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A B S T R A C T

Dynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive pro-
cessing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies
the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and
cognitive performance are selectively interrelated within specific functional subnetworks.

In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that
whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global
dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and
highly heterogeneous. On the contrary, we found strong correlations between performance variations in indi-
vidual tasks –including Rapid Visual Processing (RVP, assessing sustained visual attention)– and dFC speed
quantified at the level of functional sub-networks of interest. Providing a compromise between classic static FC
(no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC
reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP
performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module.
1. Introduction

The majority of studies on resting state functional brain connectivity
so far have considered time averaged resting state Functional Connec-
tivity (rs FC). However, substantial evidence suggest that the brain is
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cognitive processing (Cohen, 2018). Beyond differences of age (Hutch-
ison and Morton, 2015) and gender (Yaesoubi et al., 2015), or changes in
vigilance (Wang et al., 2016; Shine et al., 2016) and consciousness
(Hudetz et al., 2015; Cavanna et al., 2018), higher “fluidity” of dFC has
been linked to higher mindfulness (Lin et al., 2018), levels of attention
(Kucyi et al., 2017), faster learning (Bassett et al., 2011), flexibility of
executive control (Braun et al., 2015) and, more generally, superior
performance in several cognitive and behavioral domains (Jia et al.,
2014). These findings are in line with a view of the human brain as a
dynamical system, in which flexible communication and large-scale
integration between multiple, possibly remote, local subnetworks un-
derlies emergent information processing and cognitive operations
(Mesulam et al., 1990; Varela et al., 2001; Bressler and Kelso, 2016; Kirst
et al., 2016).

The shift to a dynamic chronnectome (Calhoun et al., 2014)
perspective is however hampered by the lack of a consensus on the best
approach to estimate not-artefactual dFC to be chosen amongst an
increasingly larger spectrum of diverse methods (Preti et al., 2017). In
particular, statistical concerns have been raised: firstly, about whether
resting-state FC is really non-stationary (Zaleski et al., 2014; Hindriks
et al., 2016) and, secondly, whether discrete connectivity states do exist
or can be reliably extracted (Shakil et al., 2016; Li�egeois et al., 2017).
Here we will advance on investigating relations between dFC and
cognitive performance, by capitalizing on an original methodological
framework which circumvents both these concerns. In Battaglia et al.
(2020) we introduced the notion of dFC speed, quantifying in a
time-resolved manner the rate at which brain-wide FC networks are
changing from one time-window to the next. We thus interpret dFC as a
random walk in the high-dimensional space of possible FC network re-
alizations, describing it as a smooth flow across continually morphing
connectivity configurations, rather than as a non-stationary sequence of
sharp inter-state transitions. In this study, we go beyond Battaglia et al.
(2020) by exploring with more precision and detail the hypothesis that
variations in resting state dFC speed correlate with cognitive perfor-
mance. Specifically, we substantially extend the approaches of Battaglia
et al. (2020) by quantifying dFC changes not only at the whole-brain level
but also at the level of specific functional subnetworks, believing that
these modular changes are better at capturing fine cognitive performance
variations across specific tasks.

We concentrate, as a proof of concept, on Sleep Deprivation (SD) as a
model of cognitive dysfunction, useful to understand how changes of dFC
correlate with reversible cognitive impairment. Furthermore, SD is a
common condition in modern societies with a significant impact on
productivity and health (Institute of Medicine Committee on Sleep and
Research, 2006), affecting cognitive functions such as executive control
and attention (Durmer and Dinges, 2005; Krause et al., 2017). Finally,
investigating dFC in SD may lead to the development of novel predictive
markers of early network dysfunction in disease. Indeed, SD has also been
proposed as a cognitive challenge model of cognitive impairment arising
in Alzheimer’s Disease (AD), because of both the partially overlapping
spectrum of induced cognitive deficits and their response to pharmaco-
logical treatment (Cheeh and Chuah, 2008; Repantis et al., 2010; Wirsich
et al., 2018). For this reason, cognitive tests chosen with a sensitivity to
both SD and cognitive dysfunction in AD were chosen for the present
study (Cummings et al., 2012; Randall et al., 2005; Dodds et al., 2011;
Kirova et al., 2015).

Previous investigations have shown that SD affects time-averaged FC
at the whole-brain level (Yeo et al., 2015; Kaufmann et al., 2016; Wirsich
et al., 2018). However, it is not very clear how such changes of static
network topology relate to cognitive effects of sleep deprivation. Other
studies considered classic dFC analyses and found that transition dy-
namics between global FC states are slowed down after SD and during
descent from wakefulness into sleep (El-Baba et al., 2019). Furthermore
changes in state transitions and occupancy could predict the rate of
decline of speed of processing and working memory after multiple
consecutive nights of SD (Patanaik et al., 2018). Here we go beyond these
2

promising results by studying how 24 hs of SD affect our novel dFC speed
markers in relation to cognitive performance looking at changes at not
only the global but also the subnetwork level.

Firstly, we observe that the speed of reconfiguration of resting-state
whole-brain FC networks (global dFC speed) is significantly slowed-
down by SD. Secondly, we demonstrate a correlation between the
modular dFC speed of a specific frontoparietal sub-network –related to
well-known attentional networks (Corbetta and Shulman, 2002)– and
performance on a demanding cognitive test, Rapid Visual Processing
(RVP), assessing sustained visual attention and central executive control
(Coull et al., 1996).

In Battaglia et al. (2020) we found that higher dFC speeds at the
whole-brain level were associated with higher levels of general cognitive
performance. Here, however we refine our analyses going beyond rough
cognitive assessments –as the MOCA score (Nasreddine et al., 2005) used
in Battaglia et al. (submitted as a companion paper)–, optimized for diag-
nosis but able just to detect sizeable cognitive deficits affecting several
cognitive domains simultaneously. The effects of SD can on the contrary
be very moderate and diverse for different tasks, requiring a much finer
sensitivity and selectivity of analysis. Here, we find then that reductions
of global dFC speed at the whole brain level do not predict these small
and specific changes of cognitive performance in different individual
tasks. Importantly, however, we observe again significant correlations
with detailed changes in cognitive performance after introducing a novel
type of metric, which we call modular dFC speed. Unlike global dFC speed
analyses – in which information about where network changes are
happening, because the rate of change is averaged over the whole brain
are lost – modular dFC speed allows for the quantification of a different
speed of dFC reconfiguration independently for each different
sub-network of interest. Correlations with cognitive performance are
then highlighted when focusing on task-relevant networks, which we
extract in an unsupervised manner –through an analysis of Meta--
Connectivity (MC), i.e. correlation between time-dependent functional
links (cf. Bassett et al., 2014; Brovelli et al., 2017; Faskowitz et al.,
2019)–and whose independent dFC fluctuations would have otherwise
been undetectable by whole-brain dFC speed analyses.

Our findings suggest that analyses of dFC speed variations are well
able to detect the temporal reorganization of resting state FC fluctuations
after SD. Furthermore, beyond mere changes in reaction time or vigi-
lance, our quantifications of dFC variations robustly track the magnitude
of changes in cognitive performance induced by SD within each specific
subject. Importantly, modular dFC speed measures are able to detect
subtle changes in dFC that are confined to specific sub-networks. This
makes it possible to capture variations of performance in cognitive
function such as attention – relying on the interaction between spatially
well-defined systems (Corbetta and Shulman, 2002).

2. Material and methods

2.1. Participants

We here re-analyze neuropsychological and fMRI data previously
reported by Wirsich et al. (2018). Within the framework of a
work-package of the EU PharmaCog Innovative Medicine Initiative (http
s://www.imi.europa.eu/projects-results/project-factsheets/pharma
-cog), fifteen healthy subjects were recruited (all male, 25–40 years old,
Body Mass Index, BMI � 27, right-handed) to participate in an experi-
ment distributed over ten different days in blocks of two days each.
Before inclusion, volunteers were checked for their medical history,
physical examination, vital signs, results of blood chemistry and hae-
matology, urine drug screen, electrocardiogram (ECG) and their visual
and auditory abilities. Volunteers who received medical treatment,
smoked more than five cigarettes per day, took more than five caffeine or
energy drinks per day or suffered from claustrophobia were not included.
It was ensured that the volunteers had good regular sleep habits and
rhythms using questionnaires and clinical interviews (Pittsburgh Quality

https://www.imi.europa.eu/projects-results/project-factsheets/pharma-cog
https://www.imi.europa.eu/projects-results/project-factsheets/pharma-cog
https://www.imi.europa.eu/projects-results/project-factsheets/pharma-cog


D. Lombardo et al. NeuroImage 222 (2020) 117155
Index with regular sleep between 6.5 and 9 h per night, Epworth scale
score below 10, Horne and Ostberg scale score above 31 and below 69,
absence of jet lag and no occupation with time-shifts), no history of
clinicalsigns of sleep disorder (Berlin sleep apnea scale, Restless Legs
Syndrome questionnaire) and no history of psychiatric disorder (psy-
chiatric interview with the M.I.N.I-DSM IV). Three days before the ses-
sion, the subjects wore an actigraph and completed a sleep diary to verify
their sleep status. Four subjects quit the protocol before the end (three
withdrawals of consent and one drop-out for an adverse event), which
resulted in a final group of eleven subjects (age ¼ 34 � 4 years, range
28–40 years).

In the original experiment, some of the subjects were administered
doses of various neuroenhancer drugs prior to the fMRI scan and
cognitive testing. For more details, see Wirsich et al. (2018) and Chan
Kwong et al. (2020). Here, however, we prefer to focus uniquely on the
placebo sessions, being more interested in statistical comparisons be-
tween dFC speed in different modules, than comparisons between dFC
speed in different medication conditions. The small number of subjects
does not provide sufficient statistical power to study all possible com-
parisons (modules and drugs). Therefore, for homogeneity, we consider
data acquired during the placebo sessions within the first block of two
days. Subjects were assessed twice, once before and once after SD with
one session of rs fMRI and cognitive tests. An additional subject was
discarded a posteriori because he slept for most of the time during the
second day fMRI session.

