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A domino tableau-based view on type B Schur-positivity

Alina R. Mayorova12 Ekaterina A. Vassilieva2

1Department of Higher Algebra, Moscow State University, Moscow, Russia
2Laboratoire d’Informatique de l’Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract

Over the past years, major attention has been drawn to the question of identifying Schur-
positive sets, i.e. sets of permutations whose associated quasisymmetric function is symmetric and
can be written as a non-negative sum of Schur symmetric functions. The set of arc permutations,
i.e. the set of permutations π in Sn such that for any 1 ≤ j ≤ n, {π(1), π(2), . . . , π(j)} is an interval
in Zn is one of the most noticeable examples. This paper introduces a new type B extension of
Schur-positivity to signed permutations based on Chow’s quasisymmetric functions and generating
functions for domino tableaux. As an important characteristic, our development is compatible with
the works of Solomon regarding the descent algebra of Coxeter groups. In particular, we design
descent preserving bijections between signed arc permutations and sets of domino tableaux to show
that they are indeed type B Schur-positive.

Keywords: Signed arc permutations, Schur-positivity, type B quasisymmetric functions, domino
tableaux.

1 Background

1.1 Young tableaux and descent sets
For any positive integer n write [n] = {1, . . . , n} and Sn the symmetric group on [n]. A partition λ
of an integer n, denoted λ ` n is a sequence λ = (λ1, λ2, . . . , λp) of `(λ) = p parts sorted in decreasing
order such that |λ| = ∑

i λi = n. A partition λ is usually represented as a Young diagram of n = |λ|
boxes arranged in `(λ) left justified rows so that the i-th row from the top contains λi boxes. A Young
diagram whose boxes are filled with positive integers such that the entries are increasing along the rows
and strictly increasing down the columns is called a semistandard Young tableau. If the entries
of a semistandard Young tableau are restricted to the elements of [n] and strictly increasing along the
rows, we call it a standard Young tableau. The partition λ is the shape of the tableau, and we
denote SY T (λ) (resp. SSY T (λ)) the set of standard (resp. semistandard) Young tableaux of shape
λ.

Example 1. The diagrams on Figure 1 are standard Young tableaux of shape λ = (6, 4, 2, 1, 1).
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Figure 1: Two standard Young tableaux of shape (6, 4, 2, 1, 1) and descent set {1, 4, 9, 10, 12}.

Define the descent set of a standard Young tableau T as Des(T ) = {1 ≤ i ≤ n − 1 | i is
in a strictly higher row than i + 1}. For instance the descent set of the tableaux in Example 1 is
{1, 4, 9, 10, 12}. Similarly, the descent set of a permutation π in Sn is the subset of [n− 1] defined as
Des(π) = {1 ≤ i ≤ n− 1 | π(i) > π(i+ 1)}.
The Robinson-Schensted (RS) correspondence ([18, 19]) is a bijection between permutations π in Sn
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and ordered pairs of standard Young tableaux (P,Q) of the same shape λ ` n. This bijection is decent
preserving in the sense that

Des(π) = Des(Q),

Des(π-1) = Des(P ).

Example 2. Figure 2 shows a permutation π in S5 and its image (P,Q) by the RS correspondence.
The descent preserving property reads Des(π) = Des(Q) = {1, 3} and Des(π-1) = Des(P ) = {1, 3, 4}.

π = 52413 −−−→
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Figure 2: A permutation and its image by the RS correspondence.

1.2 Schur-positivity
Let X = {x1, x2, . . . } be a totally ordered set of commutative indeterminates. Given any subset A of
permutations in Sn, Gessel introduces in [11] the formal power series in C[X]:

Q(A)(X) =
∑

π∈A
FDes(π)(X),

where for any subset I ⊆ [n− 1], FI(X) is the fundamental quasisymmetric function defined by:

FI(X) =
∑

i1≤···≤in
k∈I⇒ik<ik+1

xi1xi2 . . . xin .

The power series FI(X) is not symmetric in X but verifies the property that for any strictly increasing
sequence of indices i1 < i2 < · · · < ip the coefficient of xk11 x

k2
2 . . . x

kp
p is equal to the coefficient of

xk1i1 x
k2
i2
. . . x

kp
ip
. In [12] Gessel and Reutenauer looked at the problem of characterising the sets A for

which Q(A) is symmetric. Further the question of determining Schur-positive sets, i.e. the sets A
for which Q(A) can be expanded with non-negative coefficients in the Schur basis received significant
attention.
Classical examples of Schur-positive sets include inverse descent classes, Knuth classes [11] and con-
jugacy classes [12]. As a more sophisticated example, Elizalde and Roichman proved [5] the Schur-
positivity of arc permutations, i.e. the set An of permutations π in Sn such that for any 1 ≤ j ≤ n,
{π(1), π(2), . . . , π(j)} is an interval in Zn. Arc permutations are alternatively defined as the set of per-
mutations in Sn avoiding the patterns σ in S4 such that |σ(1)− σ(2)| = 2. Other advanced examples
of Schur-positive sets can be found in [6]. Many of these results are the consequence of two main facts.

1. Denote sλ the Schur symmetric functions indexed by λ ` n. sλ is the generating function for
semistandard Young tableaux of shape λ. It follows (see e.g. [22, p. 7.19.7]) that

sλ(X) =
∑

T∈SSY T (λ)

XT =
∑

T∈SY T (λ)

FDes(T )(X). (1)

2. There are various descent preserving bijections relating sets of permutations and standard Young
tableaux, e.g. the RS correspondence.
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The proof of Elizalde and Roichman in [5] also uses Equation (1) and relies on a custom bijection
between arc permutations and standard Young tableaux of shapes (n− k, 1k) and (n− k, 2, 1k−2). As
a result they get the following equation for the quasisymmetric function of arc permutations.

∑

π∈An
FDes(π) = s(n) + s(1n) + 2

∑

1≤k≤n−2
s(n−k,1k) +

∑

2≤k≤n−2
s(n−k,2,1k−2).

A type B extension of Schur-positivity deals with Bn, the hyperoctahedral group of order
n instead of Sn. Bn is composed of all permutations π on {-n, . . . , -2, -1, 0, 1, 2, . . . , n} such that
π(−i) = −π(i) for all i. Such permutations usually referred to as signed permutations are fully
described by their restriction to [n]. To extend items 1 and 2 above, two options are available and
depend on the definition for the descent of signed permutations.
As a first approach, Adin et al. in [1] use the notion of signed descent set, i.e. the ordered pair
(S, ε) defined for π ∈ Bn as

S = {n} ∪ {1 ≤ i ≤ n− 1 |
{
π(i) > π(i+ 1), if π(i) > 0

either π(i+ 1) > 0 or |π(i)| > |π(i+ 1)|, if π(i) < 0
}

and ε is the mapping from S to {−,+} defined as ε(s) = + if π(s) > 0 and ε(s) = −, otherwise. There
is a signed descent preserving analogue of the RS correspondence relating signed permutations and
bi-tableaux, i.e. ordered pairs of Young tableaux with specific constraints and [1] proves an analogue
of Equality (1) between their generating function and Poirier’s signed quasisymmetric functions.
While the authors succeed in extending most of the results known in type A, this definition of the
descent set of a permutation is not directly conform to the work of Solomon in [21] on the descent
algebra of Coxeter groups. As a result providing another framework relying on a more intuitive
definition of descent conform to the one of Solomon in the case of signed permutations appears as
a natural question. We use the following definition of the descent set of π ∈ Bn as the subset of
{0} ∪ [n− 1] equal to

Des(π) = {0 ≤ i ≤ n− 1 | π(i) > π(i+ 1)}.
Note that the main difference with respect to the case of the symmetric group is the possible descent
in position 0 when π(1) is a negative integer. A bijection by Barbash and Vogan [2] provides a descent
preserving analogue of the RS correspondence that relates signed permutations and domino tableaux
(see next section).
In Section 2, we use our modified generating function for domino tableaux [16] and Chow’s type B qua-
sisymmetric functions [4] to develop this alternative type B extension of Schur-positivity. In Section 3,
we introduce a new descent preserving bijection between signed arc permutations and domino tableaux
to show that the former set is type B Schur-positive according to the definition of descent stated above.
Finally, Section 4 aims at showing the connections between our approach and the one of [1].

