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Abstract—We propose a novel approach to calibrate a micro-
scope. Instead of seeking a single linear integral operator (e.g.
a convolution with a point spread function) that describes its
action, we propose to describe it as a low-dimensional linear
subspace of operators. By doing so, we are able to capture its
variations with respect to multiple factors such as changes of
temperatures and refraction indexes, tilts of optical elements
or different states of spatial light modulator. While richer than
usual, this description however suffers from a serious limitation:
it cannot be used directly to solve the typical inverse problems
arising in computational imaging. As a second contribution, we
therefore design an original algorithm to identify the operator
from the image of a few isolated spikes. This can be achieved
experimentally by adding fluorescent micro-beads around the
sample. We demonstrate the potential of the approach on a
challenging deblurring problem.

Important note: this paper is an abridged version of a preprint
[3] by the same authors, submitted for a journal publication.

Index Terms—fluorescence microscopy, PSF, calibration,
product-convolution operators, blind deblurring

I. INTRODUCTION

The most common approach to calibrate a microscope
consists in imaging fluorescent micro-beads and estimating a
single point spread function (PSF) from this indirect informa-
tion. This approach is based on the assumption that the optical
system is space invariant and that the image formation model
can be described by the mathematical model

g = S(h ? f), (1)

where g ∈ RN is the digital image, f ∈ L2(Rd) is the ideal
image, h ∈ L2(Rd) is the convolution kernel or PSF and
S : L2(Rd) → RN is a sampling operator. Despite being
widespread, this model however suffers from two important
limitations:

1) While space invariant systems are often accurate at a
local scale, they are far from reflecting the complexity
of microscope responses for larger fields of views [10],
[9]. An example illustrating significant space variations
of the point spread function on a wide-field microscope
is shown on Fig. 1.

2) The imaging conditions (temperature, wavelength, tilts
of optical elements,...) often change between the cali-
bration step and the imaging of the sample, leading to
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model mismatches. These can have dramatic effects for
computational tasks such as image deblurring or single
molecule localization.

The aim of this paper is twofold:

• Provide a novel calibration approach which simultane-
ously solves the two above flaws, by learning a low di-
mensional model of space varying microscope responses.
As an output, this algorithm provides a whole set of op-
erators Ĥ which describe the possible transfer functions
of the microscope.

• As such, this approach provides a fine metrological tool
for opticians but cannot be directly used to solve inverse
problems. When facing an image reconstruction problem,
most existing approaches indeed require the knowledge of
a single operator and not of a whole family. Our second
contribution is to propose an algorithm that identifies an
element of this subspace from an image containing a few
separated spikes. This can be seen as a blind inverse
problem solver: once the operator has been identified, it
is possible to use standard solvers to actually reconstruct
the image.

II. LEARNING A LOW DIMENSIONAL SET OF OPERATORS

For the first contribution, we need to turn to a more general
framework than (1). We turn to the discrete setting with
periodic boundary conditions for simplicity. We model the
blurring operator H : RN → RN as a linear integral operator
of the form

Hf(x) =
∑
y∈Ω

K(x, y)f(y), (2)

where K is the kernel of the operator and Ω the pixels set. The
function L(x, y) = K(x+y, y) is called space varying impulse
response. The point spread function (or impulse response) of
the system at a location y ∈ Rd is defined by L(·, y). The
forward observation model then becomes y = Hf + η, for
some noise η ∈ RN .

A. Product-convolution

Throughout this paper, we will assume that:



• the impulse responses are well approximated by their
projection on a low dimensional basis (ui)1≤i≤I , i.e. for
all y ∈ Ω:

L(·, y) '
I∑
i=1

〈L(·, y), ui〉ui(·). (3)

• the impulse responses vary slowly in space. This can be
formalized by assuming that the function y 7→ L(x, y)
(or that the mappings y 7→ 〈L(·, y), ui〉) are smooth
functions.

These two assumptions are crucial for this work. They allow
to capture most of the effects of the couple (optical system,
cover-slip). Let us mention however that they discard sharp
transitions that may happen due to rapidly varying refractive
indexes within a sample, or complex phenomena related to
different dipole orientations.