2.2. Cognitive assessment

Every subject performed seven cognitive tests assessing verbal and
visual episodic memory, attention, language and working memory. In
this study, we focused on three computerized tests, known to be affected
by SD and selected for the complementarity of the functions they probe.
Hence, psychomotor speed and attention were assessed via the Simple
Reaction Time (RTI) and the Rapid Visual Processing (RVP) tests from the
Cambridge Neuropsychological Test Automated Battery (CANTAB®). For
the RTI, during 10 mn, participants, while holding a button on a box,
have to react as soon as possible to yellow dots that appear on the screen
by releasing the button and touching the dot on the screen. In the RVP
task (12 mn), digits are shown in the centre of the screen in a
pseudo-random order, at the rate of 100 digits per minute. Participants
are requested to detect target sequences of 3 digits by pressing a button as
quickly as possible. The participant must watch for three-target se-
quences at the same time. Working memory was assessed through the
n-back (0-back, 1-back, 2-back, 3-back…) task (Braver et al., 1997). The
subject is presented with 3 blocks of 4 continuous sequences of 16 letters.
The task consists of indicating when the current letter matches the one
from n steps earlier following the different instructions of each sequence.
We here use as performance metric reaction times and accuracies from a
3-back task (n ¼ 3).

Differences of cognitive performance before and after SD were
compared: at the group level, using Mann-Whitney-U test or Kruskal-
Wallis testing of median differences; at the within-subject level, using
paired Wilcoxon signed-rank test or Kruskal-Wallis testing of median
being different from zero. Bonferroni correction was applied on the
number of tested cognitive performance scores (ν ¼ 5).

2.3. fMRI data recording and processing

For a detailed description on fMRI data acquisition, see Wirsich et al.
(2018). All images were acquired on a Siemens Magnetom Verio 3T
MRI-Scanner (Siemens, Erlangen, Germany) with structural T1-weighted
images acquired using a MPRAGE-sequence (TR ¼ 2300 ms, TE ¼ 2.98
ms, 1.0 � 1.0 � 1.0 mm, 176 slices), and 200 BOLD-sensitized EPI
T2*-weighted MRI images acquired using a TR of 2.7 s (3.0 � 3.0 � 3.0
mm, TE¼ 30ms, 40 slices, acquisition time of 9 min 5 s). To process fMRI
data we used the SPM8 toolbox (revision 4667, http://www.fil.ion.ucl.
3

ac.uk.gate2.inist.fr/spm/software/spm8/) to slice time and spatially
realign the volumes. The AAL atlas template (N ¼ 86 regions, see Fig. 4B
for the list of enclosed regions (left and right hemisphere; Tzour-
io-Mazoyer et al. (2002)) was linearly transformed into the T1-image of
each subject (FSL 5.0 FLIRT, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The
aligned T1-image and AAL template were then co-registered with the
T2*-images (SPM8). Average cerebrospinal fluid (CSF) and white matter
signal were extracted out of the T2*-images from a manually defined
spherical ROI (Marsbar Toolbox 0.43, http://marsbar.sourceforge.net/).
Movement parameters, CSF and white matter signals were regressed out
of the fMRI time-courses extracted from each regional volume (average
of all voxels). The time-series were then band-passed filtered in the
0.02–0.2 Hz range. Simultaneous EEG was acquired during fMRI scan
and used to perform segmentation into fMRI epochs belonging to
different sleep states. The resulting regional BOLD time-series were used
as input to further FC and dFC analyses. Simultaneous EEG 64 electrode
EEG-cap (BrainCap-MR 3–0, Easycap, Hersching, Germany, using 63
channels in the 10–20 montage plus one extra ECG channel, reference
placed on the mid-frontal position FCz) was acquired during fMRI ses-
sions as described by Wirsich et al. (2018). EEG data was manually sleep
staged for consecutive 30 s blocks by an expert (Awake, N1, N2, N3,
according to the AASM sleep scoring scheme, http://www.aas
mnet.org/). The acquired data was then manually sleep staged for
consecutive 30 s blocks by an expert (Awake, N1, N2, N3, according to
the AASM sleep scoring scheme, http://www.aasmnet.org/).

2.4. Control resting state fMRI dataset

To verify that the key results of our analyses did not apply just to our
specific dataset, we also repeated some of the analyses on an independent
control dataset, selected from rs-fMRI data released as part of the Human
Connectome Project (HCP), WU-Minn Consortium. We used the same
selected subjects used for statistical benchmarking of functional network
analyses in Termenon et al. (2016). This sample includes 100 young
healthy adults aged 20–35 years (54 females). Each subject underwent
two rs-fMRI acquisitions on different days and here, not being interested
in test-retesting issue, we used only data from the first day sessions. For
this sessions, TR ¼ 720 ms and resting state scan duration was of 14 min
and 24 s. The same parcellation as for the SD dataset was used. More
details on data acquisition and pre-processing for this control dataset can
be found on Termenon et al. (2016).

2.5. Extraction of time-dependent functional connectivity and dFC matrices

These methods have first been introduced by Battaglia et al. (2020)
and we here provide a brief explanation. We estimated time-dependent
Functional Connectivity matrices FC(t) by sliding a temporal window
of fixed duration W (cf. Allen et al., 2012) and by evaluating zero-lag
Pearson correlations between resting-state BOLD time series from
different brain regions i and j:

FCij(t) ¼ Corr[BOLDi(t’), BOLDj(t’)] over the interval t-W/2 � t’ � t þ W/2

All entries were retained in the matrix, independently of whether the
correlation values were significant or not or without fixing any threshold
(i.e., we treated FCij entries as descriptive features operationally defined
by the above formula).

To evaluate the dFC matrices of Fig. 2 and S8 we introduced a notion
of similarity between FC(t) matrices following (Hansen et al., 2015),
based on the Pearson correlation between the entries of their
upper-triangular parts:

dFC(t1, t2) ¼ Corr[UpperTri(FC(t1)), UpperTri(FC(t2))]

The dFC matrices thus depend on the window-size W adopted when
evaluating the stream of time-dependent FC(t)’s. To perform the two-
dimensional projections of the sequence of FC(t) matrices in Fig. 2B we
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fed the vectors UpperTri(FC(t)) as input features into a t-Stochastic
Neighborhood Embedding algorithm (exact method) as described by
Hinton and Van der Maaten (2008), using default perplexity ¼ 30 and
exaggeration ¼ 4 parameters in the used MATLAB® (MathWorks
R2017b) implementation.
2.6. Analysis of dFC speeds

Since we used correlation as a measure of similarity between
matrices, we naturally chose to use the correlation distance between two
observations of functional connectivity as a measure of the amount of
change between two FC(t) observations. By measuring the distance be-
tween two FC observations separated by a fixed amount of time set to be
equal to the window-sizeWwe thus defined the instantaneous global dFC
speed as:

VdFC,W (t) ¼ 1 – dFC(t, t þ W)

This dFC speed is termed “global” because evaluated in terms of
comparisons of whole-brain FC matrices.

This definition makes dFC speed dependent on the chosen window
size W. To improve the estimation of dFC speed histograms by increasing
the number of sampled speed observations (not large for single window-
size speed estimation, especially when W is large, given the need to
consider not-overlapping windows), as well as for avoiding potential
aliasing artifacts due to the use of a single window (Leonardi and Van de
Ville, 2015), we decided to pool window sizes together, observing that
speed distributions for close enough W were similar. More specifically,
we realized that for a vast majority of subjects and for most dFC speed
bins, binned counts in the histograms extracted at contiguous window
sizes were statistically indistinguishable. Concretely, for 8 out of the 11
included subjects, the binned dFC speed counts in the histograms
extracted at window sizes Wi and Wiþ1 were statistically indistinguish-
able (overlapping confidence intervals, Agresti-Coull estimation) for at
least 14 out of 20 bins, where Wi are the window sizes included in our
analyses (and the statement holds for any of the coinsideredWi’s, ranging
from 3 to 30 TRs). Given this substantial degree of redundancy between
speed distributions for contiguous window sizes, we chose to pool speed
samples to form just two histograms, over two (arbitrary) window
ranges: a “short” window-size range, 10 < W < 45 s; and a “long”
window-size range, 45 <W < 80 s. Window pooling reduces the number
of independent statistical comparisons to avoid the risk of false positive
when comparing speeds before and after SD and leads to smooth dFC
speed histograms (see also Battaglia et al., 2020). In the context of this
study, however, we only focused on the median of pooled speed samples,
evaluated separately for each of the two window-size ranges for each
subject. For comparison, we nevertheless also show results also for single
window analyses of global dFC speed prior to pooling in Figure S1.

As for cognitive performance variations, we evaluated the difference
in global dFC speeds before and after SD: at the group level, using U-
Mann-Whitney test; at the within-subject level, using paired Wilcoxon
signed-rank test. Bonferroni correction was applied on the number of
tested window-size ranges (ν ¼ 2).
2.7. Meta-connectivity

Out of the stream of FC(t) matrices, we extractedM ¼ N(N-1)/2 time
series of pairwise FC couplings given by the entries FCij(t) for all pairs of
regions i and j with i < j � N. We used a very short window-size of W ¼
~19 s (7 TR), with a window step of 1 TR. The uncertainty in estimating
FCs due to this unusually shortWwas compensated by the larger number
of points in obtained FC coupling time-series, which must be impera-
tively large in order to reliably compute inter-links correlations. The
entries of the Meta-Connectivity matrix (MC) were then given by:

MCij,kl ¼ Corr[FCij(t), FCkl(t)]
4

As for the FC analysis, we included all MC entries into the matrix,
independently of whether the correlation values were significant or not
or without fixing any threshold. We compiled all MCij,kl entries into a
matrix format that allowed us to easily identify the pair of links involved
into each meta-link and the participating brain regions. That is, we built
MC matrices of (N2

–N)-times-(N2
–N) size, where different rows corre-

spond to different directed pairs of regions – i.e. both the pair (i,j) and the
pair (j,i) were included – and only links corresponding to self-loops – i.e.
of the type (i,i) – were excluded. The MC representation described above
had a substantial amount of redundance, since:

MCij,kl ¼ MCji,kl ¼ MCij,lk ¼ … ¼ MCkl,ij ¼ … ¼ MClk, ji

For the sake of computational efficiency we computed only P ¼M(M-
1)/2 independent Pearson correlations between pairs of possible FC link
time series FCij(t) and FCkl(t), with i < j, k < l, i� k, j < l and copied this
inter-link correlation value into the eight degenerate MC matrix entries,
in order to allow interpreting MC as an adjacency matrix between links.