2 A new definition of type B Schur-positivity based on Chow’s
quasisymmetric functions and domino functions

2.1 Domino tableaux
For λ ` 2n, a standard domino tableau T of shape λ is a Young diagram of shape shape(T ) = λ
tiled by dominoes, i.e. 2 × 1 or 1 × 2 rectangles filled with the elements of [n] such that the entries
are strictly increasing along the rows and down the columns. In the sequel we consider only the set
P0(n) of empty 2-core partitions λ ` 2n that fit such a tiling. A standard domino tableau T has a
descent in position i > 0 if i+ 1 lies strictly below i in T and has a descent in position 0 if the domino
filled with 1 is vertical. We denote Des(T ) the set of all its descents.
We call a semistandard domino tableau T of shape λ ∈ P0(n) and weight w(T ) = µ = (µ0, µ1, µ2, . . . )
with µi ≥ 0 and

∑
i µi = n a tiling of the Young diagram of shape λ with horizontal and vertical domi-

noes labelled with integers in {0, 1, 2, . . . } such that labels are non-decreasing along the rows, strictly
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increasing down the columns and exactly µi dominoes are labelled with i. If the top leftmost domino
is vertical, it cannot be labelled 0. Denote SDT (λ) (resp. SSDT (λ)) the set of standard (resp. semi-
standard) domino tableaux of shape λ.

Remark 1. Our definition of semistandard domino tableaux differs from the classical one by the
addition of ’0 ’ entries to the domino tableaux in some cases. We need this modification to connect
their generating functions to Chow’s type B quasisymmetric functions and get our type B analogue of
Equation (1).
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Figure 3: Two standard domino tableaux T and U of shape (5, 5, 4, 1, 1) and descent set {0,3,5,6} and
a semistandard domino tableau V of shape (5, 5, 4, 3, 1) and weight µ = (2, 0, 2, 0, 0, 4, 0, 1).

In [16], we introduce a variant of the generating function for semistandard domino tableaux taking
into account the zero values called domino function.

Definition 1 (Domino functions). Given an alphabet X and a semistandard domino tableau T of
weight µ, denote XT the monomial xµ0

0 xµ1

1 xµ2

2 . . . . For λ ∈ P0(n) we call the domino function
indexed by λ the function defined in the alphabet X by

Gλ(X) =
∑

T∈SSDT (λ)

XT . (2)

Finally, there is a natural analogue of the RS-correspondence for signed permutations involving
domino tableaux. Indeed, Barbash and Vogan ([2]) built a bijection between signed permutations of Bn
and ordered pairs of standard domino tableaux of equal shape in P0(n). An independent development
on the subject is due to Garfinkle in [8, 9, 10]. Van Leeuwen shows in [14] that the two approaches
are actually equivalent. See also Stanton and White in [24] for a more general treatment of rim hook
tableaux. Taşkin ([25, Prop. 26]) shows that the two standard domino tableaux associated to a signed
permutation π by the algorithm of Barbash and Vogan have respective descent sets Des(π−1) and
Des(π). Finally, Shimozono and White prove in [20] that half the total number of vertical dominoes in
the ordered pair of domino tableaux is equal to the number of negative entries in the signed permutation
(the color-to-spin property).

Example 3. Figure 4 shows the image (P,Q) of the signed permutation π = -3 8 5 -2 1 -9 -7 4 -6
by the Barbash and Vogan bijection. One can check that Des(π) = Des(Q) = {0, 2, 3, 5, 8} and
Des(π-1) = Des(P ) = {1, 4, 5, 8}. Note that the total number of vertical dominoes in P and Q is equal
to 10, i.e. twice the number of negative entries in π.

2.2 Chow’s type B quasisymmetric functions
Chow defines in [4] an analogue of Gessel’s algebra of quasisymmetric functions that is dual to the
Solomon’s descent algebra of type B. Let X = {x0, x1, . . . , xi, . . . } be a set of totally ordered commuta-
tive indeterminates and I be a subset of {0}∪ [n− 1], he defines a type B analogue of the fundamental
quasisymmetric functions

FBI (X) =
∑

0=i0≤i1≤i2≤...≤in
j∈I⇒ij<ij+1

xi1xi2 . . . xin .
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π = -3 8 5 -2 1 -9 -7 4 -6 −−−→
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Figure 4: A signed permutation and the associated ordered pair of domino tableaux.

Note the particular rôle of the variable x0.

Example 4. Let n = 2 and X = {x0, x1, x2} then

F∅ = x20 + x21 + x22 + x0x1 + x0x2 + x1x2,

F{1} = x0x1 + x0x2 + x1x2,

F{0} = x21 + x22 + x1x2,

F{0,1} = x1x2.

In [16], we show that Chow’s type B fundamental quasisymmetric functions are related to our
generating functions for domino tableaux.

Proposition 1 ([16]). Given an alphabet X = {x0, x1, . . . , xi, . . . }, an integer n and an empty 2-
core partition λ ∈ P0(n), one can expand the domino function Gλ in terms of type B fundamental
quasisymmetric functions as

Gλ(X) =
∑

T∈SDT (λ)

FBDes(T ). (3)

2.3 Type B Schur positivity
Similarly to the type A case, given any subset B of Bn we look at the Chow’s type B quasisymmetric
function

Q(B)(X) =
∑

π∈B
FBDes(π)(X).

Next we proceed with our definition of type B Schur positivity.

Definition 2 (Type B Schur positivity). A set B ⊂ Bn is said to be type B Schur positive or for
short G-positive if the function Q(B) can be written as a non-negative sum of domino functions.

This definition seems rather natural with regard to the case of type A as Equation (3) is a type
B analogue of Equation (1) and there are descent preserving bijections (e.g. Barbash and Vogan)
between domino tableaux and signed permutations. Nevertheless, it raises the following remarks.

Remark 2. For a non-negative integer n, denote Λn[X] the ring of symmetric functions of degree n.
According to our definition of type B Schur positivity, the fact that for B ⊂ Bn the quasisymmetric
function Q(B) is G-positive does not imply that it belongs to Λn[X]. It actually belongs to the vector
space ΛBn [X] spanned by the functions of the form xk0f(X∗) where X∗ = X \ {x0}, k ≤ n is a non-
negative integer and f is any symmetric function of Λn−k[X∗]. Namely, if Q(B) is G-positive then

Q(B) ∈ ΛBn [X] =

n∑

k=0

xk0Λn−k[X∗].

Proof. The proof of the statements in Remark 2 relies on the expression of the domino functions in
terms of Schur symmetric functions. There is a well known weight preserving (but not descent preserv-
ing) bijection between semistandard domino tableaux and bi-tableaux (often attributed to Littlewood
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[15] with a simpler description in [3, Algorithm 6.1], see Section 4.3 for more details). The respective
shapes of the two Young tableaux depend only on the shape of the initial semistandard domino tableau.
Denote (T−, T+) the bi-tableau associated to a semistandard domino tableau T of shape λ ∈ P0(n)
and (λ−, λ+) their respective shapes. We have |λ−|+ |λ+| = n and (λ−, λ+) is called the 2-quotient
of λ. The partitions λ− and λ+ depend only on λ and not on the entries of T . We show in [16] that

Gλ(X) = sλ−(X∗)sλ+(X). (4)

Then one can compute

Gλ(X) =
∑

ν; λ+/ν is a horizontal strip
sλ−(X∗)sν(X∗)sλ+/ν(x0),

Gλ(X) =
∑

ν; λ+/ν is a horizontal strip
sλ−(X∗)sν(X∗)x|λ

+|−|ν|
0 ,

Gλ(X) =
∑

ν,ρ; λ+/ν is a horizontal strip; ρ`|λ−|+|ν|

kρλ−νsρ(X
∗)x|λ

+|−|ν|
0 ,

where kαβγ is the Littlewood-Richardson coefficient indexed by the three partitions α, β, γ, i.e. the
structure constants of the algebra of symmetric functions in the Schur basis and a horizontal strip
is a skew shape composed of boxes, none of which are in the same column.
Denote for a partition ρ and a non-negative integer n with |ρ| ≤ n the type B Schur symmetric
function sB(n−|ρ|,ρ) defined by

sB(n−|ρ|,ρ)(X) = x
n−|ρ|
0 sρ(X

∗).

One has
Gλ(X) =

∑

|ρ|≤n
aλρs

B
(n−|ρ|,ρ)(X), (5)

where aλρ is a non-negative integer equal to

aλρ =
∑

ν`|ρ|−|λ−|; λ+/ν is a horizontal strip
kρλ−ν .

Finally, note that the family {sB(n−|ρ|,ρ)(X)}|ρ|≤n is a basis of ΛBn [X].

Remark 3. The set of domino functions {Gλ}λ∈P0(n) is not a basis of ΛBn [X]. Indeed, denote p(n)
the number of partitions of integer n. One has

|{Gλ}λ∈P0(n)| = |P0(n)| =
n∑

i=0

p(n− i)p(i) >
n∑

i=0

p(i) = dim(ΛBn [X]).