Under these assumptions, we showed in [5] that the op-
erator could be well approximated by a product-convolution
expansion of the form:

Hf '
I∑
i=1

J∑
j=1

γi,jui ? (vj · f), (4)

where (vj)1≤j≤J are a set of multipliers and γi,j a set of
coefficients. Intuitively, the multipliers vj capture the space
variations of the PSFs. In its simplest form, we could set
vj = 0 for j 6= i and vi(y) = 〈L(·, y), vi〉. In that case,
the equation (4) would boil down to the decomposition (3).
The decomposition (4) has two significant assets:

• it can be implemented efficiently on a computer as a sum
of I convolutions. In practice, we observed that values of
I ranging between 3 and 7 depending on the SNR of the
input images were enough to capture nearly all the PSF
information.

• for a single operator, the bases (ui) and (vj) can be
estimated efficiently by imaging sets of fluorescents beads
as will be seen later [6], [8], [3].

B. The learning procedure

Let us mention that the mathematical foundations of the
proposed approach have been established recently in [4].
However its specialization to the microscopy problem at hand
raises many practical issues that will be discussed below.

For a given acquisition, a microscope can be described by a
discrete linear operator H : RN → RN . When varying the
imaging conditions such as the temperature (which creates
changes of refractive indexes), some focal screws or spatial
light modulators, we actually obtain a complete family H
of operators. The objective of this section is to estimate a
structured set Ĥ that approximates H well.

Based on the previous discussion, we propose to describe
the family Ĥ as a low-dimensional subspace of product-
convolution operators. This means that we are looking for two

families (ui)1≤i≤I and (vj)1≤j≤J such that for any H ∈ H
and f ∈ RN , we have

Hf '
I∑
i=1

K∑
j=1

γi,jui ? (vj · f), (5)

for some matrix Γ = (γi,j).
a) Experimental setup: To this end we propose to image

small fluorescent microbeads under multiple conditions, which
yields a sequence (g1, . . . , gK) ∈ RN×K of images. Each of
these images can be seen as the result of applying an operator
Hk ∈ H to an unknown sparse measure.

In our experiments, we automatized this stage by using a
motorized stage and a thermostatic chamber, allowing to vary
the x, y, z position of the sample, change the temperature and
vary the position of a spatial light modulator (used for an
automatic blur correction) automatically. The experiment of
this paper will be performed with K = 378 images containing
between 100 and 200 micro-beads each.

b) Extraction of PSF patches: The second step consists
in extracting a set of good quality PSF patches with a subpixel
acccuracy of all the images in this sequence. This problem can
sometimes be challenging due to i) low signal to noise ratio,
ii) PSF overlapping and iii) clustering of micro-beads.

Ideally we would like each patch to contain a single PSF
isolated from the rest and centered within the patch. The
steps we propose are based on standard image processing
tools: i) detection of potential PSFs by applying a Laplacian
of Gaussian filter followed by a thresholding, ii) selection
of patches containing a single maximum, iii) centering of
the remaining patches by finding the best fit with a pyramid
of Gaussian iv) discarding the likely outliers by performing
specific z-tests among the patch population and v) resampling
on a shifted grid using bi-cubic splines. We refer the interested
reader to [3] for more details. As an output of this step,
we have collected a (large) series of reliable PSF patches
(p1, . . . , pL). The experiment of this paper will be performed
with L ' 23000 detected patches.

c) Background removal: A critical step to correctly as-
sess the basis (ui) is to remove the autofluorescence back-
ground from each PSF patch. As can be seen on Fig. ??, there
are significant variations of intensity within a single image,
due to a non homogeneous illumination and non uniform auto-
fluorescence. It is necessary to correct for this effect. In this
paper, we propose to fit a low degree polynomial to the patch
boundary. The idea is that the boundary should not contain
much energy from the PSF since they are decaying rapidly in
space. As an output of this step, we obtain, a set of corrected
patches (p̄1, . . . , p̄L).

d) The PSF basis (ui): In this work we simply define
the family (ui)1≤i≤I as the most significant elements of
a principal component analysis applied to the sequence of
patches (p̄1, . . . , p̄L). Notice that the singular values of the
decomposition allow to choose the number of kept components



I in a principled way. In practice, this value varies between 3
and 7. All the PSF patches p̄l satisfy:

p̄l '
I∑
i=1

〈p̄l, ui〉ui. (6)

e) The coefficient variations family (vj): At this stage,
for each micro-bead image gk, we have access to a set of
clean PSF patches (p̄lq )1≤q≤Qk

, where Qk ∈ N is the number
of clean patches on the k-th im age, together with the positions
(xlq )1≤q≤Qk

of the PSFs within the image. In order to estimate
the space variations of the PSFs, we propose to use a thin plate
spline interpolation of the projection coefficients 〈p̄lq , ui〉 by
solving:

wk,i = argmin
w∈RN

1

2

Qk∑
q=1

(〈p̄lq , ui〉 − w(xlq ))2 +
λ

2
‖∆w‖22, (7)

where λ > 0 is a regularization parameter that balances the
smoothness of the map wk,i against the closeness of fit.