We then defined the meta-strength of a node i as the sum of the meta-
connectivity weights between all pairs of links incident on node i, i.e.:

MC(i) ¼ Σkl MCik, il

Besides the strengths MCij,kl of individual meta-links, we also
computed integrated meta-connectivity strengths for individual links. A
node with particularly large meta-strength is termed a meta-hub.

Note that MC matrices, evaluated for each single subject, can then be
conveniently averaged over groups (analogously to FCmatrices). The MC
matrices shown in Fig. 5A and S4A are thus averaged over the entire
group of the 10 retained subjects.

2.8. Edge functional connectivity

For comparison with MC analyses, we also computed edge-centric
Functional Connectivity (eFC) as introduced by Faskowitz et al. (2019).
Similarly to MC, eFC equally provides a description of correlations be-
tween link fluctuations, however eFC differs from MC in the way in
which the temporal stream of dFC is estimated. While in MC we rely on a
sliding window approach to extract FC(t), in the case of eFC windowing
is not used but signal correlation fluctuations are studied at the instan-
taneous level. The time-series BOLDi(t) are first z-scored, then time-series
of pairwise products are constructed:

Pij(t) ¼ zscore[BOLDi(t)] ∙ zscore[BOLDj(t)]

Finally, eFC is constructed as the correlation matrix of these instan-
taneous pairwise product time-series:

eFCij,kl ¼ Corr[Pij(t), Pkl(t)]

2.9. Extraction of dFC modules

Packaged in the redundant format described, the MC matrix can be
considered as the adjacency matrix of a graph whose nodes are FC links.
Thus, communities of temporally co-varying FC links can simply be
evaluated by applying any algorithm for node-community detection to
the MC matrix. We thus extracted modules by applying a standard Lou-
vain algorithm on the group-averaged MC matrix (before SD), adapted to
weighed undirected graphs with mixed positive and negative entries
(“symmetric treatment” in the Louvain method’s implementation in the
Brain Connectivity Toolbox by Rubinov and Sporns (2010)). The Louvain
method has one adjustable parameter whose default value is Γ ¼ 1. By
taking larger (or smaller) values, the algorithm will tend to return
modular decompositions with a larger (smaller) number of modules. We
chose to use Γ ¼ 1.045 at the center of a range reliably and robustly
returning 5 modules. Larger values of Γ were on the contrary leading to
modular decompositions with fluctuating numbers of modules.



Table 1
Variations of cognitive performance induced by sleep deprivation.

Performance indicator Group level comparison Within subject comparison

Median M.A.D. K–W U Median Δ M.A.D. K–W WRS

RTI RT Before 319 ms �28 ms n.s. n.s. þ48 ms ±30 ms ** *
After 357 ms �51 ms

n-back RT Before 699 ms �70 ms n.s. (*) þ97 ms ±40 ms ** *
After 764 ms �76 ms

n-back acc Before 96% �1% n.s. (*) �4% �2% * n.s. (*)
After 89% �4%

RVP RT Before 359 ms �26 ms n.s. n.s. (*) þ28 ms �26 ms * n.s. (*)
After 391 ms �27 ms

RVP acc Before 93% �2% n.s. n.s. �2% �3% n.s. n.s.
After 87% �3%

RT ¼ Reaction Time; acc ¼ accuracy; M.A.D. ¼median absolute deviation. At the group level, median differences where tested using the Kruskal-Wallis (K–W) test and
the U Mann-Whitney test. Within-subject variations were tested with the Kruskal-Wallis test and the Wilcoxon signed rank test. *, p’< 0.05; **,p’<\0.01; n.s.,p’ > 0.05,
i.e. non-significant (p’, Bonferroni-corrected p-value, corrected on 2 window-size ranges and 5 cognitive tests). We report as well, in brackets, significance as assessed
from uncorrected p-values to highlight tendential correlations. Values in bold correspond to comparisons significant for non-parametric testing after multiple com-
parison correction, values in italic denote tendential variations (significant for non-parametric testing before correction). See also Fig. 1.
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Even when Γ is fixed the algorithm still returns different modular
decompositions every time it is run, because it involves a stochastic
optimization procedure. We thus generated 2000 alternative modular
decompositions to study how variable or robust they were. To compare
two modular decompositions M1 and M2 we first identified homologous
modules, by relabeling the modules in order to have minimum Hamming
distance – i.e. number of different symbols in an ordered sequence –

between the module label sequences for M1 and M2. Then we computed
the meta-strengths of every regionmodule by module – i.e. restricting the
MC matrix to include only rows and columns corresponding to links
belonging to the considered module – for both modular decompositions
M1 and M2. Finally, we correlated the sequence of meta-strengths for
equally-labeled modules in M1 and M2, to assess how similar modules
were in terms of their meta-hubs and node ranking in terms of meta-
strengths. The large inter-decomposition meta-strength correlations re-
ported in S9A for all modules confirm that our choice of decomposing MC
into 5 modules leads to robustly preserved modules (and their associated
meta-hubs).

To construct Figure S5E, we extracted 500 alternative modular de-
compositions of the MC matrix mediated from the control HCP dataset
and maximally aligned each of them to the reference modular decom-
position of Fig. 4A. For each of these realigned modular partitions a
confusion matrix with the reference modular decomposition was
computed and then averaged this confusion matrix over the 500 alter-
native modular structures.

2.10. Modular and RSN-restricted dFC speed analyses

A dFC module is a collection of functional links and is, therefore,
describing a sub-graph of the temporal network (Holme and Saram€aki,
2012) formed by the stream of whole-brain FC(t). We denote as FCα(t) the
stream of sub-graphs obtained keeping in the stream FC(t) only the links
included in the considered dFC module #α. It becomes thus possible to
compute modular dFC matrices or dFC speeds by adopting precisely the
same formulas as for global dFC matrices and speeds, but replacing FC(t)
with FCα(t).

For comparison, we also restricted dFC analyses to sub-graphs made
by all the links between regional nodes assigned to a reference Resting
State Network (RSN). For mapping the 86 regions of the AAL atlas
adopted here to the Yeo7 atlas, including 8 RSNs –visual (V), somato-
motor (SM), Dorsal and Ventral Attention (A), Fronto-temporal (FT),
Fronto-parietal (FP), Default mode (DM) and Subcortical (SC)–, we used
the correspondence introduced by Amico et al. (2017). Given that the
Dorsal Attentional Network would include just one link under this
mapping, preventing evaluation of correlation distance between frames
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in the dFC network, we merged it with the Ventral Attentional Network
into a common Attentional RSN.

As for global dFC speeds and cognition, we evaluated difference in
modular or RSN-restricted dFC speeds before and after SD at the within-
subject level (S8B–C), using pairedWilcoxon signed-rank test. Bonferroni
correction was applied on the number of tested window-size ranges and
dFC modules (ν ¼ 2 � 5 ¼ 10) or RSN networks (ν ¼ 2 � 7 ¼ 14).

2.11. Correlations between variations of dFC speed and of cognitive
performance

Given the large inter-subject variability of both dFC speed and
cognitive performance, we chose to correlate the changes of these vari-
ables, i.e. the difference or dFC speeds (or cognitive scores) measured
after and before SD. We then computed Spearman correlation between
changes in dFC speed and changes in cognitive scores. To assess signifi-
cance of these correlations we applied a conservative Bonferroni
correction to the p-values of these correlations. For correlations with
global dFC speed, we corrected on the number of window ranges and the
number of cognitive scores (ν ¼ 2 � 5 ¼ 10). For correlation with
modular dFC speeds, we further corrected for the number of modules (ν
¼ 2 � 5 x 5 ¼ 50).

2.12. Correlation between variations of dFC speed and EEG

Only in 4 subjects out of 11, sleep stage N3 was reached (and only in
fMRI sessions after sleep deprivation). All epochs in sleep stage N3 were
rejected from fMRI analyses. For 3 of the 4 subjects reaching stage N3
these epochs represented less than 20% of the total scan duration. For the
4th subject, the duration of sleep instage N3 reached 80% of scan dura-
tion, therefore we had to reject this subject for all within-subject analyses
of dFC variations between before and after sleep deprivation. We checked
that dFC fluctuations were not trivially due to switching between awake,
N1 and N2 states. As shown by Figure S2, genuine BOLD dFC fluctuations
were observed in all three brain states (not surprisingly, since intrinsic
cognitive activities are not suppressed during sleep), with overall mild
differences of speed. Most likely, the lack of significance of dFC speed
comparison between sleep stages over most window sizes was due to the
small amount of observations of speed available when considering sub-
segments of already relatively short fMRI scans. Therefore for the other
analyses of the study and to achieve superior statistical power, we pooled
together speed observations in awake (overall 69% of analyzed fMRI
time points), N1 (overall 13% of analyzed fMRI time points) and N2
(18%) epochs. This prevented studying differences of dFC speed within
scan epochs but allowed a better inter-scan comparison.



Fig. 1. Sleep Deprivation affects cognitive performance.We tested cognitive
performance in a variety of different tests including simple Reaction Time (RTI),
working memory (n-back) and Rapid Visual Processing (RVP). We then quan-
tified variations of performance (reaction times and accuracy) between before
and after 24h of Sleep Deprivation (SD). A. Within-subject variations of RTI, n-
back and RVP reaction times, significant only for RTI and n-back. For all three
tests, reaction times tended to increase. B. Within-subject variations of n-back
and RVP accuracies. Accuracy generally decreases, however only tendentially.
Stars denote significancy of effect (under Wilcoxon signed rank paired test): n.s.,
not significant; *, p < 0.05; Bonferroni-corrected values outside brackets and
Bonferroni-uncorrected within brackets (tendential variations).
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2.13. dFCwalk toolbox

We have compiled a toolbox of MATLAB ® functions to perform most
dFC and MC analysis operations described in the present study. It will be
described in a MethodsX paper in preparation and, prior to release, it can
be requested to the authors upon reasonable request.
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3. Results

3.1. Sleep deprivation heterogeneously affects cognitive performance

We first considered how performance in different cognitive tasks is
affected by 24 h of SD. We studied performance on three different tests: a
Reaction Time test (RTI), providing a basic assessment of the speed of
motor response; an n-back task, assessing working memory using se-
quences of letters (n-back); and a Rapid Visual Processing test (RVP),
providing a measure of sustained visual attention (see Materials and
Methods for details).