As a result, there might be more than one way to decompose a function in ΛBn [X] as a sum of domino
functions. However, one can show that the subfamily {Gλ−,(k)}k≤n,λ−`n−k is a basis of ΛBn [X] where by
abuse of notation we denoted λ−, (k) the partition in P0(n) whose 2-quotient is equal to (λ−, (k)). We
do not use this subfamily for our definition of type B Schur positivity as even the most basic examples
(see next subsection) are no longer G-positive. Secondly if a function Q(B) is G-positive, then it can
also be decomposed with non-negative coefficients in the basis sB(n−|ρ|,ρ) using Equation (5).

2.4 Examples of type B Schur-positivity
We proceed with some examples of sets of signed permutations that are G-positive according to our
definition 2.

Proposition 2 (Inverse Descent Classes). Let J ⊂ {0}∪ [n]. The inverse descent class DB,−1
n,J = {π ∈

Bn | Des(π−1) = J} is G-positive.
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Proof. According to the Barbash and Vogan bijection [2], there is a descent preserving bijection between
permutations π of the hyperoctahedral group and ordered pairs of standard domino tableaux (P,Q)
of the same shape that verify Des(π) = Des(Q) and Des(π−1) = Des(P ). We use this property to
compute Q(DB,−1

n,J ).

Q(DB,−1
n,J ) =

∑

π∈Bn
Des(π−1)=J

FDes(π) =
∑

λ`n

∑

P∈SDT (λ)
Des(P )=J

∑

Q∈SDT (λ)

FBDes(Q).

Since Gλ =
∑
Q∈SDT (λ) F

B
Des(Q) we get that Q(DB,−1

n,J ) expands in domino functions with non-negative
coefficients.

Another essential example of a G-positive set is the type B analogue of Knuth classes. Denote
(Pπ, Qπ) the ordered pair of standard domino tableaux that is the image of the signed permutation π
by the Barbash and Vogan bijection [2]. Given a standard domino tableau T we denote CBT the type
B Knuth class defined by

CBT = {π ∈ Bn | Pπ = T}.

Proposition 3. Let T be a standard domino tableau. The type B Knuth class CBT is G-positive.

Proof. Compute Q(CBT ) in a similar fashion as in the proof of Proposition 2.

Q(CT ) =
∑

π∈Bn
Pπ=T

FDes(π) =
∑

Q∈SDT (shape(T ))

FBDes(Q) = Gshape(T ).

That yields the desired result.

The final example is a consequence of the previous ones. We say that a permutation π ∈ Bn is
left-unimodal if there exists an integer i ∈ [n] such that

π−1(1) > π−1(2) > · · · > π−1(i) < π−1(i+ 1) < · · · < π−1(n).

Proposition 4. The set of left-unimodal signed permutations is G-positive.

Proof. A permutation π is left-unimodal if and only if Des(π−1) = {1, 2, . . . , i} or Des(π−1) =
{0, 1, 2, . . . , i} for some i ∈ [n−1]. As a result, the set of left-unimodal permutations is the union of in-
verse descent classes. As the definition of the type B quasisymmetric function of a set of permutations
is additive, the result follows.

3 Application to signed arc permutations

3.1 Main theorem
As stated in introduction, the set of arc permutations is a remarkable Schur positive set. We build a
new bijection for the set of signed arc permutations and prove that it is type B Schur positive.

Definition 3 (Signed arc permutations). A permutation π ∈ Bn is called a signed arc permutation
if for 1 ≤ i ≤ n the set

1. {|π(1)|, |π(2)|, . . . |π(i− 1)|} is an interval in Zn and

2. π(i) > 0 if |π(i)| − 1 ∈ {|π(1)|, |π(2)|, . . . |π(i− 1)|} and

3. π(i) < 0 if |π(i)|+ 1 ∈ {|π(1)|, |π(2)|, . . . |π(i− 1)|} (with the addition in Zn).

The set of signed arc permutations is denoted by Asn.
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Remark 4. As shown in [7], signed arc permutations are exactly those permutations of Bn that avoid
the following 24 patterns:

[±1,−2,±3], [±1, 3,±2], [±2,−3,±1], [±2, 1,±3], [±3,−1,±2], [±3, 2,±1].

The main result of this section follows.

Theorem 1. The set of signed arc permutations Asn is G-positive. Moreover,
∑

π∈Asn

FBDes(π) = G(2n) + G(2n−1,1) + G(2n−2,1,1) + G(2n−3,1,1,1) + 2
∑

a≥2n−a≥2
G(a,2n−a)

+
∑

a≥2n−a−2≥2
G(a,2n−a−2,2) +

∑

a≥2n−a−2≥2
G(a,2n−a−2,1,1). (6)

To prove Theorem 1 we introduce a new descent preserving bijective map from Asn to the sets of
standard domino tableaux with shapes equal to the indices of the domino functions in formula 6.

3.2 A new description of signed arc permutations
Our bijective proof of Theorem 1 relies on a characterisation of signed arc permutations as a shuffle
of a positive and a negative subsequence. More precisely, a permutation π ∈ Bn may be written as a
sequence

π = π1π2 . . . πn

where πi = π(i). We denote

π+ = a1a2 . . . ak

π− = b1b2 . . . bl

the two subsequences of π (k + l = n) composed respectively of the positive and negative integers in
π. According to Definition 3, if π is a signed arc permutation, then one has





{|ai|}1≤i≤k ∪ {|bj |}1≤j≤l = [n]

ai+1 = ai + 1 for i = 1 . . . k − 1

bj+1 = bj + 1 for j = 1 . . . l − 1

a1 = −b1 + 1 if kl 6= 0

(7)

where the + sign denotes the addition in Zn subject to the cyclic conditions n+ 1 = 1 and -1 + 1 = -n.

Example 5. The signed arc permutation in B7, π = -3 4 5-2-1-7 6 is composed of the two subsequences
π+ = 4 5 6 and π− = -3-2-1-7

Given two sequences α and β let α β be the set of new sequences obtained by shuffling the letters
of α and β such that the initial order of the letters of α (resp. of β) is preserved.

Proposition 5. The set of signed arc permutations Asn is equal to the disjoint union of the sets of
sequences α β where (α, β) runs over all the ordered pairs of positive and negative sequences fulfilling
the conditions 7.

Proof. This proposition is a direct consequence of Definition 3 and the description of arc permutations
in terms of positive and negative subsequences.

Example 6. The set of signed arc permutation As3 is equal to

As3 =123 ∪ 312 ∪ 231

∪ (12 -3) ∪ (31 -2) ∪ (23 -1)

∪ (1 -3-2) ∪ (2 -1-3) ∪ (3 -2-1)

∪ -3-2-1 ∪ -2-1-3 ∪ -1-3-2
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We have the following corollary.

Corollary 1. A signed arc permutation π of Asn has a descent in position i > 0 if and only if:

• πi > 0 and πi+1 < 0 or

• πi = n and πi+1 = 1 or

• πi = -1 and πi+1 = -n.

We use these various properties to split the set of signed arc permutations into six non-overlapping
types characterised by their positive and negative subsequences and the sign of their entries with
absolute value 1 and n. The six types are defined in the table of Figure 5 along with a graphical
description indicating the positive and negative subsequences.

3.3 Explicit bijections for all types
We build for each type of signed arc permutations an explicit bijection between the permutations it
contains and a tractable set of standard domino tableaux. While we end up with six different bijections
(one for each type), our constructions share a common set of rules.
Given a signed arc permutation π = π1π2 . . . πn of Bn, we recursively build a standard domino tableau.
At step 1 ≤ i ≤ n we add a domino with label i following one of the rules below. The selected rule
depends on the type of π and the value of π(i).

• (Rule 1) Add a horizontal domino at the end of the first row.

• (Rule 2) Add either a horizontal domino at the end of the second row or a vertical domino across
the first two rows. Exactly one of these two options is possible whenever we use Rule 2.

• (Rule 3) Add either a horizontal domino at the end of the third row or a vertical domino across
the rows number two and three. Exactly one of these two options is possible whenever we use
Rule 3.

• (Rule 4) Add a vertical domino across the rows number three and four.

The next step is to use these four rules to build a specific bijection for each type of signed arc permu-
tations.
We start with types 5 and 6 as they provide the best insight about our method.

Proposition 6. Both type 5 and type 6 permutations are in descent preserving bijection with the set
of standard domino tableaux of shapes (a, 2n− a) for a ≥ 2n− a ≥ 2.

Proof. We give the proof for type 5 permutations but the same reasoning applies to type 6. Type 5
contains the permutations

⋃

1≤k≤n−1
{-k-(k − 1) . . . -1 k + 1 . . . n}.

• Firstly, map π0 = -1 2 . . . n to the standard domino tableau T 0 composed of n vertical dominoes.
We have Des(π0) = Des(T 0) = {0}.

