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Abstract

In this paper, we study the linear programming with probabilistic con-

straints. We suppose that the distribution of the constraint rows is a normal

mean-variance mixture distribution and the dependence of rows is repre-

sented by an Archimedean copula. We prove the convexity of the feasibility

set in some additional conditions. Next, we propose a sequential approxima-

tion by linearization which provides a lower bound and a gradient descent

method which provides an upper bound with numerical results.
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1. Introduction

We study the following linear programming with joint probabilistic con-

straints:
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min cTx

subject to P {V x ≤ D} ≥ 1− ǫ

x ∈ Q. (1)

where Q is a closed convex subset of Rn ; c ∈ R
n, D := (D1, .., DK) ∈ R

K

is a deterministic vector, V := [v1, .., vK ]
T is a random matrix with sizeK×n,

where vk is a random vector in R
n, ∀k = 1, K and ǫ ∈ [0, 1] .

1.1. Survey of literature

The probabilistic constraint optimisation has been widely studied since

longtime ago. Prékopa studied the concavity and quasi-concavity proper-

ties for probability distribution functions in his article [16] in 1970. Sen

introduced a relaxation method for probabilistic constraint programming

with discrete random variable in [21]. Lobo studied some applications of

second-order cone programming in [12] which gave a new approach for solv-

ing problems of probabilistic constraints. Henrion gave a general structural

property for linear probabilistic constraints in [10]. In 2014, Cheng used the

second-order cone programming approach for solving his joint probabilistic

constraints problem in [4]. He supposed that the distribution of the con-

straint rows is elliptically distributed and the dependence of the rows follows

an Archimedean copula.

In this paper, we study the same probabilistic constraint problem as in [4].

We suppose that the distribution of the row vectors is normal mean-variance

mixture distributed and the dependence of the rows is an Archimedean cop-

ula. By assuming some conditions, we prove the convexity of the feasible set
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of solutions. We propose two approximations method which gives a lower

bound and an upper bound and present some numerical results.e

1.2. Why is normal mean-variance mixture distribution?

Definition 1.1. A random variable X in R
n is a normal mean-variance

mixture distribution if:

X = µ+ γW +
√
WAZ,

where (1) Z is a n-dimension standard normal distribution Nn(0, In).

(2) W a positive random variable independent of Z.

(3) A ∈ R
n×k is a matrix such that AAT = Σ, where Σ a semidefinite

positive matrix ∈ R
n×n.

(4) µ and γ are n-real vectors.

The relation between normal mean-variance distributions and elliptical

distributions is represented by the following proposition:

Proposition 1. [[13], theorem 3.25] Denote Ψ∞ the set of characteristic

generators which generate a spherical distribution in dimension n, for all

n ≥ 1. Hence, Y follows Sn(ψ) with ψ ∈ Ψ∞ if and only if Y =
√
WZ,

where Z is a n-dimension standard normal distribution Nn(0, In) independent

of W ≥ 0.

Based on this proposition, we deduce that an elliptical distribution U

can be represented in the form U = µ +
√
WAZ with µ ∈ R

n, A ∈ R
n×k

and Z is a n-dimension standard normal distribution Nn(0, In) if and only if

U = µ+ AY , where Y follows Sn(ψ) and ψ ∈ Ψ∞.
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The family of distributions normal mean-variance mixture represents a

comprehensive subset of the family of elliptical distributions. There exists

some elliptical distributions which cannot be represented in the form of a

normal mean-variance mixture distribution. However, it represents a big

subset of the family of elliptical distributions and plays an important role in

the elliptical world.

Next, we define an important subset of the family of normal mean-

variance mixture distributions , the family of hyperbolic distributions.

Definition 1.2. A random variable X is a hyperbolic distribution if it is a

normal mean-variance mixture where the random variable W in definition

(1.1) is an inverse Gaussian distribution whose density function with respect

to the measure of Lebesgue is:

g(w) = Cwλ−1 exp

(

−1

2
(χw−1 + ψw)

)

, ∀w ∈ [0,∞).

where C is a constant and the domain of variation of the parameters is:

χ > 0, ψ ≥ 0 if λ < 0.

χ > 0, ψ > 0 if λ = 0.

χ ≥ 0, ψ > 0 if λ > 0.

The family of hyperbolic distributions is a generalization of many elliptical

distributions. For example, the t-multivariate distribution with parameters

(Σ, µ, ν) is a particular case of hyperbolic distributions when λ = −ν
2

; χ = ν
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; ψ = 0 ; µ = µ ; Σ = Σ ; γ = 0 . We summarize some important elliptical

distributions (in dimension p) by the following table:

Density µ Σ γ λ χ ψ

Normal C.exp
(

−1
2
‖x‖2

)

µ Σ 0 0 0 0

t-distribution C.(1 + ‖x‖2
ν

)−
p+ν

2 µ Σ 0 −ν
2

ν 0

Cauchy C.(1 + ‖x‖2)− p+1
2 µ Σ 0 −1

2
1 0

Laplace µ Σ 0 1 0 -2

Pearson VII C.(1 + ‖x‖2
m

)−N µ Σ 0 p

2
−N m 0

A disadvantage of elliptical distributions is that they are symmetric. We

should not use elliptical family for modelling in some cases. For example, we

can find some applications of hyperbolic distributions in modelling financial

in [7], [1], [20] and [19].

2. Normal mean-variance mixture constraints in linear program-

ming

In this section, we study the linear programming (1). We suppose that vi

are random vectors. We find some sufficient conditions (necessary if possible)

such as P {V x ≤ D} is a concave function with respect to x. A convex

optimization can be defined formally as following:
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min f(x)

subject to gk(x) ≤ 0, k = 0,m− 1

Gx � h

Ax = b

x ∈ Q.

where Q is a closed convex subset of Rn; f(x) and gi(x) are convex func-

tions, i = 0,m− 1; h and b are n-real vectors ; G and A are deterministic

matrices.

2.1. Preliminaries

Proposition 2 ([11], lemme 3.1). Given F : R → [0, 1] a distribution

function with (r + 1) - decreasing density for some r > 0 and a threshold

t∗(r + 1) > 0. Hence, the function z 7→ F (z−
1
r ) is a concave function on

(0, t∗(r + 1)−r). Moreover, F (t) < 1, ∀t ∈ R.