The variations in cognitive performance induced by SD which we
observed at both the group and the single-subject levels are summarized
in Table 1. Relative variations observed at the single-subject level are also
graphically shown in Fig. 1. We found that cognitive change induced by
SD was highly heterogeneous. While for all three tests, reaction time
tended to increase and accuracy to decrease, the actual variations could
differ from up to two orders of magnitude across the different subjects. As
a result, none of the comparisons at the group level between performance
indicators before and after SD remained significant after applying mul-
tiple comparison correction (Table 1, left columns).

However, when considering the variation of performance within
every single subject (Table 1, right columns), we found that its direction
was more consistent across subjects. As a result, all median within-
subject variations of reaction time were significantly positive (Kruskal-
Wallis testing of medians; however, only RTI and n-back RT variations
were significant under the more conservative Wilcoxon Signed Rank
test). Furthermore, the median within-subject variation of n-back
Fig. 2. Sleep Deprivation slows down
global dynamic Functional Connectivity
(dFC). A. We reveal changes of resting state
Functional Connectivity (FC) by adopting a
sliding window estimation of time-resolved
BOLD correlations FC(t). We compile the
similarity between whole-brain FC matrices
observed at different times into a dFC matrix,
whose (t1, t2) provides the correlation be-
tween FC(t1) and FC(t2). Analogously, we
evaluate global dFC speeds VdFC, i.e. the rate
of reconfiguration of whole-brain FC
matrices, by measuring the decorrelation
between FC(t) matrices separated by a fixed
time-interval (equal to the chose window
size W). B. On top, dFC matrices for a resting
state fMRI session before SD and a second
resting state fMRI session after SD for a
representative subject (window size of ~40
s). A stochastic alternation between “knots”
of transient FC stabilization and “leaps” of
fast FC reconfiguration is visible in both
cases. Below, each FC(t) matrix is projected
into a bi-dimensional space by using a non-
linear distance preserving t-SNE projection,
in such a way to visualize the “random walk”
followed by FC(t) while it reconfigures along
time corresponding to the dFC matrices
above. C-D. The median global dFC speed
VdFC decreases after 24h of SD, as visible
both from inter-group comparisons (panel C)
and within-subject variations (panel D), for
both long and short window sizes. Stars
denote significancy of effect: *, p < 0.05; **,
p < 0.01; Bonferroni-corrected values).



Table 2
Spearman correlations between within-subject variations of global dFC speed
and cognitive change after SD.

Short window sizes Δ VdFC Long window sizes Δ VdFC

Correlation p Correlation p

RTI Δ RT �0.58 n.s. �0.71 0.028 (*)
n-back Δ RT �0.29 n.s. �0.76 0.037 (*)
n-back Δ acc 0.63 n.s. 0.75 0.025 (*)
RVP Δ RT 0.03 n.s. �0.43 n.s.
RVP Δ acc 0.44 n.s. 0.79 0.006 (**)

RT ¼ Reaction Time; acc ¼ accuracy. Spearman correlation values between
within-subject variations of global dFC speeds and within-subject variations of
cognitive performance scores. We report the associated uncorrected p-values, as
well as significance. *, p’<0.05; **,p’<0.01; n.s.,p> 0.05, i.e. non-significant (p’,
Bonferroni-corrected p-value, corrected on 2 window size ranges and 5 cognitive
tests). We also report (in brackets), significance as assessed from uncorrected p-
values to highlight tendential correlations (correlation values in italic and light
shaded table entry are significant before correction, i.e. (*), p < 0.05; (**),p <

0.01). See also Figure S3.
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accuracy was also significantly negative. On the contrary, for RVP ac-
curacy the results were more variable and some subjects even increased
their RVP accuracy after SD.

We can thus confirm that sleep deprivation affects cognitive perfor-
mance in all the considered tests. However, the effects of SD were highly
heterogeneous and often small, thus providing an interesting benchmark
for our attempt of predicting variations of cognitive performance with
dFC speed metrics.

3.2. Sleep deprivation slows down the speed of global dFC

We then studied how dFC is affected by SD at the whole brain level.
We focused in particular on quantifying the rate of reconfiguration of
brain-wide FC networks during resting state and its variations after 24 h
of sleep deprivation.

To estimate time-resolved FC networks, we relied on a simple sliding
window approach (Allen et al., 2012). We considered the whole time
series of the BOLD signal for each of the regions of the parcellation, then
divided the time series in non-overlapping windows of sizeW, computing
a different FC network FC(t) in each of these windows (Fig. 2A). To
quantify the amount of FC network variation from one time window to
the next, we calculated the pairwise correlation between subsequent
functional connectivity matrices and evaluated instantaneous global dFC
speed at time t as VdFC, W(t) ¼ 1 – Corr[FC(t), FC(t þ W)], where Corr
denotes the Pearson Correlation Coefficient between the weighed FC
connectivity matrix entries (see Materials and Methods). In other words,
the more (the less) the FC network at a given time is correlated with FC
after a waiting time equal to the window size W, the smaller (the larger)
the estimated global dFC speed will be at this time.

The obtained values of global dFC speed thus necessarily depend on
the chosen window sizeW. However, the obtained counts of dFC speed in
binned histograms can hardly be statistically distinguished (seeMaterials
and Methods) when neighboring window sizes are considered. We
therefore chose to refine the estimation of the median speed by pooling
dFC speed estimates computed for multiple contiguous window sizes
together (see Battaglia et al., companion manuscript and Materials and
Methods). Pooling different windows (with incommensurate sizes)
furthermore protects against potential aliasing artifacts (Leonardi and
Van de Ville, 2015) deriving from the adoption of unique fixed window
size (see Discussion). In this study, we chose to pool single-window dFC
estimates into two different ranges, separately estimating dFC speeds for
“short” (10–40 s) and long (40–80 s) window lengths. The chosen window
lengths included very short windows that are not usually adopted when
estimating FC. See Discussion and, especially, the companion study by
Battaglia et al. (2020) for a thorough discussion on the rationale behind
this choice.
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As previously mentioned, in contrast with other approaches like
clustering (see e.g. Allen et al., 2012; Thompson and Fransson, 2016) or
Hidden Markov Modeling (Vidaurre et al., 2016), we do not extract
“states” of functional connectivity in our dFC speed approach. Instead,
we quantify the speed of transition between sequential ‘snapshots’ of
functional connectivity along a random walk in the high-dimensional
space of FC. The speed of reconfiguration is not constant along this
randomwalk, but there is a stochastic alternation between epochs of time
in which dFC speed slows down – dFC “knots” –, and other epochs in
which dFC speeds-up – or “leaps” –, suggesting that the sampling of
functional connectivity space is not a Brownian-like motion – like a
particle of dust floating in the air – but rather a realization of an anom-
alous stochastic process – e.g. like the fast-spreading of epidemics in the
modern world or animals optimally foraging for food – (see Battaglia
et al., 2020, for a thorough discussion).

In Fig. 2B, we provide two visualizations of these knots and leaps
along resting-state dFC for a representative subject. In the top row, we
show the so-called dFC matrices (Hansen et al., 2015) associated to the
two resting sessions, performed first before (left) and then after SD
(right). In these matrices, the entry dFC(t1, t2) provides the correlation
between the network FC(t1) observed at a time t1 and a second network
FC(t2) observed at a second time t2. In such dFC matrix representations,
dFC knots appear as red-hued (high correlation, hence low speed)
squares along the diagonal and dFC leaps as crossing blue stripes (low
correlation, hence high speed). Even at visual inspection, dFC knots are
markedly evident in the dFC matrix extracted after SD.

In the bottom row of Fig. 2B, we show dimensionally-reduced rep-
resentations of the random walk in FC network space associated with the
same sessions imaged in the dFC matrices plotted above. We obtained
such two-dimensional projections by adopting a powerful non-linear
dimensional reduction technique, t-Stochastic Neighborhood Embed-
ding (t-SNE, Hinton and van der Maaten, 2008). In these plots, each dot
corresponds to the projection of a different time-resolved FC network and
temporally consecutive dots are linked by a line (see Materials and
Methods). The dFC randomwalk before SD appears relatively smooth and
continuous, interrupted only by a few cusp points, both before and after
SD.

Beyond the visualizations of Fig. 2B, we then quantify the variations
of global dFC speed before and after SD (Fig. 2C and D). Fig. 2C repre-
sents a boxplot of the distributions of global dFC speed evaluated for
pooled short (right) and long (left) time windows. As discussed exten-
sively in Battaglia et al. (2020), these distributions are generally skewed
and non-Gaussian (i.e. associated to non Brownian dFC random walks).
For both short and long window sizes, we found, on the group-level, that
global dFC speed slowed down after 24 hs of sleep deprivation (U
Mann-Whitney, Bonferroni-corrected p-values: p ¼ 0.025 for short win-
dows; p ¼ 0.014 for long windows). Note that we would have obtained
the same result if global dFC speed for individual window sizes had been
computed without pooling (Figure S1). Analogously, Fig. 2D shows a
boxplot of within-subject variations, which were also significantly
negative (Wilcoxon Signed Rank, Bonferroni-corrected p-values: p ¼
0.004 for short windows; p ¼ 0.02 for long windows). The effect of sleep
deprivation on global dFC speed is thus very robust, slowing occurring
also on the subject by subject level – despite the heterogeneity of baseline
speeds before SD – and not just at the group median level.