• Secondly, let π = π1π2 . . . πn 6= π0. We build recursively a two-row standard domino tableau. At
step 1 ≤ i ≤ n we add a domino with label i according to Rule 1 (resp. Rule 2) if πi > 0 (resp.
πi < 0).

This mapping is clearly bijective and descent preserving. Indeed, given a standard domino tableau T of
shape (a, 2n−a), the combined number of horizontal dominoes in the second row and vertical dominoes
gives the integer k and subsequently the positive and negative subsequences (that only depend on k).
Then the position of domino i gives the sign of the i-th entry of a preimage of T (positive if i is
horizontal on the first row and negative if i is horizontal on the second row or vertical). We recover
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n

1
2

k

+

Type 1

⋃
2≤k≤n { k . . . n 1 . . . k − 1} ⋃ 1 . . . n

n

1
2

k

−

Type 2

⋃
2≤k≤n {-(k − 1) . . . -1-n . . . -k} ⋃ -n . . . -1

n

1
2

l

k

−

+

Type 3

⋃
1≤l<k<n {-k-(k − 1) . . . -(l + 1) k + 1 . . . n 1 . . . l}

n

1
2

k

l

+

−

Type 4

⋃
1≤k<l<n {-k-(k − 1) . . . -1-n . . . -(l + 1) k + 1 . . . l}

n

1
2

k

+

−

Type 5

⋃
1≤k≤n−1 {-k-(k − 1) . . . -1 k + 1 . . . n}

n

1
2

k

−

+

Type 6

⋃
1≤k≤n−1 {-n . . . -(k + 1) 1 . . . k}

Figure 5: Our six types of signed arc permutations. The first column provides a graphical representa-
tion of the positive and negative subsequences. The second column gives a formal description of the
permutations of the given type.

the particular shuffle of the two subsequences and a unique preimage of T .
Finally, there is a descent in position i > 0 in the domino tableau T of preimage π if and only if i is
in the first row and i + 1 in the second row, i.e. if and only if πi > 0 and πi+1 < 0 i.e. if and only if
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πi > 0 > πi+1. There is a descent in 0 in T if and only if π1 < 0. As a result the bijection is descent
preserving.

Example 7. The type 5 signed arc permutation π = -5 6 -4 7 -3 -2 -1 is mapped to the following stan-
dard domino tableau:

1
2

3

4

5
6 7

The following bijections are variations of the one in Proposition 6.

Proposition 7. Type 1 signed arc permutations are in descent preserving bijection with the set of
standard domino tableaux of shapes (2n) and (2n− 2, 1, 1).

Proof. Type 1 contains the permutations
⋃

2≤k≤n
{k . . . n 1 . . . k − 1}

⋃
1 . . . n.

We use the following bijection. First map the permutation π1 = 1 2 . . . n to the unique standard
domino tableau T 1 of shape (2n). Obviously Des(T 1) = Des(π1) = ∅. Then for π 6= π1 use the same
mapping as for type 5 signed arc permutations except for index i with πi = 1, i > 1. In the latter case
apply Rule 3.
This construction is clearly bijective. Indeed, type 1 signed arc permutations are determined by the
value of the integer k. But if i is the index of the vertical domino across the second and the third row
of a standard domino tableau of shape (2n− 2, 1, 1), then n− i+ 1 = k− 1. Finally, the descent set is
preserved. Assume π 6= π1 is a type 1 signed arc permutation mapped to the standard domino tableau
T . Let i > 1 such that πi = 1. We have Des(π) = {i − 1}. As we apply Rule 3 for index i in our
mapping and Rule 1 for all j 6= i, only the domino with label i in T is strictly below the others. As a
result Des(T ) = {i− 1} = Des(π).

Example 8. The signed arc permutation π = 4567123 is mapped to the following standard domino
tableau:

1 2 3 4

5

6 7

Proposition 8. Type 2 signed arc permutations are in descent preserving bijection with the set of
standard domino tableaux of shapes (2n− 1, 1) and (2n− 3, 1, 1, 1).

Proof. Type 2 contains the permutations
⋃

2≤k≤n
{-(k − 1) . . . -1-n . . . -k}

⋃
{-n . . . -1}.

For type 2 we use the following mapping. We map the permutation π2 = -n . . . -2-1 to the unique
standard domino tableau T 2 of shape (2n − 1, 1). As a result, Des(π2) = Des(T 2) = {0}. Let
π = π1π2 . . . πn 6= π2. We map π to the standard domino tableau T built according to the following
procedure.

• The domino labelled 1 is in vertical position.

• Then, apply Rule 1 for all i such that πi 6= -n.

• Finally, apply Rule 4 for i such that πi = -n.
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A type 2 signed arc permutation π 6= π2 with πi = -n (i > 1) has descent set Des(π) = {0, i− 1}. As
a result, the construction is bijective and descent preserving. Indeed, if i is the label of the vertical
domino across the third and fourth row in a standard domino tableau T of shape (2n−3, 1, 1, 1), then set
i = k to recover the unique preimage of T by our construction. Furthermore, Des(T ) = {0, i− 1}.

Example 9. The signed arc permutation π = -3-2-1-7-6-5-4 is mapped to the following standard
domino tableau:

1
2 3

4

5 6 7

Proposition 9. Type 4 signed arc permutations are in descent preserving bijection with standard
domino tableaux of shape (a, 2n− a− 2, 1, 1) for a ≥ 2n− a− 2 ≥ 2.

Proof. Type 4 contains the permutations
⋃

1≤k<l<n
{-k-(k − 1) . . . -1 -n . . . -(l + 1) k + 1 . . . l}.

We use the same mapping as for type 5 signed arc permutations except for step i such that πi =
-n, i > 1, when we apply Rule 4. As -n is never the first negative number in π, the second row of
the tableau is always of length greater or equal to 1 when we apply Rule 4. As a consequence, Rule 4
application is always possible for a valid type 4 permutation.
To prove the bijection, let i be the index of the vertical domino across the third and the fourth row
in a standard domino tableau T of shape (a, 2n − 2 − a, 1, 1). Set k to be equal to the number of
horizontal dominoes in the second row and vertical dominoes (Rule 2 dominoes) with label strictly less
than i. Then set n− l− 1 to be the number of Rule 2 dominoes with index greater than i. We recover
the positive and negative subsequences of the preimage π of T . Finally, the position of domino i in T
gives the sign of πi. Iterating for all i gives the unique shuffle of the two subsequences mapped to T
by our construction. Further the descent sets of π and T are equal following a similar remark as for
Type 5 permutations.

Example 10. The signed arc permutation π = -3 4 -2 -1 -7 5 -6 is mapped to the following standard
domino tableau:

1
2

3
4

5

6

7

The type 3 case is the most intricate as the descent patterns involved are more complicated. We
proceed with the sixth and last bijection.

Proposition 10. Type 3 signed arc permutations are in descent preserving bijection with standard
domino tableaux of shapes (a, 2n− a− 2, 2) for a ≥ 2n− a− 2 ≥ 2.

Proof. Type 3 contains the permutations
⋃

1≤l<k<n
{-k-(k − 1) . . . -(l + 1) k + 1 . . . n 1 . . . l}.

For such permutations we consider the different patterns of existence/absence of negative numbers
before n, between n and 1 and after 1. Note that the absence of negative numbers between n and 1
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implies that 1 follows n immediately. As type 3 permutations have at least one negative number, there
are seven possible patterns. Let

π = π1 . . . πb . . . n . . . πa . . . πa2 . . . πn

be a type 3 signed arc permutation where, when applicable,

• b is the index of the last negative integer before n,

• a is the index of the first negative integer after n,

• a2 is the index of the second negative integer after n.

Additionally, let i1 = π−1(1) be the index of 1 in π.
As for the other types, we build recursively a standard domino tableau using Rule 1 (resp. Rule 2) at
step i if πi > 0 (resp. πi < 0 ) except for some particular values of i that depend on the considered
pattern. All these exceptions are listed in Figure 6. See also Figure 7 for a graphical illustration.

Pattern Description Exceptions

1 −n− 1− Apply Rule 2 at step b+ 1 although πb+1 > 0.
Apply Rule 3 at step a.

2 −n− 1+
Apply Rule 2 at step b+ 1 and step i1. Apply
Rule 3 at step a.

3 −n+ 1− Apply Rule 2 at step i1 and Rule 3 at step a.

4 −n+ 1+
Apply Rule 2 at step b+ 1 and Rule 3 at step
i1.

5 +n− 1− Apply Rule 3 at step a and step a2.

6 +n− 1+
If a2 < i1 apply Rule 3 at step a and step
a2. Apply Rule 2 at step i1. Otherwise, apply
Rule 3 at step a and step i1.