Definition 2.1. ([4]) A real function f : R → R is K - monotone on an open

interval I ⊆ R with K ≥ 2 if it is differentiable up to (K − 2)th - order and

the derivatives are satisfied by:

(−1)k
dk

dtk
f(t) ≥ 0, ∀0 ≤ k ≤ K − 2 et ∀t ∈ I.

and the function (−1)K−2 dK−2

dtK−2f(t) is non-increasing and convex on I.

Proposition 3 ([14]). Given ψ : [0, 1] → [0,+∞) a strictly decreasing func-

tion such that ψ(1) = 0. Hence, it is the generator of an archimedean copula

in dimension K if and only if ψ−1 is K-monotone on (0, ψ(0)).
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Definition 2.2. Given f : Q× R → R a real function, where Q is a subset

of R
n. We say that f is differentiable at x ∈ Q if there exists a function

g : Q→ R
R
n

such that ∀θ ∈ R, there exists a neighbourhood N(θ) of θ such

that if we note fN(θ) the restriction of f on N(θ), we have:

lim
ǫ→0,ǫ∈Rn

∥

∥

∥

∥

∥

[

fN(θ)(x+ ǫ, :)− fN(θ)(x, :)− < ǫ, g(x) >
]

‖ǫ‖

∥

∥

∥

∥

∥

max

= 0,

where R
R
n

denotes the set of functions from R to R
n and ‖.‖max is the

maximum norm.

Moreover, we say that f is differentiable up to second-order at x if there

exists a function h : Q→ R
R
n×n

such that we have:

lim
ǫ→0,ǫ∈Rn

∥

∥

∥

∥

∥

[

fN(θ)(x+ ǫ, :)− fN(θ)(x, :)− < ǫ, g(x) > −1
2
ǫTh(x)ǫ

]

‖ǫ‖2

∥

∥

∥

∥

∥

max

= 0

where R
R
n×n

denotes the set of functions from R to R
n×n.

Denote df

dx
:= g the derivative at first-order of f according to x and

d2f

dx2 := h the derivative at second-order of f according to x.

In the programming (1), we suppose that vk is a normal mean-variance

mixture distribution, for 1 ≤ k ≤ K. Next, we will show that the feasible

set of (1) is a convex set by adding some additional conditions.

2.2. Individual chance constraints

Suppose that K = 1 and V follows a normal mean-variance mixture

distribution with parameters (µ,Σ, γ) (cf. definition (1.1)). Suppose that

0 /∈ Q.
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Lemma 2.1 (Proposition 5, [5]). The standard normal distribution has

3-decreasing density with a threshold t∗(3) =
√
3.

The constraint in (1) can be rewritten as follows:

Pv1

(

vT1 x ≤ D
)

≥ 1− ǫ.

⇔ PW,Z

(

(µT +WγT +
√
WZTAT )x ≤ D

)

≥ 1− ǫ

⇔ PW,Z

(

(WγT +
√
WZTAT )x ≤ D − xTµ

)

≥ 1− ǫ.

⇔ PW,X

(

W

‖xTΣ 1
2‖2

xTγ +
√
WX ≤ D − xTµ

‖xTΣ 1
2‖2

)

≥ 1− ǫ.

(

By letting X :=
ZTATx

‖xTΣ 1
2‖2

)

.

⇔ E









1





X≤
−xTγ

‖xTΣ 1
2‖2

√
W+

D − xTµ√
W‖xTΣ 1

2‖2















≥ 1− ǫ.

⇔ EW









E









1





X≤
−xTγ

‖xTΣ 1
2‖2

√
W+

D − xTµ√
W‖xTΣ 1

2‖2







|W

















≥ 1− ǫ.

⇔ EW

[

ΦX

(

−xTγ
‖xTΣ 1

2‖2

√
W +

D − xTµ√
W‖xTΣ 1

2‖2

)]

≥ 1− ǫ. (2)

where ǫ ∈ (0, 1), X follows a standard normal distribution N(0, 1), ΦX is

the distribution function of X , W is a positive random variable independent

of X.

We have the following theorem:

Theorem 2.2. Consider the linear programming (1). Let
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M := {x ∈ Q | P {V x ≤ D} ≥ 1− ǫ} is the feasible set of (1). Suppose

that K = 1 and V follows a normal mean-variance mixture distribution with

parameters (µ,Σ, γ).

Suppose that:

(1) Σ is a definite positive matrix with 0 < λmin ≤ λmax , where λmax is

the biggest eigenvalue of Σ and λmin is the smallest eigenvalue of Σ.

(2) W is a random variable in [tmin, tmax] with 0 ≤ tmin ≤ tmax ≤ t+.

(3) For all x ∈ Q, we have:

c > 0.

and
1

t+
≥

√
b2 − 4ac− b

2c
or b2 ≤ 4ac.

where:
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a = (−xTγ)2λmin + αx,γ,Σ.

b = 2(−xTγ)(D − xTµ)λmin − 6(xTΣx)‖γ‖‖µ‖+ βx,γ,µ,Σ.

c = (D − xTµ)2λmin + θx,µ,Σ.

αx,γ,Σ := uT z −
√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γ,µ,Σ := vT z −
√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µ,Σ := qT z −
√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγ)γ.

v = 4(−xTγ)γ + 4(D − xTµ)µ.

q = 4(D − xTµ)µ.

z = Σx.

(4) For all x ∈ Q, we have:

2
√

(−xTγ)(D − xTµ)√
xTΣx

>
√
3.

(−xTγ) > 0.

D − xTµ > 0.

Hence, M is a convex set.

Proof. The proof of this theorem follows this outline:

(i) We show that f(x,W ) :=
−xTγ

‖xTΣ 1
2‖2

√
W +

D − xTµ√
W‖xTΣ 1

2‖2
is a (-2)-

concave function according to x on Q, for all W ≥ 0.
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(ii) By using (i), we show that ΦX(f(x,W )) is a concave function accord-

ing to x, for all W ≥ 0.

(iii) By using (ii), we show that EW [ΦX(f(x,W ))] is a concave function

according to x on Q.

(iv) By using (iii), we deduce that the feasible set of (1) is a convex set.

Proof of (i). Let f(x,W ) :=
−xTγ

‖xTΣ 1
2‖2

√
W +

D − xTµ√
W‖xTΣ 1

2‖2
.