We finally checked whether the fluctuations of dFC speed along the
resting state sessions were related to the occurrence of short sleep epi-
sodes (detected via simultaneous EEG while in the MRI scanner). EEG
data was manually sleep-staged for consecutive 30 s blocks by an expert
(Awake, N1, N2, N3, according to the AASM sleep scoring scheme, http
://www.aasmnet.org/). Although some of the subjects displayed tran-
sient sleep episodes, especially after the stress of SD (see Materials and
Methods for subject inclusion and rejection criteria), we observed that
dFC network reconfigurations did not stop during sleep but were
continually ongoing at a non-vanishing speed. In particular – most likely
because of the limited amount of data – we could not find a systematic

http://www.aasmnet.org/
http://www.aasmnet.org/


Fig. 3. FC connectivity and hubs vs dFC meta-connectivity and meta-hubs. A. Functional connectivity describes correlations between fluctuations of network
node activity, while dFC meta-connectivity (MC) describes correlations between fluctuations of network link time-resolved strengths. A node is said to be a FC hub if the
fluctuations of its adjacent nodes are highly correlated. Analogously, a node is said to be a dFC meta-hub if the fluctuations of its incident links are highly correlated.
The property of FC hubness can be assessed within every frame of a sequence of time-resolved FC(t) networks. Assessing the property of dFC meta-hubness requires
instead to evaluate correlations between link fluctuations (compiled in the MC matrix based on an entire sequence of FC(t) frames. B–C. We show, for illustration, two
short cartoon sequences of time-evolving FC subgraphs centered on a central node (in yellow). In the different network frames (time advancing from left to right) the
thickness of a link is proportional to its instantaneous strength. FC links which increase their strength with respect to the previous frame are colored in red (and labeled
by a small “þ” sign), while FC links which decrease their strength are colored in blue (and labeled by a “-” sign). In panel B the sum of the weights of all links incident
to the central node remain high at every time. Therefore the central node is a FC hub in all the shown time-frames, even if the fluctuations of its incident link have
inconsistent directions. In panel C, in some of the frames the total strength of the central node is low, so that it is not anymore always a FC hub. However its incident
links, independently on their instantaneous strength, change their strength in a consistent manner (they all increase, or decrease), allowing us to describe the central
node as a dFC meta-hub (or coordination center of dFC).
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impact of transiently entering into sleep stages and the concurrently
measured dFC speeds. In Figure S2A, we show that median dFC speeds
tended to slow down at the single-subject level during sleep stage N1
with respect to awake state, however, this effect was only tendentially
significant for a few window-sizes belonging to the long window sizes
range. When considering on the contrary the deeper sleep stage N2,
significant slowing of median dFC with respect to wake could not
anymore be detected (Figure S2B). Therefore, the variations of global
dFC speed, especially for short window sizes, cannot be explained merely
in terms of an increased rate of occurrence of transient sleep episodes
inside the scanner.
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3.3. Global dFC speed variation does not correlate with cognitive
performance

Both cognitive performance and global dFC speed were affected by
SD. We therefore assessed whether the cognitive change induced by SD
correlated with the monitored dFC speed reductions within each subject.
However, as compiled in Table 2 (left columns), for short window sizes,
global dFC speed reductions did not significantly correlate with varia-
tions in reaction time or accuracy on RTI, n-back or RVP. When consid-
ering the long window sizes, none of the correlations between the
slowing of global dFC speed and cognitive performance survivedmultiple



Fig. 4. Meta-connectivity (MC) and dFC
modules. A. Group-averaged MC matrix (see
Figure 3A) for resting state fMRI sessions
before SD (window-size of ~20 s; see
Figure S4A for MC after SD). The order of the
inter-regional FC links has been rearranged
to emphasize the modular structure of the
interlink correlation matrix. We have iden-
tified 5 different dFC modules, corresponding
to independently fluctuating functional sub-
networks. B. Summary plots of the meta-
strengths of different brain regions
restricted to the different dFC modules
(symmetrized over the two hemispheres,
given the lack of robust inter-hemispheric
differences). The presence of a few large
meta-strength entries for every dFC module
indicates that different dFC modules are
organized around distinct and specific sets of
meta-hub regional nodes. C. Localization of
the strongest meta-hubs within each of the 5
identified dFC modules. The color of the dFC
module label is matched to the one of the
associated strongest meta-strength regions in
panel B (the region name is written with
letters of multiple colors, when the region is
a meta-hub for more than one dFC module
simultaneously). Note that, although dFC
modules have localized meta-hubs, they all
influence nearly the whole brain (see
Figure S4C).
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comparison corrections (Table 2, right columns). Figure S3 shows scatter
plots revealing lack of correlation (for short window sizes, Figure S3A-C)
and (for long window sizes, Figure S3D-F) between global dFC speed and
cognitive performance variation in the three considered tasks.

Overall, we thus found weak evidence for consistent correlations
between global dFC slowing and cognitive performance and reaction
times. This result is in apparent discrepancy with the positive correlation
found between global dFC study and a general cognitive performance
score (MOCA; Nasreddine et al., 2005) in the companion study by Bat-
taglia et al. (2020). While it is possible that this result is due to the small
number of subjects in our study (see Discussion), we also hypothesized
that it may reflect the fact that changes in dFC relevant to specific
cognitive processes occur uniquely within restricted sub-networks which
are relevant for the considered tasks. Therefore, these task-related dFC
alterations could be buried under the fluctuations of many other irrele-
vant networks, when computing global speed by averaging dFC over the
whole brain. In order to confirm our hypothesis, we introduced a novel
approach, which allows focusing on dFC fluctuations of specific brain
sub-networks and their correlations with cognition.
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3.4. Beyond global dFC: meta-connectivity, dFC modules and meta-hubs

The fluctuations of FC networks giving rise to dFC can be decomposed
into the fluctuations of individual pairwise inter-regional correlations. A
fluctuating network can thus be seen as a collection of fluctuating links
(Fig. 3A, to be compared with Fig. 2A). It thus becomes logical to look for
groups of links (i.e. sub-graphs of the whole brain FC graph) whose
fluctuations in time are more correlated between each other than they are
with the fluctuations of other groups of links. In order to search for such
coherently fluctuating sub-networks, we computed a correlation matrix
between link-fluctuations (Davison et al., 2015; Brovelli et al., 2017;
Faskowitz et al., 2019) –which we here callmeta-connectivity (MC) matrix
– and applied to this matrix a standard community detection algorithm in
order to extract modules of covarying links (dFC modules).

As amatter of fact –and as discussed as well in Faskowitz et al. (2019),
where it is referred to as “edge functional connectivity” (eFC)– MC pro-
vides a static representation of the spatial organization of dynamic
fluctuations of FC links overtime. In this sense, it constitutes a general-
ization of the classical notion of Functional Connectivity from nodes to



Fig. 5. Modular dFC speed variations after SD
correlate with variations of cognitive perfor-
mance in specific tasks. Performing a separate
dFC speed analysis for each of the identified dFC
modules, we extracted modular dFC speeds. A-C.
Selected scatter plots of subject-specific varia-
tions of cognitive performance scores and
modular dFC speed. For the here represented
decomposition into dFC modules, we highlight
significant correlations: (A) between variations of
RTI reaction time and modular speed of dFC
module #4 on short window sizes; (B) between
variations of RVP accuracy and modular speed of
dFC module #2 on short window sizes; (C) be-
tween variations of RVP accuracy and modular
speed of dFC module #4 on long window sizes
(see Table 3 for other tendential correlations). D-
E. The algorithm for extracting dFC modules from
the MC matrix is stochastic and can yield
different solutions, associated to potentially
different patterns of correlation between modular
dFC speed and cognition. Stars denote signifi-
cance: *, p < 0.05; **, p < 0.01; ***, p < 0.001;
Bonferroni-corrected values outside brackets
(Bonferroni-uncorrected within brackets). D.
Among 2000 different instances of modular
decomposition, 80% displayed at least one robust
correlation between variations of modular dFC
speed and cognitive scores. E. The most robust
correlations were the ones between fronto-
parietal and parietal modules dFC #2 and dFC
#4, arising in 60% of cases, in addition to other
eventual secondary correlations. See S9 for
additional analyses on dFC modular speeds.
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links. The FC matrix provides indeed a static representation of the dy-
namic fluctuations of regional nodes along time. Strong FC between two
nodes indicates that their fluctuations in time are strongly correlated.
Analogously, strong MC between two links indicates that their fluctua-
tions in time are strongly correlated. MC analysis thus captures the fact
that the fluctuations of different links are not independent but are, on the
contrary, functionally coupled. The static MC matrix epitomizes the un-
derlying statistical coordination structure that, any moment in time,
constrains the generation of interdependent link fluctuations.

In conventional FC analyses, one often defines regional hubs, as
regional nodes such as the fluctuations of their adjacent nodes are
strongly correlated between them. Note that two nodes in a graph are
commonly defined as “adjacent” if connected by a link (Bollobas, 1998).
The definition of hubs allows identifying coordination centers in the FC
network, which are clearly anatomically localized and may correspond to
specific functional roles in cognition (Bullmore and Sporns, 2009; Sporns
and Betzel, 2016). When considering, however, dFC and MC, it is more
intricate to generalize this notion of hub, because MC is a link-based
covariance and a functional link is more widely distributed and less
“localized” in the cortex, since it spans over distances. We here never-
theless introduce the notion of meta-hub, as regional nodes such as the
fluctuations of their incident links are strongly correlated between them.
Note that a link in a graph is commonly defined as “incident” to a node if
attached to this node (Bollobas, 1998). Meta-hubs can thus be seen as
control centers coordinating the fluctuations of the links originating from
them. Adopting a graph-theoretical jargon, we can equivalently define
meta-hubs as the centers of star FC sub-graphs (Bollobas, 1998) whose
links – the rays originating from the center of the star – are strongly meta-
connected. As we will see in the next section, each of the retrieved dFC
modules is dominated by a small number of strongly meta-connected
stars centered on a few module-specific meta-hubs (Fig. 4).

