KC, and FGF-b. Data represent

mean ± SD (p from unpaired t-test).

Supplementary Figure 4 | NK cells control tumor growth and are more activated

in caspase-1 KO mice. (A) Cytometric profiles of data shown in Figure 6F. Cell

suspensions from digested tumors of the indicated mouse genotype were

cultured in the presence of cytokines (IL-12/IL-18), antibodies (NKp46, Ly49D,

NKG2D), or tumor cells (YAC-1, 4T1) and NK cell IFN-γ production was measured

by flow cytometry. (B) Comparison of IFN-γ-positive NK cells from tumor of WT

and Caspase-1 KO mice exposed or not to 4T1 cells.

Supplementary Table 1 | Inventory of fluorochrome conjugated-antibodies used

for cytometry analysis.
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