The (−2)− concavity of f(x,W ) is equivalent to the convexity of the

following function:

h(x,W ) :=
xTΣx

(

−xTγ
√
W + 1√

W
(D − xTµ)

)2

=
xTΣx

W (xTγ)2 + 1
W
(xTµ−D)2 + 2xTγ(xTµ−D)

.

Let W (xTγ)2+ 1
W
(xTµ−D)2+2xTγ(xTµ−D) =:M . Denote Hxh(x,W )

the gradient vector of h according to x and H2
xh(x,W ) the Hessian matrix

of h according to x.

By a direct calculation, we deduce a formula of the gradient vector and

the Hessian matrix of h according to x as follows:

(∗)Hxh(x,W ) = 2.M−1.Σx−M−2.(xTΣx).

.

(

2WxTγ.γ +
2

W
(xTµ−D).µ+ 2(xTµ−D).γ + 2xTγ.µ

)

.
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(∗)H2
xh(x,W ) = 2M−1.Σ− 8M−2.

[

(WxTγ + xTµ−D).(ΣxγT + γxTΣ)
]

− 8M2.

[(

1

W
(xTµ−D) + xTγ

)

.(ΣxµT + µxTΣ)

]

+ 6.M−2(xTΣx).

(

WγγT +
1

W
µµT + γµT + µγT

)

.

= 2.M−2
[

W (−xTγ) +D − xTµ
]

.

.

{

[

(−xTγ)Σ + 4(ΣxγT + γxTΣ)
]

+
1

W

[

(D − xTµ)Σ + 4(ΣxµT + µxTΣ)
]

}

+ 6.M−2(xTΣx).

(

WγγT +
1

W
µµT + γµT + µγT

)

.

⇔ H2
xh(x,W )

2.M−2
=

= W
[

(−xTγ)2Σ + 4(−xTγ).(ΣxγT + γxTΣ) + 3(xTΣx)γγT
]

+

+
[

2(−xTγ)(D − xTµ)Σ + 4(−xTγ)(ΣxγT + γxTΣ)
]

+

+
[

4(D − xTµ)(ΣxµT + µxTΣ) + 3(xTΣx)(γµT + µγT )
]

+

+
1

W

[

(D − xTµ)2Σ + 4(D − xTµ)(ΣxµT + µxTΣ) + 3(xTΣx)µµT
]

.

= WA+ B +
1

W
C.

where

A = (−xTγ)2Σ + 4(−xTγ).(ΣxγT + γxTΣ) + 3(xTΣx)γγT .

B = 2(−xTγ)(D − xTµ)Σ + 4(−xTγ)(ΣxγT + γxTΣ)+

+ 4(D − xTµ)(ΣxµT + µxTΣ) + 3(xTΣx)(γµT + µγT ).

C = (D − xTµ)2Σ + 4(D − xTµ)(ΣxµT + µxTΣ) + 3(xTΣx)µµT .

For that h is a convex function according to x for all W ∈ [0, t+], it is

12



necessary that the Hessian matrix H2
xh(x,W ) is semidefinite positive for all

(x,W ) ∈ Q× [0, t+]. That is equivalent to the semidefinite positivity of the

matrix WA+ B + 1
W
C for all (x,W ) ∈ Q× [0, t+]. We have:

(1) A = (−xTγ)2Σ + 4(−xTγ).(ΣxγT + γxTΣ) + 3(xTΣx)γγT .

Given M,N two any symmetric matrix. Denote M � N if the matrix

M −N is a semidefinite positive matrix.

By using this notation, we deduce the following inequalities:

* Σ � λminIdn.

* 4(−xTγ)(ΣxγT + γxTΣ) - is a symmetric matrix therefore diagonal-

izable. We can show that it has (n − 2) - eigenvalues which is 0 and 2 -

eigenvalues which are:

uT z ±
√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

where u = 4(−xTγ)γ and z = Σx.

* γγT � 0.

Let αx,γ,Σ := uT z −
√

(uT z)2 +
∑

1≤i<j≤n(uizj − ujzi)2.

Hence, we deduce the following inequality:

A �
[

(−xTγ)2λmin + αx,γ,Σ

]

Idn. (3)

(2) B = 2(−xTγ)(D − xTµ)Σ + 4(−xTγ)(ΣxγT + γxTΣ)

+ 4(D − xTµ)(ΣxµT + µxTΣ) + 3(xTΣx)(γµT + µγT ).

We have:

* Σ � λminIdn.
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* γµT + µγT � −2‖γ‖‖µ‖.
* 4(−xTγ)(ΣxγT + γxTΣ)+ 4(D− xTµ)(ΣxµT + µxTΣ) - is a symmetric

matrix, hence diagonaliazble. We can show that it has (n− 2) - eigenvalues

which is 0 and 2 - eigenvalues which are:

zTv ±
√

(zTv)2 +
∑

1≤i<j≤n

(zivj − zjvi)2

where z = Σx and v = 4(−xTγ)γ + 4(D − xTµ)µ.

Let βx,γ,µ,Σ := vT z −
√

(vT z)2 +
∑

1≤i<j≤n(vizj − vjzi)2.

Hence, we deduce the following inequality:

B �
[

2(−xTγ)(D − xTµ)λmin − 6(xTΣx)‖γ‖‖µ‖+ βx,γ,µ,Σ
]

Idn. (4)

(3) C = (D − xTµ)2Σ + 4(D − xTµ)(ΣxµT + µxTΣ) + 3(xTΣx)µµT .

We have:

* Σ � λminIdn.

* 4(D − xTµ)(ΣxµT + µxTΣ) - is a symmetric matrix, therefore diago-

nalizable. We can show that it has (n − 2) - eigenvalues which is 0 and 2 -

eigenvalues which are:

zT q ±
√

(zT q)2 +
∑

1≤i<j≤n

(ziqj − zjqi)2

where q := 4(D − xTµ)µ and z = Σx.

* µµT � 0.