In Fig. 4B and C, we further elaborate on this notion of meta-hub and
its distinction from the conventional notion of hub by providing a few
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cartoon examples. Both these figure panels display sequences of snap-
shots of a fluctuating star sub-network centered on a node of interest. In
the sequence of Fig. 3B, the strength of the central node – i.e. the overall
sum of the weights of all its incident links – is steadily large. Corre-
spondingly, this center node is a FC hub in all the considered snapshots.
However, the different links incident to it fluctuate in an incoherent
manner, some are strong when the others are weak, etc. Therefore, in this
example, the central node is a hub with a large FC strength but not ameta-
hub. Conversely, in Fig. 3C, the strength of the central node fluctuates in
time, since sometimes strong and sometimes weak. This central node is
thus a hub only intermittently (and may not appear as such when
considering connectivity averaged along time, as in static FC analyses).
However, when an incident link is strong (or weak), then all the other
incident links are strong (or weak) as well. In other words, link fluctua-
tions are correlated – i.e. the plotted links are meta-connected – and the
center node serves as a meta-hub, with a large dFC meta-strength, defined
as the sum of themeta-connectivity between all its incident link pairs (see
Materials and Methods).
3.5. Resting-state dFC modules

In order to infer dFCmodules, we evaluated the MCmatrix before and
after SD for each subject and for different window sizes. For MC esti-
mation, we considered only short window sizes to avoid generating
exceedingly smoothed time-series of dynamic FC weights with too few
independent observations (see Discussion). We then averaged MC
matrices obtained for different subjects and window sizes to obtain a
common reference MC and finally ran a community detection algorithm
in order to identify dFC modules (see Materials and Methods for details of
the procedure).

Fig. 4A shows this reference MCmatrix for all sessions before SD. The
MC matrix averaged over sessions after SD is shown in Figure S4A. As
evident from the visual comparison of the two MC matrices before and
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after SD and also from the high linear correlation between MC entries
(Pearson correlation 0.97, p < 0.001; see linear fit in Figure S4B), the
modular structure is well preserved across the two conditions. For further
comparison, we also computed the edge Functional Connectivity (eFC) as
defined by Faskowitz et al. (2019) (see Materials and Methods). Once
again, the ensemble averaged eFC matrix shown in Figure S5A displays a
very similar modular structure as the MC matrix of Fig. 4A. There is
furthermore a very strong correlation between MC and eFC, down to the
level of individual matrix entries (Figure S5B). Given this large degree of
similarity, in this study, we, therefore, ignore these small differences and
always use the modules extracted from the averaged MC matrix before
SD of Fig. 4A as reference modules. dFC modules can be clearly identified
in the reference modular decomposition here considered (see below for
analyses of the robustness of these modules).

All the modules include links that are distributed widely through the
entire brain. Figure S4C shows which regions are incident to at least one
link included in each of the five modules. Such representations reveal
that dFC modules are highly overlapping in their regional reach and are
essentially not-localized networks. As a matter of fact, Figure S4C reveals
that all the modules have a “reach”, i.e. a set of regions on which they are
exerting an influence, which is very close to … essentially the whole
brain! In this sense, therefore, they are fundamentally different from
conventional FC modules, which are internally integrated functional
networks, but segregated between them. Here, every region is on the
contrary “touched”, influenced by most dFC modules (see Discussion).

Nevertheless, every dFC module is organized around a specific set of
localized regional controller nodes. When considering links which are
strongly meta-connected (i.e. the more correlated), we found that each of
the dFC modules includes prominent star sub-graphs which are centered
on specific meta-hubs (cf. Fig. 3C), different for each of the dFC modules.
Fig. 4B shows indeed the total meta-strengths of different brain regions
within each of the five dFC meta-modules. It is clear that meta-strengths
are not homogeneous but that each dFC module contains only a few
meta-hubs with higher meta-strengths. In Fig. 5C, we visualize the
localization of these meta-hubs for each of the five modules.

A first dFCmodule (dFC #1) was organized aroundmeta-hubs located
bilaterally (i.e. always both in left and right hemisphere) in the amygdala
and several regions involved in visual sensory processing, such as oc-
cipital or posterior regions, as calcarine sulcus, cuneus and superior and
middle occipital gyrus.

A second dFC module (dFC #2) included a combination of parietal
meta-hubs, such as supramarginal gyrus and left and right superior pa-
rietal lobule, and frontal meta-hubs such as superior, medial and middle
frontal gyri.

A third dFC module (dFC #3) was organized around highly dominant
meta-hubs in precentral gyrus, fusiform gyrus and precuneus.

A fourth module (dFC #4) was mainly dominated by meta-hubs sit-
uated in inferior frontal gyri (pars opercularis, pars triangularis and pars
orbitalis), rolandic operculum, rectus gyrus and insulae as well as, shared
with the second dFC module, superior, medial and middle frontal gyrus.

Finally, a fifth module (dFC #5) was centered on meta-hubs, again,
within superior frontal gyrus, superior, middle and inferior frontal gyri
(orbital parts) as well as medial orbitofrontal cortices.

Importantly, we could confirm the existence of an analogous modular
structure in the resting state MC matrix extracted from a completely in-
dependent control dataset (see Materials and Methods). In Figure S5C, we
show a resting MC averaged over 100 cognitively normal subjects
mediated from the Human Connectome project (see Termenon et al.,
2016), displaying a block community structure very similar to the one of
Fig. 4A and S4A). As shown by Figure S5D, the meta-strengths of this
HCP-derived resting state MC of Figure S5C had a correlation of 0.99
(bootstrap 95% c.i., 0.993 < CC < 0.996) with the meta-strengths of the
reference MC of Fig. 4A. Furthermore, the confusion matrix of
Figure S5E, confirms quantitatively that the modules extracted from the
HCP-mediated MC had a substantial degree of overlap with the ones
displayed in Fig. 4B.
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We note that these dFC modules only have a loose correspondence
with modules that could be defined at the level of static FC. We show, in
Figure S6A, static FC before sleep deprivation, averaged over the same
group of subjects considered to extract the meta-connectivity of Fig. 4A.
We then extracted five modules even from this matrix, using the same
unsupervised community detection algorithm (seeMaterials and Methods)
and correlated the strengths of regional nodes within the resulting FC
modules with the regional meta-strengths within the five dFC modules.
The aim of this unsupervised analysis was not to extract static FC sub-
networks –for this endeavor rather see e.g. Yeo et al. (2011)– but rather
to check whether howmuch of the modular structure found at the level of
MC was trivially redundant with information that could have been
extracted with simpler analyses at the level of FC. As shown in
Figure S6B, the dFC modules #1 and #5 could be put in correspondence
with associated FC modules, with meta-hubs of dFC overlapping at a
large extent with hubs of FC (meta-strength vs strength correlations for
matched dFC and FC modules were Corr ¼ 0.58 for dFC #1 and Corr ¼
0.59 for dFC #5, p < 0.001 after Bonferroni correction). However, for
other modules, the correspondence was much less clear. Indeed the dFC
#2 and #dFC #4 module both had a partial overlap with a same FC
module (i.e. they could not be separated at the level of static FC analysis)
and the dFC module #1 did not significantly overlap with any of the FC
modules.

We also compared the localization of meta-hubs for our 5 dFC mod-
ules with a partition in standard Resting State Networks (RSNs), ac-
cording to the Yeo7 atlas (Yeo et al., 2011; Amico et al., 2017; see
Materials and Methods for details of the mapping). As revealed by
Figure S7A, meta-hubs for the different dFC modules do not perfectly
align with classic RSNs. The meta-hubs for the dFCmodule #1 has a good
overlap with the visual RSN and meta-hubs for dFC module #2 have an
imperfect overlap with a combination of the Dorsal and ventral attention
RSNs, but some other RSNs (or dFC modules) do not have a clear
counterpart.

Therefore, our unsupervised modular MC analyses bear some genu-
inely new information with respect to static FC analyses or partition in
classic RSNs.

3.6. Modular dFC speed variations are heterogeneous across modules

Each of the dFC modules can be considered, by definition, as a
collection of functional links whose fluctuations are relatively indepen-
dent from the fluctuations of links within other dFC modules. As a
consequence, it is logical to perform independent dFC speed analyses
restrained to links belonging to each of the dFC modules separately. For
each dFC module, we thus extracted different modular dFC matrices and
distributions of modular dFC speed. S8A shows examples of modular dFC
matrices for a representative subject. Even at visual inspection, it appears
that the red squares associated to dFC knots are generally not overlapping
in time between the dFC modules. This result was expected since these
modules have been separated precisely because of the relative indepen-
dence of their temporal fluctuations. S8B–C shows boxplots of the within-
subject variations of modular dFC speeds after sleep deprivation, for long
(S8B) and short (S8C) time windows. We observed for all five dFC
modules and for both ranges of window sizes a general tendency to a
slowing of modular dFC speed, paralleling the result already found at the
level of global dFC speed (cf. Fig. 2D). However, this within-subject
slowing of modular dFC speed could be proven to be significant only
for the dFC #5module, for both short and long time-windows and for the
dFC #1 module, only for short time windows (see S8B–C). The non-
uniformity across the dFC modules of speed variations confirms once
again their relative degree of dynamic independence.

We also computed dFC speed restricted to subnetworks composed of
all links between regional nodes assigned to each of the different RSNs,
under the mapping to Yeo7 atlas (seeMaterials and Methods). As visible in
Figures S7B and S7C, respectively for long and short window sizes
ranges, also these RSN-restricted estimations of dFC speed show a



Table 3
Spearman correlations between within-subject variations of modular dFC speed and cognitive change after SD.