We perform this for all indexes 1 ≤ i ≤ I and images
1 ≤ k ≤ K, leading to a set of IK interpolation maps. We
then propose to define the family (vj) by keeping the most
significant principal components of the family (wk,i). Since
the images wk,i are typically large, we resort to randomized
singular value decompositions [7]. In practice, this leads to
values of J ranging from 4 to 10, to capture the space
variations precisely.

f) Restricting the family: At this stage, we learned a
structured subspace of operators Ĥ of size IJ , where the
product IJ ranges in {12, . . . , 70} for a wide-field microscope
producing large 2300×2300 images. Any element H ∈ Ĥ pos-
sesses the product-convolution structure (5). While expressing
the list of all possible states of a microscope with a few
dozen parameters is already impressive per se, it is possible
to further reduce the family of admissible operators: not any
matrix Γ ∈ RI×J leads to a decent operator. For instance,
the operators should preserve the positivity of images, and the
coefficients γi,j are expected to decay with respect to i and
j since these indexes are related to an ordering of singular
values. In addition, the operator can be known only up to a
positive multiplicative constant since the microbeads intensity
is not controlled.

We therefore propose to restrict the family of admissible
operators to the conical hull Ĉ ( Ĥ of the observed operators.
Letting (Γ̂k) denote the family of I × J matrices estimated
from the different micro-beads images, we can define the final
set of admissible operators as:

Ĉ := cone(H(Γ̂k)) =

{
K∑
k=1

λkH(Γ̂k), λk ≥ 0

}
, (8)

where H(Γ̂k)f :=
∑I
i=1

∑J
j=1 γ̂

k
i,jui ? (vj · f). In the com-

panion journal paper [3], we further propose to simplify this
set by designing a conical peeling algorithm.

An estimated family of operators is displayed in Fig. 2. The
top row corresponds to the family (ui) while the bottom row
corresponds to the family (vj).

III. BLIND BLUR IDENTIFICATION

The proposed methodology departs significantly from the
usual calibration procedures which yield a single operator that
can be used directly for solving the subsequent inverse prob-
lems. Here, we need to infer the operator from the observed
data, which is the field of blind inverse problems. While this
is a hard and open problem in general, the learning procedure
described previously significantly eases its resolution. Instead
of looking for an arbitrary space varying blur operator, we
just need to estimate I × J coefficients restricted to the low
diameter conical hull Ĉ.

Unfortunately, this is still an open problem in general
despite recent theoretical progresses [1]. To further simplify
the problem, we assume that it is possible to insert isolated
fluorescent micro-beads around the sample, which then pro-
vide a few scattered impulse responses that can be used for
the estimation.

A. The experimental and mathematical framework

We assume that the observed image f reads as

f = f0 +

P∑
p=1

αpδxp
, (9)

where f0 is the sample we wish to image, P is the number of
scattered micro-beads (or more generally sub-diffraction limit
point sources), and (xp) is a set of separated positions in Rd.

Under this assumption, the observed image g = g0 + gb+η
is the sum of a blurry signal g0 = H(f0), the image of
a sparse measure gb =

∑P
p=1 αpK(·, xp) and the noise

η. As mentioned previously, a simple thresholding of the
Laplacian of Gaussian or a manual selection are enough to
find the locations xp. This in turn allows to extract a few
patches ωp centered at xp containing isolated and noisy point
spread functions. Following the methodology described in the
previous section, it is possible to remove the background (here
the component g0) from the patches to recover masked images
sp = (Hδxp + η)1ωp containing only the p-th noisy PSF.
Notice that we implicitely assumed here that the PSFs were
sufficiently far apart so that the contribution from one PSF
does not interfere with the others.

B. The identification algorithm

Assuming that H = H(Γ) ∈ Ĥ, a natural approach to
identify Γ from f consists in solving the following bilinear
inverse problem:

Γ̂ = argmin
Γ∈RI×J ,α∈RP

1

2

P∑
p=1

‖αpH(Γ)δxp
− sp‖22. (10)

In words, we wish to find an operator H(Γ) that - when
applied to Dirac masses at xp - reproduces the patches sp
up to an unknown multiplicative constant αp.