Let θx,µ,Σ := qT z −
√

(qT z)2 +
∑

1≤i<j≤n(qizj − qjzi)2.
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Hence, we deduce the following inequality:

C � (D − xTµ)2λmin + θx,µ,Σ. (5)

By using (3), (4), (5), we deduce the following inequality:

WA+ B +
1

W
C � W

[

(−xTγ)2λmin + αx,γ,Σ

]

Idn+ (6)

[

2(−xTγ)(D − xTµ)λmin − 6(xTΣx)‖γ‖‖µ‖+ βx,γ,µ,Σ
]

Idn+

1

W

[

(D − xTµ)2λmin + θx,µ,Σ
]

Idn.

where:

αx,γ,Σ := uT z −
√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γ,µ,Σ := vT z −
√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µ,Σ := qT z −
√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγ)γ.

v = 4(−xTγ)γ + 4(D − xTµ)µ.

q = 4(D − xTµ)µ.

z = Σx.

Let a = (−xTγ)2λmin + αx,γ,Σ,

b = 2(−xTγ)(D − xTµ)λmin − 6(xTΣx)‖γ‖‖µ‖+ βx,γ,µ,Σ,

c = (D − xTµ)2λmin + θx,µ,Σ.
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Obviously, the semidefinite positivity of the Hessian matrix H2
xh(x,W ) is

deduced by the positivity of Wa+ b+ 1
W
c, for all W ∈ [0, t+].

We deduce a sufficient condition as follows:

c > 0.

and
1

t+
≥

√
b2 − 4ac− b

2c
or b2 ≤ 4ac.

where:

a = (−xTγ)2λmin + αx,γ,Σ.

b = 2(−xTγ)(D − xTµ)λmin − 6(xTΣx)‖γ‖‖µ‖+ βx,γ,µ,Σ.

c = (D − xTµ)2λmin + θx,µ,Σ.

αx,γ,Σ := uT z −
√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γ,µ,Σ := vT z −
√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µ,Σ := qT z −
√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγ)γ.

v = 4(−xTγ)γ + 4(D − xTµ)µ.

q = 4(D − xTµ)µ.

z = Σx.

which is satisfied by the assumption (3) of the theorem.
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We deduce that f(x,W ) is a (-2) - concave function according to x on Q,

for all W ∈ [0, t+].

Proof of (ii). Given x1, x2 ∈ Q, W ∈ [0, t+], α ∈ [0, 1]. We have:

f [αx1 + (1− α)x2,W ] ≥
[

αf−2(x1,W ) + (1− α)f−2(x2,W )
]

−1
2 .

(by the (-2) - concavity of f by (i))

⇐⇒ ΦX (f [αx1 + (1− α)x2,W ])

≥ ΦX

(

[

αf−2(x1,W ) + (1− α)f−2(x2,W )
]

−1
2

)

(by the strict increasing of ΦX). (7)

By using the lemma (2.1), we deduce that the function ΦX(t
−1
2 ) is a

concave function on (0, (t∗)−2) where t∗ =
√
3. We will show that f−2(x1,W )

is on (0, (t∗)−2).

Proof. In fact, we have:

|f(x1,W )| =
∣

∣

∣

∣

∣

−xT1 γ
‖xT1Σ

1
2‖2

√
W +

D − xT1 µ√
W‖xT1Σ

1
2‖2

∣

∣

∣

∣

∣

≥ 2
√

(−xT1 γ)(D − xT1 µ)
√

xT1Σx1
(by Cauchy inequality)

> t∗ (by the assumption (4) of the theorem)

⇐⇒ 0 < f(x1.W )−2 < (t∗)−2.
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Hence, by using the concavity of ΦX(t
−1
2 ) on (0, (t∗)−2), we have:

ΦX

(

[

αf−2(x1,W ) + (1− α)f−2(x2,W )
]

−1
2

)

≥ αΦX (f(x1.W )) + (1− α)ΦX (f(x2,W )) .

Hence, by combining with (7), we deduce that ΦX (f(x,W )) is a concave

function according to x on Q, for all W ∈ [0, t+].

Proof of (iii). Let g(x,W ) := ΦX(f(x,W )). By (ii), we shown that g(x,W )

is a concave function according to x on Q, for all W ∈ [0, t+].

Noting that EW : g → EW (g) is a linear transformation and the concavity

is conserved by the linear transformations, we deduce that:

EW [ΦX(f(x,W ))]− is a concave function according to x on Q.

Proof of (iv). Given x, y two points which satisfy the constraint (2) and α ∈
[0, 1]. We have:

EW [ΦX(f(x,W ))] ≥ 1− ǫ.

EW [ΦX(f(y,W ))] ≥ 1− ǫ.

EW [ΦX(f(αx+ (1− α)y,W ))] ≥

≥ αEW [ΦX(f(x,W ))] + (1− α)EW [ΦX(f(y,W ))] .

(by the concavity of EW [ΦX(f(x,W ))] by (iii)) .
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We deduce that EW [ΦX(f(αx+ (1− α)y,W ))] ≥ 1− ǫ, as well as αx +

(1−α)y satisfies the constraint (2). Hence, the feasible set of (1) is a convex

set.

2.3. Independent joint chance constraints

Suppose that vi follows a normal mean-variance mixture with parameters

(µi,Σi, γi), for 1 ≤ i ≤ K and the vectors vi are independent. Suppose that

0 /∈ Q.

The constraint in (1) can be rewritten as follows:

P {V x ≤ D} ≥ 1− ǫ.

⇔
K
∏

i=1

P
{

vTi x ≤ Di

}

≥ 1− ǫ (by the independence).

⇔
K
∏

i=1

EWi

[

ΦXi

(

−xTγi
‖xTΣ

1
2
i ‖2

√

Wi +
Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

)]

≥ 1− ǫ

( by using the transformation of (2) in the section (2.2)).

⇔
K
∑

i=1

log

(

EWi

[

ΦXi

(

−xTγi
‖xTΣ

1
2
i ‖2

√

Wi +
Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

)])

≥ log(1− ǫ).

(8)

We have the following theorem:

Theorem 2.3. Consider the linear programming (1). Let
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M := {x ∈ Q | P {V x ≤ D} ≥ 1− ǫ} the feasible set of (1). Suppose that

∀i = 1, K, vi follows a normal mean-variance mixture with

parameters (µi,Σi, γi) and the vectors vi are independent.

Suppose that ∀i = 1, K, we have:

(1) Σi is a definite positive matrix with 0 < λi,min ≤ λi,max , where λi,max

is the biggest eigenvalue of Σi and λi,min is the smallest eigenvalue of Σi.

(2) Wi is a positive variable in [ti,min, ti,max] with 0 ≤ ti,min ≤ ti,max ≤ t+i .