7 +n+ 1− Apply Rule 2 at step i1 and Rule 3 at step a.

Figure 6: Table of exceptions for the case of type 3. The patterns ±n ± 1± indicate the existence or
absence of at least one negative integer before n, between n and 1 and after 1. A ’+’ sign means the
absence of such a negative integer while a ’−’ sign indicates its presence. Recall that the absence of
negative numbers between n and 1 implies that 1 follows n immediately.

Let T be a standard domino tableau of shape (a, 2n − a − 2, 2). We show that T has a unique
type 3 preimage π that we recover by the following procedure. First we determine the pattern that π
follows.

1. The tableau T has either two vertical dominoes across the second and third row or a horizontal
domino in the third row. In the former case go to item 2. Otherwise, go to item 3.

2. The signed arc permutation π follows pattern 5 or 6. If the entries of the two vertical dominoes
across the second and third row are not adjacent integers then π follows pattern 5. Otherwise,
we consider the location of the next domino. If it lies in the first row, then π also follows pattern
5. Otherwise, π follows pattern 6.

3. The signed arc permutation π follows pattern 1, 2, 3, 4 or 7 and there is exactly one horizontal
domino in the third row. Denote by i the label of this domino and consider the subtableau T ′
of T composed of the dominoes labelled 1, 2 . . . i. If T ′ contains only one (horizontal) domino in
its second row go to item 4. Otherwise, there are at least two of them and go to item 5.

4. The signed arc permutation π follows pattern 7.

5. Let j be the greatest label amongst Rule 2 dominoes (horizontal in the second row or vertical
across the first and the second row) of T ′. If domino j− 1 is a Rule 1 one (horizontal in the first
row) go to item 6. Otherwise, j − 1 is a Rule 2 domino and go to item 7.
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6. The signed arc permutation π follows pattern 3.

7. If there is no Rule 2 domino in T \ T ′ go to item 8. Otherwise, go to item 9.

8. The signed arc permutation π follows pattern 4.

9. If Des(T \ T ′) = ∅, π follows pattern 2. Otherwise, it follows pattern 1.

Pattern 1
n1≥0︷ ︸︸ ︷∗ · · · ∗ −

n2≥1︷ ︸︸ ︷
+ · · ·+ n

n3≥1︷ ︸︸ ︷
− · · ·− 1

n4≥0︷ ︸︸ ︷
+ · · ·+ −

n5≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R2 . . . RR R3 . . . R R R . . . R R R . . . R

Pattern 2
n1≥0︷ ︸︸ ︷∗ · · · ∗ −

n2≥1︷ ︸︸ ︷
+ · · ·+ n

n3≥1︷ ︸︸ ︷
− · · ·− 1

n4≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R2 . . . RR R3 . . . R R2 R . . . R

Pattern 3
n1≥0︷ ︸︸ ︷∗ · · · ∗ n 1

n2≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R2 R . . . R R3 R . . . R

Pattern 4
n1≥0︷ ︸︸ ︷∗ · · · ∗ −

n2≥1︷ ︸︸ ︷
+ · · ·+ n 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R2 . . . RR R3 R . . . R

Pattern 5

n1≥0︷ ︸︸ ︷
+ · · ·+ n

n2≥2︷ ︸︸ ︷
−− · · ·− 1

n3≥0︷ ︸︸ ︷
+ · · ·+ −

n4≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R3R3 . . . R R R . . . R R R . . . R
n1≥0︷ ︸︸ ︷

+ · · ·+ n

n2=1︷︸︸︷
− 1

n3≥0︷ ︸︸ ︷
+ · · ·+ −

n4≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R3 R R . . . R R3 R . . . R

Pattern 6

n1≥0︷ ︸︸ ︷
+ · · ·+ n

n2≥2︷ ︸︸ ︷
−− · · ·− 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R3R3 . . . R R2 R . . . R
n1≥0︷ ︸︸ ︷

+ · · ·+ n

n2=1︷︸︸︷
− 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R3 R3 R . . . R

Pattern 7
n1≥1︷ ︸︸ ︷

+ · · ·+ n 1

n2≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . RR R2 R . . . R R3 R . . . R

Figure 7: Graphical representation of the tableau construction rules for Type 3 signed arc permutations
of each pattern. The first row explicits the template of the permutation of the considered pattern.
A ’+’ indicates a positive integer, a ’−’ a negative one, a ’∗’ means that the entry is either positive
or negative. The second row indicates the applicable rule of construction of the domino tableau. We
write R when we use Rule 1 (resp. Rule 2) for positive (resp. negative) entries and R2, R3 to indicate
the use of Rule 2 and Rule 3 for the exceptions listed in Figure 6. Dots in the second row indicate the
use of the normal rule R.

Secondly, as the pattern of π is identified, we recover a unique permutation following the templates in
Figure 7.

• For each step i we know the sign of πi (including exceptional steps) and recover the pattern of
shuffle of the positive and negative subsequences.

• Rule 3 dominoes allow us to compute the position j for which πj = 1. The number of positive
πi, such that i < j determines n− k. We recover l by looking at the positive πi, such that j < i.
The two subsequences are determined.
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Finally, as the two subsequences and the shuffle pattern are determined so is π. One can note that the
bijection is descent preserving by looking at Figure 7. The application of either the common rule R
or the exceptions R2 and R3 guarantees the simultaneous existence or absence of descent in both the
permutation and the tableau.

Example 11. The type 3 (pattern 2) signed arc permutation π = -4 -3 5 6 7 -2 1 is mapped to the
following standard domino tableau:

1 2 3
4 5

6

7

We finish the proof of Theorem 1 using the descent preserving bijections above to write

∑

π∈Asn

FBDes(π) =
∑

T∈SDT (2n)

FBDes(T ) +
∑

T∈SDT (2n−2,1,1)
FBDes(T )

+
∑

T∈SDT (2n−1,1)
FBDes(T ) +

∑

T∈SDT (2n−3,1,1,1)
FBDes(T )

+
∑

a,T∈SDT (a,2n−a−2,2)
FBDes(T ) +

∑

a,T∈SDT (a,2n−a−2,1,1)
FBDes(T )

+ 2
∑

a,T∈SDT (a,2n−a)
FBDes(T ),

which gives Theorem 1 after application of Equation (3).

4 Alternative proof of Theorem 1
Although in the previous sections our development based on domino tableaux and Chow’s quasisym-
metric functions fully proves Theorem 1, the connection between our work and the approach in [1]
remains a natural question. As stated in introduction, their approach involves bi-tableaux and Poirier’s
quasisymmetric functions. In this section we connect our work to these objects and provide an alter-
native proof of Theorem 1. While this new proof is somewhat simpler, the bijections involved are less
explicit. We briefly introduce the necessary definitions and refer the reader to [1] for more details.

4.1 Signed descent set and Poirier’s quasisymmetric functions
We denote sDes(π) the signed descent set of π ∈ Bn defined as sDes(π) = (S, ε) with

• S = {n} ∪ {i |
{
π(i) > π(i+ 1), if π(i) > 0

either π(i+ 1) > 0 or |π(i)| > |π(i+ 1)|, if π(i) < 0
}

• ε is the mapping from S to {−,+} defined as ε(s) = + if π(s) > 0 and ε(s) = − otherwise. The
sign vector ε is extended to [n] by setting ε̃(j) = ε(si) for si−1 < j ≤ si (assuming s0 = 0).

Further denote

wDes((S, ε)) = {sk ∈ S | sk 6= n, ε̃(si)ε̃(si + 1) ∈ {++,−−,+−}}.

Definition 4 (Poirier’s fundamental quasisymmetric functions [17]). Let X = {x1, x2, . . . } and Y =
{y1, y2, . . . } be two totally ordered alphabets of commutative indeterminates. In [17] Poirier introduces
a new family of quasisymmetric functions that generalises the quasisymmetric functions of Gessel to

15



coloured permutations. In the case of 2-colour (signed) permutations, Poirier’s fundamental quasisym-
metric function FP(S,ε) indexed by the signed set (S, ε) is defined as

FP(S,ε)(X,Y ) =
∑

j∈wDes((S,ε))⇒ij<ij+1

zi1 . . . zin ,

where i1 ≤ · · · ≤ in and zi = xi if ε̃(i) = − and zi = yi otherwise.

Definition 5. For a positive integer n consider the total order <r defined as -1 <r -2 <r . . . -n <r
0 <r 1 <r 2 <r · · · <r n. Given π ∈ Bn define

Desr(π) = {0 ≤ i ≤ n− 1 | π(i) >r π(i+ 1)}

the notion of descent set associated with the order <r.

Lemma 1. Let X = {x0, x1, x2, . . . } and X∗ = X \ {x0}. Chow’s quasisymmetric function indexed
by Desr(π) for π ∈ Bn may be expressed in terms of Poirier’s quasisymmetric functions as follows:

FBDesr(π)(X) = FPsDes(π)(X
∗, X).