Short window sizes Δ VdFC Long window sizes Δ VdFC

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

RTI ΔRT – �0.67 (*) – ¡0.90 * – – – �0.66 (*) �0.73 (*) –

n-back Δ RT – – – – – – – – – �0.76 (*)
n-back Δ acc – – – – – – – – 0.78 (*) –

RVP ΔRT – – – – – �0.82 (**) – – – –

RVP Δ acc – 0.93 ** – 0.71 (*) – – 0.72 (*) – 0.89 * –

RT ¼ Reaction Time; acc ¼ accuracy. Spearman correlation values between within-subject variations of modular dFC speeds (dFC modules #1 to #5, see Fig. 4) and
within-subject variations of cognitive performance scores. We report values for all significant correlations (bold-face and dark shaded table entry) or tendential cor-
relations. The modular decomposition presented in Fig. 4B and C and Fig. 5A–C is here used as a reference to compute modular dFC speeds. A ** denotes that p’ < 0.01
(p’, Bonferroni-corrected p-value, corrected on 2 window size ranges, 5 dFC modules and 5 cognitive tests). We also report(in brackets) significance as assessed from
uncorrected p-values to highlight tendential correlations (correlation values in italic and light shaded table entry are significant before correction, i.e. (*), p < 0.05;
(**),p < 0.01).
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heterogeneous tendency to slow down after SD. However, none of these
RSN-restricted dFC speed reductions remained significant after corrected
for multiple comparisons.

3.7. Modular dFC speed variations correlate with cognitive performance
variations

We then finally assessed if the variations of modular dFC speed after
SD correlated with cognitive performance. Modular dFC speed variations
displayed overall richer and more variegated patterns of correlations
with cognitive performance than global dFC speed variations (see Dis-
cussion). Significant correlations were found with RVP accuracy, in a
particularly robust way, but also, less robustly, with RTI reaction time.
Furthermore, correlations with cognitive performance were now also
found for short time-windows, while global dFC speed variations only
showed tendential correlations for long time-windows.

Fig. 5A–C shows examples of significant correlations (for the choice of
reference modular decomposition made in Fig. 4B and C). For short
window sizes, decreases in the speed of the dFC module #4 correlated
with increase of reaction time in the RTI task (Fig. 5A, p ¼ 0.044, after
Bonferroni correction) and decreases in accuracy on the RVP task for the
speed of dFC module #2 (Fig. 5B, p ¼ 0.0014, after Bonferroni correc-
tion). For long window sizes, decreases in the speed of dFC module #4
correlated with an increase in RVP accuracy (Fig. 5C, p ¼ 0.018, after
Bonferroni correction). Table 3 reports several other tendential correla-
tions, for both short and long time-windows.

When considering variations of RSN-restricted dFC speed, instead of
modular dFC speed variations, we also found some tendential correlation
with cognition (summarized by Table S1). Remarkably, dFC speed
restricted to the Ventral Attentional RSN showed a tendential correlation
with variation of RTI reaction time and accuracy in the RVP tasks.
However, none of these correlations between cognition and RSN-
restricted dFC speed survived multiple comparison correction, indi-
cating that decomposition of dFC into unsupervised MC-based modules
yield a superior description of relations between dFC and fine cognitive
performance variations than a decomposition into expert-based a priori
subnetworks of interest.

3.8. Correlations between variations of modular dFC speed and of cognitive
performance are robust

The modular decomposition of Fig. 4B and C was obtained applying a
standard community detection algorithm on the MC matrix of Fig. 4A.
Such algorithms involve stochastic elements (see Materials and Methods)
and can, as such, produce different solutions when run multiple times. To
verify how robust our conclusions on the relation between modular dFC
speeds and cognition were with respect to changes of the detailed
decomposition into dFC modules, we extracted a sample of 2000 alter-
native instances of modular decomposition, starting each time from a
different initial condition.
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Firstly, we found that the 5 dFC modules described in Fig. 4B and C
are very robustly retrieved across the various modular decomposition
instances. As shown in S9A, a large majority of the extracted de-
compositions give rise to modules which are very highly correlated with
the reference ones. Secondly, by computing correlations between the dFC
modular speed variations associated with the alternative instances and
cognitive performance, we found patterns of correlations that were
highly similar to the ones reported in Table 3 for the reference modular
decomposition. As shown in S9B, indeed, we found a mean similarity of
~86% between the speed variations vs cognitive performance variations
correlation matrix computed for the reference or the alternative modular
decompositions.

As reported in Fig. 5D, ~80% of the extracted modular de-
compositions led to the detection of at least one robustly significant
correlation between changes of modular dFC speed and cognitive per-
formance (i.e. after Bonferroni correction). Sometimes even 2 or 3 cor-
relations still significant after multiple comparison correction were found
(as for the reference modular decomposition of Fig. 4B and C, whose
associated significant correlations are highlighted by Fig. 5A–C). Among
the possible correlations, the ones that were most frequently assessed as
significant were correlations with performance on RVP accuracy after SD:
overall ~57% of all significant correlations, among which a ~27% of
correlations between dFC #2 speed on the short window sizes and RVP
accuracy (cf. Fig. 5E). This correlation between short-window speed
variations of the frontoparietal module dFC #2 and RVP accuracy was by
far the most frequent significant correlation, followed by a ~16% of
correlations with RVP accuracy with dFC module #4 and a ~15% of dFC
module 2 on the longwindow sizes. We also recorded: a ~11% fraction of
significant correlations between dFC #4 modular speed on short window
sizes and RTI reaction time; and a ~3% between dFC #3 modular speed
on long windows and n-back accuracy. All other correlations were
weaker.

In conclusion, the reference modular decomposition of Fig. 4B and C,
used for the analyses of Fig. 5A–C, although particularly fortunate (it is
rare to display three robustly significant correlations), is very well
representative of general tendencies present in the entire studied set of
2000 alternative modular decompositions.

4. Discussion

We found that 24 h of SD systematically induces slowing of dFC on the
whole-brain level, i.e. of the speed in which the space of possible func-
tional network configurations are explored. This tendency to slow down,
analogous to what previously reported for descent from wakefulness to
sleep (El-Baba et al., 2019), is robust at the single-subject level but did
not correlate with performance on cognitive tasks. However, when
looking at dFC on the local level focusing on metaconnnectivity giving
rise to dFCmodules, correlation with performance on cognitive tasks was
found, notably in sustained attention, despite the large intersubject
variability of the actual impact of SD on both cognition and dFC.
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Because of the small number of subjects in our sample, the signifi-
cance of certain correlations with cognitive performance –e.g. global dFC
speed with n-back performance variation– or comparisons between
conditions –e.g., further slowing down due to sleep staging, cf. Fig. S2–
did not survive multiple comparison correction. Therefore, we were not
able to investigate the potential physiological mechanisms underlying
the observed slowing of dFC speed here. A likely hypothesis (that will
have to be explored in future studies) is that the observed slowing may be
caused by a SD-induced disruption of slow-wave oscillations (Massimini
et al., 2004) or changes in synaptic homeostatic regulation occurring
during normal sleep (Tononi and Cirelli, 2014; Diering et al., 2017), that
can also be tracked by fMRI studies (Song et al., 2019).

Analogously, extensions of our approach to larger and better adapted
cohorts will be needed to study potential confounding sources, such as
the impact of having administered a placebo drug to our subjects –which
may lead to deviations with respect to a standard resting state condition
(Wager and Atlas, 2015)– or different sensitivities to scanner noise (Gaab
et al., 2008) before and after SD.

4.1. Modular dFC: a compromise between ignoring time or ignoring space

We first introduced the notion of dFC speed in the companion study
by Battaglia et al. (2020). In this article, we confirmed several of the
findings of this study, notably the fact that dFC can be seen as a complex
random walk in the space of FC network realizations with statistical
properties between order and disorder, giving rise to an alternation be-
tween “knots” and “leaps”.

The mainmethodological innovation we introduced here with respect
to Battaglia et al. (2020), in order to achieve our aim, was the notion of
dFC modules – extracted via the MC analysis – and of modular dFC
speeds. While global dFC analyses consider fluctuations of resting-state
FC as a whole and quantify how this unique brain-wide network is
unspecifically morphing from one time observation to the next, modular
dFC analyses explicitly endorse the hypothesis that different functional
subnetworks may fluctuate according to independent choreographies,
consistent with well-established evidence for regional specialization of
brain function, within the context of distributed but separated networks.
Modular dFC analyses are thus intermediate between conventional static
FC analyses (which describe spatial structure of FC networks at high
detail but fully ignore their reconfigurations in time) and the previously
introduced global dFC analyses (that track the overall temporal varia-
tions of FC in detail while fully ignoring their spatial structure).

4.2. Static MC shapes the structure of dynamic dFC flows

From a methodological perspective, the endeavor of identifying
independently fluctuating sub-networks is akin to classic Independent
Component Analysis (van de Ven et al., 2004) or decomposition methods
relying on link-covariance estimation. We stress indeed that MC is not a
novel concept, since edge-based functional connectivities have been
previously introduced (Bassett et al., 2014; Brovelli et al., 2017; Fasko-
witz et al., 2019). However Bassett et al. (2014) or Brovelli et al. (2017)
syill considered network components as “hard” reference templates (in a
mixture of which whole-brain FC networks are decomposed at any time
instant). By contrast, in modular dFC analyses, dFC modules themselves
are seen as “soft” dynamic entities, continually reconfiguring in time at
changing speeds. In Faskowitz et al. (2019) and even more in Betzel et al.
(2019), edge-centric functional connectivities (eFCs) were already used
as a way to seize the spatiotemporal complexity of regional co-activation
dynamics. Here, dFC as a stochastic exploration of possible functional
network configurations provides a transparent geometric interpretation
of a sophisticate statistical analysis. Distinct dFC modules in the MC
matrix can indeed be seen as being associated to distinct walkers in FC
space, performing simultaneously independent random walks. Remark-
ably, these modules were very robust and largely overlapping between
our dataset and MC extracted from an independent control dataset
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(Figure S5C-E; Termenon et al., 2016). Furthermore, these modules were
also evident in the eFC matrix of figure S5B, but MC analysis revealed
them even more clearly. Indeed, MC analysis applies a smoothing in
estimating the dFC temporal network, by sliding a short averaging win-
dow. On the contrary, eFC analysis appears to be noisier, since directly
based on instantaneous signal fluctuations. If global dFC speed analyses
of Battaglia et al. (2020) describe dFC as a unique flux, according to
modular dFC speed analyses, dFC is composed by multiple interlaced
streams, smoothly flowing between FC configurations without any rigid
separation into discrete FC states (unlike e.g. Allen et al., 2012;
Thompson and Fransson, 2016 or Vidaurre et al., 2016).