(3) For all x ∈ Q and i = 1, K, we have:

ci > 0.

and
1

t+i
≥
√

b2i − 4aici − bi
2ci

or b2i ≤ 4aici.

where:
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ai = (−xTγi)2λi,min + αx,γi,Σi
.

bi = 2(−xTγi)(Di − xTµi)λi,min − 6(xTΣix)‖γi‖‖µi‖+ βx,γi,µi,Σi
.

ci = (Di − xTµi)
2λi,min + θx,µi,Σi

.

αx,γi,Σi
:= uT z −

√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γi,µi,Σi
:= vT z −

√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µi,Σi
:= qT z −

√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγi)γi.

v = 4(−xTγi)γi + 4(Di − xTµi)µi.

q = 4(Di − xTµi)µi.

z = Σix.

(4) For all x ∈ Q, we have:

2
√

(−xTγi)(Di − xTµi)√
xTΣix

>
√
3, ∀i = 1, K.

(−xTγ) > 0.

D − xTµ > 0.

Hence, M is a convex set.

Proof. Based on the proof of theorem (2.2), we deduce that

EWi

[

ΦXi

(

−xTγi
‖xTΣ

1
2
i ‖2

√
Wi +

Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

)]

is a concave function, i.e

that is also a log-concave function.

21



Hence,
∑K

i=1 log

(

EWi

[

ΦXi

(

−xTγi
‖xTΣ

1
2
i ‖2

√
Wi +

Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

)])

is a con-

cave function. We deduce that the feasible set of (1) is convex.

2.3.1. Dependent joint chance constraints with independent copula

Suppose that vi follows a normal mean-variance mixture distribution with

parameters (µi,Σi, γi), for 1 ≤ i ≤ K. Suppose that 0 /∈ Q.

The constraint in (1) can be rewritten as follows:

P {V x ≤ D} ≥ 1− ǫ.

⇔ P

{

K
⋃

i=1

{

vTi x ≤ Di

}

}

≥ 1− ǫ.

⇔ EW











E











1
⋃K

i=1











Xi(x)≤
−xTγi

‖xTΣ
1
2
i ‖2

√
Wi+

Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2











|
⋃

Wi





















≥ 1− ǫ,

following the same procedure as (2).

⇔ EW [Φ (g1(x,W ), .., gK(x,W ))] ≥ 1− ǫ.

Here we suppose that W and X(x) are independent, with

W := (W1, ..,WK), X(x) := (X1(x), .., XK(x)), Xi(x) :=
ZT

i A
T
i x

‖xTΣ
1
2
i ‖2

,

gi(x,W ) :=
−xTγi

‖xTΣ
1
2
i ‖2

√

Wi +
Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

. (9)

where Φ is the distribution function of X.

Remark. In general, unfortunately, we cannot prove the concativity of the

function Φ (g1(x,W ), .., gK(x,W )), i.e EW [Φ (g1(x,W ), .., gK(x,W ))].
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Consequently, we suppose additionally that for i = 1, K, we have ti,min ≈
ti,max. Hence, we deduce that EW [Φ (g1(x,W ), .., gK(x,W ))]

≈ ∏K

i=1(ti,max − ti,min)× Φ (g1(x, w1), .., gK(x, wK)), where wi is an arbi-

trary point on [ti,min, ti,max]. Then the constraint in (1) can be rewritten as

follows:

Φ (g1(x, w1), .., gK(x, wK)) ≥ θ (10)

where X(x) := (X1(x), .., XK(x)), Xi(x) :=
ZT
i AT

i x

‖xTΣ
1
2
i ‖2

,

gi(x,W ) :=
−xTγi

‖xTΣ
1
2
i ‖2

√
Wi +

Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

and Φ is the distribution function of X.

Suppose that there exists an archimedean copula C which does not de-

pend on x such that

Φ (g1(x, w1), .., gK(x, wK)) = C[F1(g1(x, w1)), .., FK(gK(x, wK))], where Fi

the distribution function of Xi(x) which is a standard normal distribution

and C(u) = ψ(−1)
(

∑K

i=1 ψ(ui)
)

, where ψ is a generator of C. We reformulate

the constraint (10) as follows:
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Φ (g1(x, w1), .., gK(x, wK)) ≥ θ

⇔ C [F1(g1(x, w1)), .., FK(gK(x, wK))] ≥ θ

⇔
K
∑

i=1

ψ [Fi(gi(x, wi))] ≤ ψ(θ)

(by the decreasing property of ψ)

⇔ Fi(gi(x, wi)) ≥ ψ(−1) [αiψ(θ)] , ∀i = 1, K

K
∑

i=1

αi = 1

⇔ gi(x, wi)
−2 ≤ F

(−1)
i

{

ψ(−1) [αiψ(θ)]
}−2

, ∀i = 1, K

K
∑

i=1

αi = 1. (11)

We have the following theorem:

Theorem 2.4. Consider the linear programming (1). Let

M := {x ∈ Q | P {V x ≤ D} ≥ 1− ǫ} the feasible set of (1). Suppose

that ∀i = 1, K, vi follows a normal mean-variance mixture with parameters

(µi,Σi, γi). Suppose that Wi is a positive random variable in [ti,min, ti,max]

with ti,min ≈ ti,max. Let
ZT
i AT

i x

‖xTΣ
1
2
i
‖2

:= Xi(x), ∀1 ≤ i ≤ K and x ∈ Q.

Suppose that the multivariate copula of X(x) := (X1(x), .., XK(x)) is in-

dependent of x. Moreover, W and X(x) are independent. Denote C the

multivariate copula of X(x). Suppose that C is an archimedean copula where

ψ is a generator. Suppose that θ ≥ ΦN (0,1)(
√
3).

Suppose that ∀i = 1, K we have:

(1) Σi is a definite positive matrix with 0 < λi,min ≤ λi,max , where λi,max

is the biggest eigenvalue of Σi and λi,min is the smallest eigenvalue of Σi.
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(2) Wi is a random variable in [ti,min, ti,max] with 0 ≤ ti,min ≤ ti,max ≤ t+i .

(3) For all x ∈ Q and i = 1, K, we have:

ci > 0.

and
1

t+i
≥
√

b2i − 4aici − bi
2ci

or b2i ≤ 4aici.

where:

ai = (−xTγi)2λi,min + αx,γi,Σi
.

bi = 2(−xTγi)(Di − xTµi)λi,min − 6(xTΣix)‖γi‖‖µi‖+ βx,γi,µi,Σi
.

ci = (Di − xTµi)
2λi,min + θx,µi,Σi

.