Proof. Note that for π ∈ Bn, Desr(π) =

{
wDes(π), if ε̃(1) = +,

wDes(π) ∪ {0}, if ε̃(1) = −.

Lemma 2. There is a bijection φ1 : Bn → Bn satisfying for all π ∈ Bn

Des(π) = Desr(φ1(π)); Desr(π) = Des(φ1(π)).

Proof. Let π be a signed permutation of Bn. For s ∈ [n − 1] consider ε̃(s) and ε̃(s + 1). If
at least one of them is positive then s belongs to Desr(π) if and only if s belongs to Des(π).
If both ε̃(s), ε̃(s + 1) are negative then s lies exactly in one of these sets. Using this property
we suggest the following appropriate bijection φ1. Let π be a signed permutation of Bn and de-
note Neg(π) = {1 ≤ i ≤ n|π(i) < 0}. Write the elements of Neg(π) = {j1, j2 . . . j|Neg(π)|} in
such a way that π(j1) < π(j2) < · · · < π(j|Neg(π)|) and denote α the involution on Neg(π) de-
fined for 1 ≤ k ≤ |Neg(π)| as α(jk) = j|Neg(π)|+1−k. Then define the signed permutation φ1(π) by

φ1(π)(i) =

{
π(i), if π(i) > 0,

π(α(i)), if π(i) < 0.

Example 12. For π = -3 8 5 -2 1 -9 -7 4 6 we have φ1(π) = -7 8 5 -9 1 -2 -3 4 6.

4.2 Bi-tableaux
Now we emphasise the connection between bi-tableaux and both signed permutations and domino
tableaux.

Definition 6. A standard bi-tableau (T1, T2) is an ordered pair of Young diagrams of bi-shape
(λ1, λ2) with |λ1|+ |λ2| = n and whose boxes are filled with the elements of [n] such that the entries of
both T1 and T2 are strictly increasing along the rows and down the columns. We denote SBT (λ1, λ2)
the set of standard bi-tableaux of bi-shape (λ1, λ2).
The signed descent set sDes(T1, T2) of a standard bi-tableau (T1, T2) ∈ SBT (λ1, λ2) is the signed
set (S, ε) defined as follows:

• S contains all s ∈ [n− 1] for which either both s and s+ 1 appear in the same tableau and s+ 1
is in a lower row than s, or s and s+ 1 appear in different tableaux.

• S contains n.

• For every s ∈ S we denote ε(s) = − if s appears in T1 and ε(s) = + otherwise.
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Further we provide the following equivalent definition of Desr for bi-tableaux.

Definition 7. The descent set Desr(T1, T2) of a standard bi-tableau (T1, T2) ∈ SBT (λ, µ) is the subset
of {0}⋃[n− 1] containing:

• each s ∈ [n− 1] such that both s and s+ 1 appear in the same tableau and s+ 1 is in lower row
than s

• each s ∈ [n− 1] such that s ∈ T2 and s+ 1 ∈ T1
• 0 if 1 ∈ T1.

Definition 8. A semistandard bi-tableau (T1, T2) is an ordered pair of Young diagrams of bi-shape
(λ1, λ2) whose boxes are filled with non-negative integers such that the entries are strictly increasing
down the columns and non-decreasing along the rows. As an additional constraint zeroes may only
appear in T2.

Example 13. Both the standard bi-tableau (T1, T2) and the semistandard bi-tableau (U1, U2) on Figure
8 have bi-shape ((3), (2, 2, 2)).
Furthermore, sDes(T1, T2) = ({2, 3, 4, 6, 8, 9},+−+−++) and Desr(T1, T2) = {2, 4, 8}.


T1 = 3 5 6 , T2 =

1 2

4 8

7 9





U1 = 2 5 5 , U2 =

0 1

4 6

5 7




Figure 8: A standard and a semistandard bi-tableau.

The generalisation of the RS correspondence that maps signed permutations to an ordered pair
of standard bi-tableaux is rather straightforward (see e.g. [23, Section 6.2]). Given a signed per-
mutation π, the ordered pair of standard bi-tableaux (P1, P2), (Q1, Q2) is built by applying the RS
correspondence to both the positive and negative subsequence of π (more precisely by applying its
extension to more general words, the RSK correspondence [13]). It maps the negative subsequence to
(P1, Q1) and the positive subsequence to (P2, Q2). This mapping is descent preserving in the sense
that sDes(π) = sDes(Q1, Q2) and sDes(π-1) = sDes(P1, P2) as well as Desr(π) = Desr(Q1, Q2) and
Desr(π

-1) = Desr(P1, P2).

Example 14. The signed permutation π = -3 8 5 -2 1 -9 -7 4 -6 is associated to the ordered pair of
bi-tableaux (P1, P2), (Q1, Q2) depicted on Figure 9. One can check that sDes(π) = sDes(Q1, Q2) =
([9],−++−+−−+−) and sDes(π-1) = sDes(P1, P2) = ([9],+−−+ +−−+−). Finally, Desr(π) =
Desr(Q1, Q2) = {0, 2, 3, 5, 6, 8} and Desr(π-1) = Desr(P1, P2) = {1, 2, 4, 5, 6, 8}.

π = -3 8 5 -2 1 -9 -7 4 -6 −−−→

P1 =

2 6

3 7

9

, P2 =

1 4

5

8


 ,


Q1 =

1 6

4 7

9

, Q2 =

2 8

3

5




Figure 9: A signed permutation and the associated ordered pair of bi-tableaux.

17



4.3 Connection between domino and bi-tableaux
As stated in Remark 2, there is a well known weight preserving bijection between domino tableaux and
bi-tableaux. We give some more details in this section. Denote (T−, T+) the bi-tableau associated to
a domino tableau T . According to the description of [3, Algorithm 6.1], the Young tableaux T− and
T+ are built by filling each box of T (a domino is composed of two boxes) with a ’–’ or a ’+’ sign such
that the top leftmost box is filled with ’–’ and two adjacent boxes have opposite signs. T− (resp. T+)
is obtained from the subtableau of T composed of the dominoes with top rightmost box filled with ’–’
(resp. ’+’).
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Figure 10: A semistandard domino tableau and its 2-quotient.

We say that this bijection is shape preserving as if T ∈ SDT (λ) then (T−, T+) ∈ SBT (λ−, λ+),
i.e. the bi-shape of (T−, T+) only depends on the shape of T . Obviously it is not descent preserving.
Figure 11 summarises the known bijections between signed permutations, domino tableaux and bi-
tableaux.
Using the two type B analogues of the RS correspondence, one may build a descent preserving
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Figure 3: Two standard domino tableaux T1 and T2 of shape (5, 5, 4, 1, 1) and descent set {0,3,5,6} and a semistandard
tableau T3 of shape (5, 5, 4, 3, 1) and weight µ = (2, 0, 2, 0, 0, 4, 0, 1).

In [15], we introduce a variant of the generating function for semistandard domino tableaux taking
into account the zero values called domino function.

Definition 1 (Domino functions). Given an alphabet X and a semistandard domino tableau T of
weight µ, denote XT the monomial xµ0

0 xµ1

1 xµ2

2 . . . . For � 2 P0(n) we call the domino function
indexed by � the function defined in the alphabet X by

G�(X) =
X

T2SSDT (�)

XT . (2)

Finally, there is a natural analogue of the RS-correspondence for signed permutations involving
domino tableaux. Indeed, Barbash and Vogan ([2]) built a bijection between signed permutations
of Bn and pairs of standard domino tableaux of equal shape in P0(n). An independent development
on the subject is due to Garfinkle in [8, 9, 10]. Van Leeuwen shows in [13] that the two approaches
are actually equivalent. See also Stanton and White in [23] for a more general treatment of rim hook
tableaux. Taşkin ([24, Prop. 26]) show that the two standard domino tableaux associated to a signed
permutation ⇡ by the algorithm of Barbash and Vogan have respective descent sets Des(⇡�1) and
Des(⇡). Finally Shimozono and White prove in [19] that half the total number of vertical dominos in
the pair of domino tableaux is equal to the number of negative entries in the signed permutation (the
color-to-spin property).