Problem (10) is non convex and looks high-dimensional at
first sight. However the specific product-convolution structure
simplifies it significantly. Let

Up = [u1(· − xp), . . . , uI(· − xp)] ∈ RN×I (11)



denote the orthogonal basis describing the PSFs shifted by xp.
Since, by definition,

H(Γ)δxp
=

I∑
i=1

J∑
j=1

γi,jvj(xp)ui(· − xp), (12)

we get

Γ̂ = argmin
Γ∈RI×J ,α∈RP

1

2

P∑
p=1

‖U∗p
(
αpH(Γ)δxp − sp

)
‖22

= argmin
Γ∈RI×J ,α∈RP

1

2

P∑
p=1

I∑
i=1

 J∑
j=1

αpγi,jvj(xp)− sp,i

2

2

,

with sp,i = 〈sp, ui(·−xp)〉. If the amplitudes αp were known,
the previous problem would be a simple linear least squares.
A necessary condition for identifiability of Γ would be that the
number of bead P exceeds J , the number of space variation
maps.

With the additional unknown α, the problem is nonconvex,
but can be lifted to a convex problem, following [1]. As
mentioned earlier, the values I , J and P are typically low
and this technique can therefore be applied without pain.

Remark 1:

• Notice that the sum over p is outside the norm in (10).
This is valid only if the Dirac masses are separated, in
the sense that the energy of the PSFs different from p
can be neglected when restricted to ωp (or at least that
their contribution can be removed with the background
removal algorithm). It would be possible to keep the sum
inside the norm, but the numerical complexity would be
much higher.

• As usual in bilinear inverse problems, there is an ambi-
guity between the amplitudes of the Dirac masses and the
amplification by the operator H(Γ): we can multiply α
by a nonzero factor, divide Γ by the same factor and the
energy in (10) is kept unchanged. To avoid this ambiguity,
we can choose a reference matrix Γ0 ∈ RI×J and add a
linear constraint 〈Γ,Γ0〉 = 1.

• Solving the bilinear inverse problem (10) can be enough
to recover the operator H . However, when the number P
of observed PSFs is small, it is possible to add safeguards
by imposing Γ to live on the conical hull cone(Γ̂k, 1 ≤
k ≤ K), since we know that the operator should live
in Ĉ, see (8). In that case, Problem (10) can be solved
with the alternating projected gradient descent developed
in [3].

C. Sparse plus smooth deblurring

As an output of the previous algorithm, we obtain a matrix
Γ̂ as well as an estimation Ĥ = H(Γ̂) of the true underlying
operator H . It is possible to use this estimate directly within
a standard inverse problem solver to reconstruct the desired

signal. We propose an original solver for sparse spikes decon-
volution below:

inf
f1∈RN

+ ,f2∈RN
+

1

2
‖Ĥ(f1 + f2)− f‖22 +

λ1

2
‖∆u1‖22 +

λ2

2
‖u2‖1.

(13)
The underlying idea is to find two components:
• f1 corresponds to the autofluorescence background. It is

assumed to be smooth and we therefore resort to an H2

regularization with the Laplacian, which appears in thin-
plate splines smoothing [2].

• f2 corresponds to the sparse measure, which is typically
the object of interest for single molecule localization
microscopy for instance.

A result of the proposed methodology is shown on Fig. 3.
Notice that the centroids of the microbeads are all recovered
despite significant space variations.

IV. CONCLUSION

We proposed a new methodology to calibrate a microscope
together with a new algorithm to identify the blur from blurry
images containing subdiffraction point sources. The proposed
methodology provide very promising results on challenging
large scale images of wide-field microscopy. This work opens
many avenues. Of particular interest, let us mention that it
allows to simulate a large number of realistic degradations
and to train neural networks for reconstruction tasks.
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(a) 2304× 2304 image

(b) Original image.

(c) Operator estimated from a family of 18 images.

Fig. 1: Left: micro-beads imaged with a wide field microscope. Right: estimated operator with the proposed methodology.
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Fig. 2: Learning the PSF and space variations bases for a standard wide-field microscope.

(a) Clusters of micro-beads imaged at 300nm from the focal plane.
The contrasts have been stretched for a better visualization.

(i)

(ii)

(iii)

(iv)

(b) (i) original out of focus. (ii) original at focal plane. (iii)
deblurred with Huygens software. (iv) BSS deblurring.

Fig. 3: Blind deblurring of clustered microbeads. Observe how well the micro-beads centers are recovered despite significant
space variations and unknown blurring operator.