αx,γi,Σi
:= uT z −

√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γi,µi,Σi
:= vT z −

√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µi,Σi
:= qT z −

√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγi)γi.

v = 4(−xTγi)γi + 4(Di − xTµi)µi.

q = 4(Di − xTµi)µi.

z = Σix.

(4) For all x ∈ Q, we have:
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2
√

(−xTγi)(Di − xTµi)√
xTΣix

>
√
3, ∀i = 1, K.

(−xTγ) > 0.

D − xTµ > 0.

Hence, M is a convex set.

Proof. The proof of this theorem follows this outline:

(i) We show that gi(x, wi) is a (-2)-concave function according to x on Q,

∀wi ∈ [ti,min, ti,max].

(ii) We show that F
(−1)
i

{

ψ(−1) [αiψ(θ)]
}−2

is a convex function according

to αi on [0, 1].

(iii) By using (i) and (ii), we deduce that the feasible set of (1) is a convex

set.

Proof of (i). The proof follows from theorem (2.2).

Proof of (ii). Let H = ψ(−1) [αiψ(θ)]. By a direct calculation, we deduce the

following formulation:

d2H

dα2
i

= −ψ(θ)
2 × ψ′′(H)

ψ′(H)3

By using the properties of a generator of an archimedean copula, we

deduce that d2H
dα2

i

≥ 0, i.e H is a convex function according to αi (*).

We prove that u(x) := F
(−1)
i (x)−2 is a concave function according to x if

x ≥ Fi(
√
3) (**).
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Proof. In fact, let F
(−1)
i (x) = v, we have:

u(x)′′ =
6v−4 − 2v−2

1
2π

exp(−v2) .

Hence, we deduce that u′′(x) ≤ 0 if and only if x ≥ Fi(
√
3).

We prove that ψ(−1)[αiψ(θ)] ≥ Fi(
√
3) (***).

Proof. In fact, by using the fact that 0 ≤ αi ≤ 1 and θ ≥ Fi(
√
3), we deduce

the proof.

We need the following lemma:

Lemma 2.5. [[15]] Let M1,M2 ⊂ R and M1,M2 are convex sets. Suppose

f1 : M1 → M2 is a convex function on M1 and f2 : M2 → R is a decreasing

and concave function on M2. Then, the composition function f2 o f1 is a

convex function on M1.

By applying (*),(**),(***) and the lemma (2.5), we deduce the convexity

of F
(−1)
i

{

ψ(−1) [αiψ(θ)]
}−2

.

Proof of (iii). By using (i) and (ii), we deduce that all constraints are convex.
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2.4. Dependent joint chance constraints with general copula

We rewrite the constraint of (1) in the previous section as follows:

Φ (g1(x, w1), .., gK(x, wK)) ≥ θ

⇔ C [F1(g1(x, w1)), .., FK(gK(x, wK))] ≥ θ

⇔ gi(x, wi)
−2 ≤ F

(−1)
i

{

ψ(−1) [αiψ(θ)]
}−2

, ∀i = 1, K

K
∑

i=1

αi = 1.

In this section, we suppose that the copula C is a function C(x) of x,

and for all x, C(x) is an Archimedean copula with generator ψx. The last

constraint is rewritten as follows:

⇔ gi(x, wi)
−2 ≤ F

(−1)
i

{

ψ(−1)
x [αiψx(θ)]

}−2
, ∀i = 1, K

K
∑

i=1

αi = 1.

The only difference between this case and the independent copula case

is that the element on the right-hand side F
(−1)
i

{

ψ
(−1)
x [αiψx(θ)]

}−2

does

not depend on x, then that is a function depending only on αi. Based on

the same proof of the previous section, we only need to find a family of

generators ψx such that ψ
(−1)
x [αiψx(θ)] is a convex function with respect to

(x, αi). Unfortunately, we do not have the convexity in this case because of

αi. However, if there exists a lower bound ǫ > 0 for the αi (i.e αi ≥ ǫ), we can

prove that if θ ≈ 1, we have the convexity. We have the following theorem:

28



Theorem 2.6. Consider the linear programming (1). Let

M the feasible set of (1). Suppose that ψx(t) = g(x)(t−
1

g(x) −1) (a Clayton

copula family with g(x) > 0). Suppose that g(x) is continuously differentiable

up to second order (cf. definition (2.2)) where g′′(x) ≤ 0 and there exists a

δ > 0 such that g(x) ≥ δ, ∀x ∈ Q. Suppose que θ ≥ ΦN (0,1)(
√
3).

Suppose that ∀i = 1, K we have:

(1) Σi is a definite positive matrix with 0 < λi,min ≤ λi,max , where λi,max

is the biggest eigenvalue of Σi and λi,min is the smallest eigenvalue of Σi.

(2) For all x ∈ Q and i = 1, K, we have:

ci > 0.

and
1

t+i
≥
√

b2i − 4aici − bi
2ci

or b2i ≤ 4aici.

where:
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ai = (−xTγi)2λi,min + αx,γi,Σi
.

bi = 2(−xTγi)(Di − xTµi)λi,min − 6(xTΣix)‖γi‖‖µi‖+ βx,γi,µi,Σi
.

ci = (Di − xTµi)
2λi,min + θx,µi,Σi

.

αx,γi,Σi
:= uT z −

√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γi,µi,Σi
:= vT z −

√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µi,Σi
:= qT z −

√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγi)γi.

v = 4(−xTγi)γi + 4(Di − xTµi)µi.

q = 4(Di − xTµi)µi.

z = Σix.

(4) For all x ∈ Q, we have:

(−xTγ) > 0.

D − xTµ > 0.

Hence, there exists ω(ǫ, δ) depending on ǫ and δ such that ∀θ ≥ ω(ǫ, δ),

we have M is a convex set.