Example 3. The signed permutation ⇡ = -3 8 5 -2 1 -9 -7 4 -6 is associated to the pair of domino
tableaux (P, Q) depicted on Figure 4. One can check that Des(⇡) = Des(Q) = {0, 2, 3, 5, 8} and
Des(⇡-1) = Des(P ) = {1, 4, 5, 8}. Note the total number of vertical dominos in P and Q is equal to
10, that is twice the number of negative entries in ⇡.
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2.2 Chow’s type B quasisymmetric functions
Chow defines in [4] an analogue of Gessel’s algebra of quasisymmetric functions that is dual to the
Solomon’s descent algebra of type B. Let X = {x0, x1, . . . , xi, . . . } be a set of totally ordered commuta-
tive indeterminates and I be a subset of {0}[ [n� 1], he defines a type B analogue of the fundamental
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4.3 Connection between domino and bi-tableaux
As stated in Remark 2, there is a well known weight preserving bijection between domino tableaux
and bi-tableaux. We give some more details in this section. Denote (T�, T+) the bi-tableau associated
to a semistandard domino tableau T . According to the description of [3, Algorithm 6.1], the Young
tableaux T� and T+ are built by filling each box of T (a domino is composed of two boxes) by a ’–’ or
a ’+’ sign such that the top leftmost box is filled with ’–’ and two adjacent boxes have opposite signs.
T� (resp. T+) is obtained from the sub tableau of T composed of the dominoes with top rightmost
box filled with ’–’ (resp. ’+’).

Example 15. Figure 10 shows a semistandard domino tableau and its 2-quotient.
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However, this bijection is not descent preserving. Nevertheless, we have the following lemma.

Lemma 3. There is an implicit bijection �3 between standard bi-tableaux and standard domino tableaux,
such that

Desr((Q
�, Q+)) = Des(�3(Q

�, Q+)).

Proof. Proposition 4.2 in [1] states that for all (�, µ):

s�(X)sµ(Y ) =
X

(Q�,Q+)2SY T (�,µ)

FsDes((Q�,Q+))(X, Y ).

Recall, the Stanton and White bijection leads to the formula linked domino and Schur functions:

G�(X) = s�+(X+)s��(X�).

So, applying X := X+ and Y := X� and using Remark 1 we further continue

G�(X) = s�+(X+)s��(X�) =
X

(Q�,Q+)2SY T (�+,��)

FB
Desr(sDes(Q))(X).

From the other point of view,
G�(X) =

X

Q2SDT (�)

FB
Des(Q)(X).

Note that FB is a base of BQSym, so the following multisets coincide for any � 2 P0(n):

{Desr((Q
�, Q+))}(Q�,Q+)2SY T (�+,��) = {Des(Q)}Q2SDT (�).

The coincidence of the multisets means exactly the existence of the bijection with the needed property.
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3.2 A new description of signed arc permutations
Our bijective proof of Theorem 1 relies on a characterization of signed arc permutation as a shuffle
of a positive and a negative increasing subsequences. More precisely, a permutation ⇡ 2 Bn may be
written as a sequence

⇡ = ⇡1⇡2 . . .⇡n

where ⇡i = ⇡(i). We denote

⇡+ = a1a2 . . . ak

⇡� = b1b2 . . . bl

the two subsequences of ⇡ (k + l = n) composed respectively of the positive and negative integers in
⇡. According to Definition 3, if ⇡ is a signed arc permutation, then one has

8
>>><
>>>:

{|ai|}1ik [ {|bj |}1jl = [n]

ai+1 = ai + 1 for i = 1 . . . k � 1

bi+1 = bi + 1 for i = 1 . . . l � 1

a1 = �b1 + 1 if kl 6= 0

(7)

where the + sign denotes the addition in Zn subject to the cyclic conditions n+1 = 1 and -1+1 = �n.

Example 5. The signed arc permutation in B7, ⇡ = -3 4 5-2-1-7 6 is composed of the two subsequences
⇡+ = 4 5 6 and ⇡� = -3-2-1-7

Given to sequences ↵ and � let ↵ � be the set of new sequences obtained by shuffling the letters
of ↵ and � such that the initial order of the letters of ↵ (resp. of �) is preserved.

Proposition 5. The set of signed arc permutations As
n is equal to the disjoint union of the sets of

sequences ↵ � where the couples (↵,�) run over all the couple of positive and negative sequences
fulfilling the conditions 7.

Proof. This proposition is a direct consequence of the remarks above.

Example 6. The set of signed arc permutation As
3 is equal to

As
3 =123 [ 312 [ 231

[ (12 -3) [ (31 -2) [ (23 -1)

[ (1 -3-2) [ (2 -1-3) [ (3 -2-1)

[ -3-2-1 [ -2-1-3 [ -1-3-2

We have the following corollary.

Corollary 1. A signed arc permutation ⇡ of As
n has a descent in position i > 0 if and only if:

• ⇡i > 0 and ⇡i+1 < 0 or

• ⇡i = n and ⇡i+1 = 1 or

• ⇡i = �1 and ⇡i+1 = �n.

We use these various properties to split the set of signed arc permutations into 6 non-overlapping
types characterised by their positive and negative subsequences and the sign of their entries with
absolute value 1 and n. The 6 types are defined in the table of Figure 5 along with a graphical
description indicating the positive and negative subsequences.

8

4.2 Young bi-tableaux
We now emphasise the connection between bi-tableaux and both signed permutations and domino
tableaux.
A standard Young bi-tableau (T1, T2) is a pair of Young diagrams of bi-shape (�1,�2) with |�1| +
|�2| = n and whose boxes are filled with the elements of [n] such that the entries of both T1 and T2

are strictly increasing along the rows and down the columns.
The signed descent set sDes((T1, T2)) of a bi-tableau (T1, T2) 2 SY T (�1,�2) is the signed set (S, ")
defined as follows:

• S contains all s 2 [n� 1] for which either both s and s + 1 appear in the same tableau and s + 1
is in a lower row than s, or s and s + 1 appear in different tableaux.

• S contains n.

• For every s 2 S we denote "(s) = � if s appears in T1 and "(s) = + otherwise.

We further provide the following equivalent definition of Desr for bi-tableaux.

Definition 5. The descent set Desr((T1, T2)) of a bi-tableau (T1, T2) 2 SY T (�, µ) is the subset of
{0}S[n � 1] containing:

• each s 2 [n � 1] such that both s and s + 1 appear in the same tableau and s + 1 is in lower row
than s

• each s 2 [n � 1] such that s 2 T2 and s + 1 2 T1

• 0 if 1 2 T1.

A semistandard Young bi-tableau (T1, T2) is a pair of Young diagrams of bi-shape (�1,�2)
whose boxes are filled with nonnegative integers such that the entries are strictly increasing down the
columns and non-decreasing along the rows. As an additional constraint zeroes may only appear in
T2.

Example 13. The standard bi-tableau (T1, T2) and semistandard bi-tableau (T3, T4) on Figure 8 have
bi-shape ((3), (2, 2, 2)). Furthermore, sDes(T1, T2) = {2, 4, 6, 8, 9} and Desr(T1, T2) = {2, 4, 8}.
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Figure 8: A standard and a semistandard Young bi-tableau.

The generalisation of the RS correspondence that maps signed permutations to a pair of standard bi-
tableaux is rather straightforward (see e.g. [22][Section 6.2]). Given a signed permutation ⇡, the couple
of standard Young bi-tableau (P1, P2), (Q1, Q2) is built by applying the RS correspondence to both
the positive and negative subsequence of ⇡. The RS correspondence maps the negative subsequence
to (P1, Q1) and the positive subsequence to (P2, Q2). This mapping is descent preserving in the sense
that sDes(⇡) = sDes(Q1, Q2) and sDes(⇡-1) = sDes(P1, P2) as well as Desr(⇡) = Desr(Q1, Q2) and
Desr(⇡

-1) = Desr(P1, P2).

Example 14. The signed permutation ⇡ = -3 8 5 -2 1 -9 -7 4 -6 is associated to the couple of Young
bi-tableaux (P1, P2), (Q1, Q2) depicted on Figure 9. One can check that sDes(⇡) = sDes(Q1, Q2) =
([9],� + + � + �� + �) and sDes(⇡-1) = sDes(P ) = ([9], + �� + + �� + �). Finally Desr(⇡) =
Desr(Q1, Q2) = {0, 2, 3, 5, 6, 8} and Desr(⇡

-1) = Desr(P ) = {1, 2, 4, 5, 6, 8}.
[

�2P0(n)

SDT (�) ⇥ SDT (�)

[

|µ|+|⌫|=n

SBT (µ) ⇥ SBT (⌫)

SBT (��) ⇥ SBT (�+)
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The generalisation of the RS correspondence that maps signed permutations to a pair of standard bi-
tableaux is rather straightforward (see e.g. [22][Section 6.2]). Given a signed permutation ⇡, the couple
of standard Young bi-tableau (P1, P2), (Q1, Q2) is built by applying the RS correspondence to both
the positive and negative subsequence of ⇡. The RS correspondence maps the negative subsequence
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Figure 9: A signed permutation and the associated pair of domino tableaux.