It is important to stress here that, given this highly stochastic nature
of dFC, sequences of FC matrices do not repeat identically from one
subject to the other or even across multiple resting-state sessions for the
same subject. In other words, every dFC matrix (Fig. 2B top) or, equiv-
alently, its low-dimensional projections via t-SNE embedding (Fig. 2B
bottom) represents a different random walk snippet realization. How-
ever, we expect these dFC realizations to evolve over time respecting a
common underlying deterministic structure within a stochastic frame-
work, which is typically characterized by structured flows on manifolds
(SFMs; Pillai and Jirsa, 2017) and may be quantified by a common
inter-link covariance structure, here described by the MC matrix.

4.3. Modules of dynamic connectivity as cognitive control systems

From a cognitive perspective, separation into dFC modules revealed
that the efficiency of cognitive processing in different tasks correlated
with the speed of reconfiguration of specific dFC modules but not others.
Indeed, while global dFC might be a signature of global cognitive func-
tion, confirming previous studies (Wang et al., 2016; Battaglia et al.,
2020), modular dFC speeds may show a closer relationship to cognitive
performance in different cognitive domains.

Hence, while performance on sustained attention after sleep depri-
vation as assessed by the RVP task did not correlate with changes of dFC
at the whole-brain level, we found a relatively strong correlation of RVP
accuracy with dFC speed changes of the frontoparietal dFC module #2.
This correlation is furthermore particularly robust being the most
frequently found to be significant (cf. Fig. 5E) over the large ensemble of
alternative dFC modular decompositions that we considered. These re-
sults are in line with the functional relevance of ventral and dorsal
frontoparietal networks in covert visual attention (Corbetta and Shul-
man, 2002), the function of the superior parietal cortex and supra-
marginal gyrus also being associated with visual attention (Coull et al.,
1996). Other studies using task-related paradigms have also shown that
performance on rapid visual processing, accessing sustained attention, is
associated with increased BOLD fMRI activation in frontal and parietal
regions (Lawrence et al., 2003). Moreover, decreased frontoparietal
activation after sleep deprivation has been associated with lapses in
attention (Chee and Tan, 2010; Chee et al., 2008). Our study is thus in
line with previous evidence that frontoparietal networks are sensitive to
sleep deprivation and that changes are related to attentional deficits
(Muto et al., 2016), as well as for their wide inter-subject variability
(Doran et al., 2001, Van Dongen et al., 2004). However, the results of the
present report go beyond the previous findings as they show that dy-
namic reconfigurations in functional connectivity of the frontoparietal
network also play a determinant role.

Previous studies have demonstrated that functional networks highly
overlapping with task-related networks associated with attentional con-
trol are transiently recruited during resting state (Fox et al., 2006). Here,
we additionally show that variations after sleep deprivation in the
fluidity of connectivity within these intrinsic networks is reduced by
sleep deprivation in a way correlating with performance variations in a
sustained attention task. We thus reconceptualize these networks as
veritable dynamical systems, with fluidly fluctuating internal links,
rather than as frozen static networks. Remarkably, the few subjects that
improved their RVP performance after sleep deprivation also had an



Table 4
dFC and MC glossary.

dFC stream Sequence of Functional Connectivity networks materializing
along time.
Or “How the brain dances to the music of time”

dFC knots or leaps Transient slowing down or acceleration of the FC network
reconfiguration, smooth without clear discrete states
Or, respectively, “calm pools or rapids along a flowing stream”

Meta-Connectivity
(MC)

Correlations between the fluctuations of pairs of dynamic
functional links
Or, “guidelines for improvisation (whom to tune to the unwritten
melody)”

dFC modules Groups of FC links whose fluctuations are correlated between
them, but uncorrelated with the ones of links in other groups
Or, “group of players listening to each other in a big jazz band”

Meta-hubs Brain regional nodes whose incident FC links display
correlated fluctuations (i.e. centers of FC star subgraphs with
strongly meta-connected edges)
Or, “puppet masters”; “players taking the lead in a jazz band”)
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acceleration of their modular speed in the relevant modules, showing
that individual cognitive vulnerability or resilience to sleep deprivation,
can be tracked by modular dFC.

Finally, while less robust, the significant correlation between dFC #4
modular speed variations and RTI reaction time variations (Fig. 5A), can
be understood in terms of the involvement of frontal and premotor meta-
hubs of dFC #4module (in part shared with dFC#2module) in control of
action (Passingham, 1993). The fact that correlations of modular dFC
speeds with RTI and n-back performance are weaker than for RVP may
speculatively be linked to a more or less centralized control of cognitive
computations involved in the different tasks. Indeed, as previously
indicated, the control of sustained attention –probed by the RVP task–
relies on the operation of networks which are fairly localized (Corbetta
and Shulman, 2002). This is in contrast with, e.g., working memory
–probed by the n-back task–, which relies on much more widely
distributed networks (Fuster, 1997).”

4.4. dFC and FC modules are qualitatively different entities

It is important to highlight here once again the fundamental differ-
ence between FC and dFC modules (cf. Fig. 3), although they partially
overlap at the level of their hubs and meta-hubs (Figure S6) or when
some relation with known RSNs exist (Figure S7). The influence of a hub
region on its neighboring regions is quite direct since it causes the fluc-
tuations of adjacent regions’ activity to mirror the ones of its own activity
(coordinated node dynamics). On the contrary, a meta-hub region will
display in general a wide spectrum of activity correlations with its
neighboring regions. For instance, a meta-hub could be strongly corre-
lated with some of its neighbors and very weakly with others. However,
these correlations, independently from their strength, will be all boosted
up or weakened in a synchronized manner along (coordinated link dy-
namics). We can use a musical metaphor to illustrate this fundamental
difference between hubs and meta-hubs. Both of them can be seen as
leading players in an ensemble of musicians. Hubs will force the other
musicians to play the same melodic line they play, in unison or following
a strictly parallel harmony as in a simple canon. Meta-hubs could be
better described as a jazz band leader precisely giving the groove during
written sections and then engaging into an improvisation section, in
which they still exert an influence on the other players, but quite loos-
ened, allowing divergent soloist lines to emerge in a more spontaneous
and less constrained manner. To a signal of the leader however, the
improvisation will stop and all the musicians will go back following the
prescribed composition. Thus meta-hubs do not necessarily establish
strong correlations with other regions (during a jazz improvisation, the
various musical lines – although not random – are relatively free) but
rather exert a strong modulatory effect on the time-dependent strengths
of correlation within their associated functional networks (as when
engaging into an improvised from a composed musical section).

Furthermore, the influence of regional nodes when considered as dFC
meta-hubs transcends largely the boundaries of the FC networks into
which they can be simultaneously acting as hubs. Indeed as revealed by
Figure S4, each dFC module includes covarying links that, originating in
large part from the module’s specific meta-hubs, diverge then to “touch”
— or be incident to — widespread brain regions. Each module is thus
incident to nearly the whole brain and, conversely, every region is inci-
dent to nearly every module. When a brain region establishes time-
dependent correlations with its neighboring regions (“computing” its
instantaneous pattern of FC, we could say), it does it under the competing
influence exerted by the meta-hubs of multiple dFC modules, as a mari-
onette put into motion by strings pulled simultaneously by different
puppeteers. Every meta-hub (“puppeteer”) sends co-modulated incident
functional links (“pull strings”) toward nearly every brain region
(“marionette”). Thus, localized meta-hubs have a very distributed influ-
ence. In this sense, there is no reason to expect an a priori correspondence
between FC and dFCmodules and the imperfect correspondence between
dFC and FC modules in Figure S6 should therefore not appear surprising.
14
More generally, nodes touched by links in a MC meta-module may be
at certain times coordinated (when the co-fluctuating links are in a large
strength transient) and thus form a FC(t) module in the conventional
sense. However, they may be poorly coordinated at other times (when
the co-fluctuating links are in a weak strength transient) and thus not
forming a FC(t) module anymore. The link sets that form different meta-
modules will fluctuate toward large or weak strengths at different inde-
pendent times. Therefore, the static meta-modular organization of MC
will result in a dynamic modular organization of FC(t), displaying a
transient waxing and waning of changing node-level modules. Indeed, FC
modules do not invariantly exist at all times but evolve, absorbing and
ejecting nodes or by interchanging themwith other modules (Schlesinger
et al., 2017). Future studies may explore how the “forces” exerted by
multiple competing dFC meta-hub controllers control the dynamic
reconfiguration of transient FC modules.

Here, we allow ourselves to summarize in a concise glossary (see
Table 4) the main metaphors we have introduced to help conceptualizing
novel dFC and MC metrics, in the hope to make even more transparent
their difference with standard FC approaches.

5. Conclusion

To summarize, we here introduced a novel framework –modular dFC
speed analysis – which allows identifying distinct sets of meta-hub nodes
which jointly coordinate the stochastic fluctuations of FC along time in
the resting state. Going beyond detection of global effects, we have used
our novel analytic framework to correlate speed variations of specific
dFC modules to changes in cognitive performance following SD, which
vary between subjects. It is already known that sleep deprivation effects
express individual phenotypic diversity, which could be explained by
genetic differences (Kuna et al., 2012). Furthermore, some of the
system-level mechanisms leading to cognitive alterations after SDmay be
shared with Alzheimer’s disease (Mander et al., 2016). Future studies
may exploit the sensitivity of modular dFC analyses to inter-subject dif-
ferences to track the development of cognitive deficits along Alzheimer’s
diseases longitudinal progression. In line with the hypothesis that a su-
perior fluidity of dFC is a proxy for enhanced information processing
capabilities (Braun et al., 2018), modular dFC speed could provide a
novel marker of the notion of protective “cognitive reserve” (Stern et al.,
2009), whose neuroimaging characterizations have been explored more
often in terms of task-related activations (Stern, 2017) or structural as-
pects (Bartr�es-Faz and Arenaza-Urquijo, 2011). However they remain
less explored at the level of functional connectivity (Martinez et al.,
2018) and, especially, concerning its dynamic features, while, on the
contrary, which are likely to more closely reflect ongoing neural com-
putations and their efficiency.
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