Proof. Based the same proof of theorem (2.4), we only need to prove that

U(αi, x) := ψ
(−1)
x [αiψx(θ)] is convex with respect to (x, αi), ∀θ ≥ ω(ǫ, δ), for

some ω(ǫ, δ).
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Let ux : R → R a family of real functions depending on x such that there

exists qx ∈ L(R,Rn) and vx ∈ Mn×n(R) such that qx = d
dx
ux and vx = d2

dx2ux

(cf. definition (2.2)). For a function f : Rn → R, we have the following

equations:

d

dx
[ux(f(x))] = qx(f(x)) + u′x(f(x)).f

′(x). (12)

d

dx
[qx(f(x))] = vx(f(x)) + q′x(f(x)).f

′(x)T . (13)

Let J = ψ
(−1)
x (θ); Kx := ψ

(−1)
x ; Lx = d

dx
Kx; Mx = d2

dx2Kx.

We deduce the following equations:

Kx(t) =

(

t

g(x) + 1

)−g(x)

Lx(t) = Kx(t)

[

t

t+ g(x)
− log

(

t

g(x)
+ 1

)]

g′(x)

Mx(t) =

[

(

t

t+ g(x)
− log

(

t

g(x)
+ 1

))2

+
t

tg(x) + g(x)2
− t

(t+ g(x))2

]

×Kx(t)g
′(x)g′(x)T +Kx(t)

(

t

t+ g(x)
− log

(

t

g(x)
+ 1

))

g′′(x)

K ′
x(t) = −Kx(t)

g(x)

t+ g(x)

K ′′
x(t) = Kx(t)

g(x)2 + g(x)

(t+ g(x))2

L′
x(t) = Kx(t)

[

g(x)

t+ g(x)
log

(

t

g(x)
+ 1

)

− t(g(x) + 1)

(t+ g(x))2

]

g′(x). (14)
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We have: d2

dα2
i

U(αi, x) = J2K ′′
x(αiJ) > 0. Hence, the necessary and suffi-

cient condition for the convexity of U(αi, x) is the semidefinite positivity of

the following symmetric matrix:

[

d2

dx2
d2

dα2
i

−
(

d2

dxdαi

)(

d2

dxdαi

)T
]

o

[U(αi, x)]

= Q1 ×Mx(αiJ) +Q2 × [L′
x(αiJ)Lx(J)

T + Lx(J)L
′
x(αiJ)

T ]

+Q3 × [L′
x(J)Lx(J)

T + Lx(J)L
′
x(J)

T ] +Q4 × [Lx(J)Lx(J)
T ]

+Q5 × L′
x(αiJ)L

′
x(αiJ)

T . (15)

where

Q1 = J2K ′′
x(αiJ)

(

1− αi

K ′
x(αiJ)

K ′
x(J)

)

Q2 = J
K ′

x(αiJ)

K ′
x(J)

Q3 = αiJ
2K

′
x(αiJ)K

′′
x(αiJ)

K ′
x(J)

2

Q4 = −αiJ
2K ′′

x(J)K
′
x(αiJ)K

′′
x(αiJ)

K ′
x(J)

3
− 2αiJK

′′
x(αiJ)K

′
x(αiJ)

K ′
x(J)

2
− K ′

x(αiJ)
2

K ′
x(J)

2

Q5 = −J2. (16)

By using the equations of (14), we deduce that the equation (15) is equiv-

alent to the following equation:
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[

d2

dx2
d2

dα2
i

−
(

d2

dxdαi

)(

d2

dxdαi

)T
]

o

[U(αi, x)]

= A× g′′(x) + (B1 + B2 + B3 + B4 + B5)× g′(x)g′(x)T

(17)

where

33



A = J2Kx(αiJ)
2 g(x) + g(x)2

(αiJ + g(x))2

[

1− αi

(

αiJ + g(x)

J + g(x)

)−g(x)−1
]

×
[

αiJ

αiJ + g(x)
− log

(

αiJ

g(x)
+ 1

)]

.

B1 = J2Kx(αiJ)
2 g(x) + g(x)2

(αiJ + g(x))2

[

1− αi

(

αiJ + g(x)

J + g(x)

)−g(x)−1
]

×
[

(

αiJ

αiJ + g(x)
− log

(

αiJ

g(x)
+ 1

))2

+
αiJ

αiJ + g(x)

(

1

g(x)
− 1

αiJ + g(x)

)

]

.

B2 = JKx(αiJ)
2

[

g(x)

αiJ + g(x)
log

(

αiJ

g(x)
+ 1

)

− αiJ [g(x) + 1]

[αiJ + g(x)]2

]

×





J

J + g(x)− log
(

J
g(x)

+ 1
)



+ JKx(αiJ)
2×

[

g(x)

J + g(x)
log

(

J

g(x)
+ 1

)

− J [g(x) + 1]

[J + g(x)]2

] [

αiJ

αiJ + g(x)
− log

(

αiJ

g(x)
+ 1

)]

B3 = −2αiJ
2Kx(αiJ)

2 [g(x) + 1][J + g(x)]2

[αiJ + g(x)]3

[

J

J + g(x)
− log

(

J

g(x)
+ 1

)]

×
[

g(x)

J + g(x)
log

(

J

g(x)
+ 1

)

− J [g(x) + 1]

[J + g(x)]2

]

.

B4 = Kx(αiJ)
2 [J + g(x)]

[αiJ + g(x)]2
×
[

J

[J + g(x)]
− log

(

J

g(x)
+ 1

)]2

×

×
[

2αiJ
[g(x) + 1][J + g(x)]

αiJ + g(x)
− αiJ

2 [g(x) + 1]2

αiJ + g(x)
− J − g(x)

]

B5 = −J2Kx(αiJ)
2

[

g(x)

αiJ + g(x)
log

(

αiJ

g(x)
+ 1

)

− αiJ [g(x) + 1]2

[αiJ + g(x)]2

]2

(18)

When θ ≈ 1, we deduce that J ≈ 0. By using the Taylor development,

we can show the following equalities:
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A ≤ 0, ∀J ≥ 0.

B1 ≈ J4 × α2
i (1− αi)[g(x) + 1]

g(x)4
.

B2 ≈ J3 × αi + α2
i

2g(x)4
.

B3 ≈ −J5 × αi[g(x) + 1]

g(x)5
.

B4 ≈ −J4 × 1

4g(x)4
.

B5 ≈ −J4 × α2
i

g(x)4
.

Remark. Here, we denote A ≈ B if A
B
→ 1, when J → 0.