4.3 Connection between domino and bi-tableaux
As stated in Remark 2, there is a well known weight preserving bijection between domino tableaux
and bi-tableaux. We give some more details in this section. Denote (T�, T+) the bi-tableau associated
to a semistandard domino tableau T . According to the description of [3, Algorithm 6.1], the Young
tableaux T� and T+ are built by filling each box of T (a domino is composed of two boxes) by a ’–’ or
a ’+’ sign such that the top leftmost box is filled with ’–’ and two adjacent boxes have opposite signs.
T� (resp. T+) is obtained from the sub tableau of T composed of the dominoes with top rightmost
box filled with ’–’ (resp. ’+’).

Example 15. Figure 10 shows a semistandard domino tableau and its 2-quotient.
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However, this bijection is not descent preserving. Nevertheless, we have the following lemma.

Lemma 3. There is an implicit bijection �3 between standard bi-tableaux and standard domino tableaux,
such that

Desr((Q
�, Q+)) = Des(�3(Q

�, Q+)).

Proof. Proposition 4.2 in [1] states that for all (�, µ):

s�(X)sµ(Y ) =
X

(Q�,Q+)2SY T (�,µ)

FsDes((Q�,Q+))(X, Y ).

Recall, the Stanton and White bijection leads to the formula linked domino and Schur functions:

G�(X) = s�+(X+)s��(X�).

So, applying X := X+ and Y := X� and using Remark 1 we further continue

G�(X) = s�+(X+)s��(X�) =
X

(Q�,Q+)2SY T (�+,��)

FB
Desr(sDes(Q))(X).

From the other point of view,
G�(X) =

X

Q2SDT (�)

FB
Des(Q)(X).

Note that FB is a base of BQSym, so the following multisets coincide for any � 2 P0(n):

{Desr((Q
�, Q+))}(Q�,Q+)2SY T (�+,��) = {Des(Q)}Q2SDT (�).

The coincidence of the multisets means exactly the existence of the bijection with the needed property.
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Figure 11: A summary of the bijections between signed permutations, domino tableaux and bi-
tableaux. Plain arrows indicate descent preserving bijections while the dotted one is shape preserving.

bijection between domino and bi-tableaux. However, this bijection would not be shape preserving. On
the contrary, the Littlewood bijection is shape preserving but not descent preserving. We argue that
there is a bijection between standard domino tableaux and standard bi-tableaux that is both descent
and shape preserving. This is the object of Lemma 3.

Lemma 3. Let λ ∈ P0(n). There is an implicit bijection φ3 : SBT (λ−, λ+) −→ SDT (λ) between
standard bi-tableaux of bi-shape (λ−, λ+) and standard domino tableaux of shape λ, such that for
(T1, T2) ∈ SBT (λ−, λ+)

Desr((T1, T2)) = Des(φ3(T1, T2)).
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Proof. Proposition 4.2 in [1] states that for all (λ, µ):

sλ(X)sµ(Y ) =
∑

(T1,T2)∈SBT (λ,µ)

FPsDes((T1,T2))
(X,Y ).

Then using Equation 4 and Lemma 1 we get

Gλ(X) = sλ−(X∗)sλ+(X) =
∑

(T1,T2)∈SBT (λ−,λ+)

FBDesr((T1,T2))
(X).

On the other hand,
Gλ(X) =

∑

T∈SDT (λ)

FBDes(T )(X).

As the set of type B fundamental quasisymmetric functions is a basis of the ring of type B quasisym-
metric functions, the following multisets coincide for any λ ∈ P0(n):

{Desr((T1, T2))}(T1,T2)∈SBT (λ−,λ+) = {Des(T )}T∈SDT (λ).

As a result, there exists a bijection with the required property.

4.4 A second bijection for signed arc permutations
We use the tools of the previous sections to provide a new proof of Theorem 1. To this end we build
a new descent preserving bijection φ2 between signed arc permutations and bi-tableaux and recover
Theorem 1 thanks to φ3. More precisely our construction is composed of three mappings. First, apply
bijection φ1 from Lemma 2. Then we use our new mapping φ2 that maps the elements of φ1(Asn) to
standard bi-tableaux. The restrictions of φ2 to each of the six types of signed arc permutations are
bijections with standard bi-tableaux whose bi-shapes are the 2-quotients of the shapes in Theorem 1.
Finally, we use the bijection φ3 from Lemma 3.
The main ingredient of this section is the following lemma.

Lemma 4. There is a descent preserving mapping φ2 from the set of signed arc permutations of
φ1(Asn) to a subset of standard bi-tableaux. The restriction of φ2 to any of the six types of signed arc
permutations is a bijection with standard bi-tableaux whose bi-shapes are the 2-quotients of the shapes
in Theorem 1.

Proof. The main idea is to build for a signed permutation π a bi-tableau φ2(π) such that the negative
elements of π correspond to the first Young tableau and the positive elements to the second one. This
ensures that signed descents coincide in positions with signs −+ and +−. Preserving signed descents
in positions with signs −− (++) requires having the descents in the first (second) Young tableau in
the same positions as the negative (positive) signed descents in π. We proceed as follows.
Let π = π1π2 . . . πn be a permutation of φ1(Asn). Begin with the empty bi-tableau (T1 = ∅, T2 = ∅).
For 1 ≤ i ≤ n build recursively a two-row bi-tableau according to the following procedure.

• If πi > 1 add a square with label i to the first row in T2.

• If πi < -1 add a square with label i to the first row in T1.

• If πi = 1 add a square with label i in T2. If n ∈ π then add it to the second row. Otherwise, add
it to the first one.

• If πi = -1 add a square with label i in T1. If -n ∈ π then add it to the second row. Otherwise,
add it to the first one.

We describe the restriction of φ1(Asn) to each of the six types and the template of the corresponding
standard bi-tableaux in Figure 12 where we denote by pa the position of ±a in φ1(π). Clearly, the
restriction of φ2 to each type of signed arc permutations is a descent preserving bijection between the
considered set of permutations and the standard bi-tableaux of the corresponding shape. Both the
statistics sDes and Desr are preserved.
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type 1 φ1(π) ∈ ⋃1<k≤n{k . . . n 1 . . . k − 1} ⋃ {1 . . . n}

φ2φ1(π)


 ∅ ,

pk pk+1 . . . . . . pk−1

p1


 or

(
∅ , p1 p2 . . . . . . pn

)

type 2 φ1(π) ∈ ⋃1<k≤n{-k . . . -n -1 . . . -(k − 1)} ⋃ {-1 . . . -n}

φ2φ1(π)




pk pk+1 . . . . . . pk−1

p1
, ∅


 or

(
p1 p2 . . . . . . pn , ∅

)

type 3 φ1(π) ∈ ⋃1≤l<k<n{-(l + 1) . . . -k k + 1 . . . n 1 . . . l}

φ2φ1(π)


 pl+1 pl+2 . . . . . . pk ,

pk+1 pk+2 . . . . . . pl

p1




type 4
φ1(π) ∈

⋃
1≤k<l<n,k=n−l{-(l + 1) . . . -n -1 . . . -(k) k + 1 . . . l}⋃

1≤k<l<n,k>n−l{-(n− l + 1) . . . -k -(l + 1) . . . -n -1 . . . -(n− l) k + 1 . . . l}⋃
1≤k<l<n,k<n−l{-(n− k + 1) . . . -n -1 . . . -k -(l + 1) . . . -(n− k) k + 1 . . . l}

Let -α1, . . . -αn−l+k be the negative subsequence.

φ2φ1(π)




pα1 pα2 . . . . . . pαn−l+k

p1
, pk+1 pk+2 . . . . . . pl




type 5 φ1(π) ∈ ⋃1≤k<n{-1 . . . -k k + 1 . . . n}

φ2φ1(π)

(
p1 p2 . . . . . . pk , pk+1 pk+2 . . . . . . pn

)

type 6 φ1(π) ∈ ⋃1≤k<n{-(k + 1) . . . -n 1 . . . k}

φ2φ1(π)

(
pk+1 pk+2 . . . . . . pn , p1 p2 . . . . . . pk

)

Figure 12: Illustration of the mapping φ2.

Now we are ready to reprove Theorem 1. The restriction of the mapping φ3φ2φ1 to each type is a
bijection between signed arc permutations of this type and a subset of standard domino tableaux. As
proven in Lemmas 2, 3 and 4 it is descent preserving in the sense that

Des(π) = Desr(φ1(π)) = Desr(φ2φ1(π)) = Des(φ3φ2φ1(π)).

Finally, the shapes of the bi-tableaux described in Figure 12 are exactly the 2-quotients of the shapes
from Propositions 6, 7, 8, 9 and 10. Since φ3 is shape preserving, we recover Theorem 1.
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