By using the assumptions that g′′(x) ≤ 0, αi ≥ ǫ and g(x) ≥ δ, we deduce

that there exists a ω(ǫ, δ) depending on (ǫ, δ) such that for all θ ≥ ω(ǫ, δ),

we have:

[

d2

dx2
d2

dα2
i

−
(

d2

dxdαi

)(

d2

dxdαi

)T
]

o

[U(αi, x)] ≥ 0.

We deduce that U(αi, x) is a convex function with respect to (αi, x).

3. Approximation methods and numerical results

3.1. Individual chance constraints case

In theorem (2.2) where K = 1, n is the dimension, we choose , D =

200 × n, t+ = 1, µ = γ = (−1,−1, ..,−1), Σ = Idn (identity matrix) , i.e
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V :=

















−1

..

..

−1

















+W

















−1

..

..

−1

















+
√
WZ where Z is a standard normal distribution

in dimension n and W is a positive random variable taking values in [0, 1],

independent of Z. Here, we suppose that W follows an uniform random

variable on [tmin, tmax], where 0 ≤ tmin ≤ tmax ≤ 1. Moreover, we suppose

that the domain Q :=
{

x | 1 ≤ xi ≤ 2, ∀i = 1, n
}

.

We show that the linear programming (1) is convex.

Proof. We show that these above assumptions satisfy the assumptions in

theorem (2.2).

In fact, we can show the following inequalities:

0 > a > −30n2. (condition on a)

|b| ≤ 12nD + 64n2. (condition on b)

c > (D + n)(D − 19n). (condition on c)

where:
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a = (−xTγ)2λmin + αx,γ,Σ.

b = 2(−xTγ)(D − xTµ)λmin − 6(xTΣx)‖γ‖‖µ‖+ βx,γ,µ,Σ.

c = (D − xTµ)2λmin + θx,µ,Σ.

αx,γ,Σ := uT z −
√

(uT z)2 +
∑

1≤i<j≤n

(uizj − ujzi)2.

βx,γ,µ,Σ := vT z −
√

(vT z)2 +
∑

1≤i<j≤n

(vizj − vjzi)2.

θx,µ,Σ := qT z −
√

(qT z)2 +
∑

1≤i<j≤n

(qizj − qjzi)2.

u = 4(−xTγ)γ.

v = 4(−xTγ)γ + 4(D − xTµ)µ.

q = 4(D − xTµ)µ.

z = Σx.

The assumptions of theorem (2.2) can be rewritten as follows:

1) c > 0 ⇔ D +
n
∑

i=1

xi > 4





n
∑

i=1

xi +

√

√

√

√(
n
∑

i=1

xi)2 +
∑

1≤i<j≤n

(xi − xj)2



 .

We have the following inequality where D = 200 × n and 1 ≤ xi ≤
2, ∀i = 1, n.
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2)
1

t+
≥

√
b2 − 4ac− b

2c
.

⇐ 1

t+
≥

√
b2 − 4ac+ |b|

2c
.

⇐ 1

t+
≥

√
b2 + 120n2c+ |b|

2c
. (by using the condition on a)

⇐ 1

t+
≥

|b|+2
√
30n

√
c√

2
+ |b|

2c
. (by using the Cauchy inequality)

By using the conditions on b and c, we have the following inequality.

3)
2
√

(−xTγ)(D − xTµ)√
xTΣx

>
√
3.

⇐ 2
√

(
∑n

i=1 xi)(D +
∑n

i=1 xi)
√
∑n

i=1 x
2
i

>
√
3.

By using the fact that D = 200×n and 1 ≤ xi ≤ 2, ∀i = 1, n, we deduce

the proof.

Hence, by the theorem (2.2), if x 6= 0, the function g(x) := P(V Tx ≤
200× n) =

= EW

[

ΦN (0,1)

(∑n

i=1 xi
‖x‖

√
W +

200× n+
∑n

i=1 xi√
W‖x‖

)]

is a concave func-

tion in the domain Q =
{

(x1, .., xn)
T | 1 ≤ xi ≤ 2, 1 ≤ i ≤ n

}

where V :=
















−1

..

..

−1

















+ W

















−1

..

..

−1

















+
√
WZ where Z is a standard normal distribution in
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dimension n and W is an uniform random variable on [0, 1], independent of

Z.

As well as, the following linear programming:

min cTx

s.c P
{

V Tx ≤ 200× n
}

≥ 1− ǫ

1 ≤ xi ≤ 2, ∀i = 1, n, (19)

where x :=

















x1

..

..

xn

















, V :=

















−1

..

..

−1

















+ W

















−1

..

..

−1

















+
√
WZ where Z is a

standard normal distribution in dimension n and W is an uniform random

variable on [0, 1], independent of Z.

is a convex programming.

Let g(x,W ) :=

∑n

i=1 xi
‖x‖

√
W +

200× n+
∑n

i=1 xi√
W‖x‖

and

Ψ(x,W ) := ΦN (0,1) (g(x,W )).

Then, the linear programming (19) can be rewritten as following:

min cTx

s.c

∫ tmax

tmin

Ψ(x,W ) dW ≥ 1− ǫ

1 ≤ xi ≤ 2, ∀i = 1, n. (20)

When tmin and tmax are close, we can solve the following alternative prob-

lem:
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min cTx

s.c Ψ(x, w) ≥ 1− ǫ

⇔ g−2(x, w) ≤
[

Φ−1
N (0,1)(1− ǫ)

]−2

=: θ

⇔ u(x, w) ≤ θ

1 ≤ xi ≤ 2, ∀i = 1, n. (21)

with w ∈ [0, 1].

By the proof of theorem (2.2), we have u(x.W ) is a convex function.

3.1.1. Lower bound approximation

Here, we use an outer-approximation algorithm (cf. [23]) to find a lower

bound for the problem (21). The idea is to linearize the convex constraint

u(x,W ) ≤ θ by its first order Taylor expansion u(x0.w)+(x−x0)∗u′(x0, w) ≤
θ, solve the problem with the linearized constraint, we obtain x1. Then, add

the linearized constraint u(x1.w)+(x−x1)∗u′(x1, w) ≤ θ in list of constraints,

solve the new problem, we obtain x2. Repeat the process, we obtain a lower

bound serie xn of the original problem. More precisely, we have the following

algorithm:
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Algorithm 1 Outer-approximation algorithm

• Choose randomly a x0. Solve the following linear optimisation:

min cTx

s.c u(x0.w) + (x− x0) ∗ u′(x0, w) ≤ θ

1 ≤ xi ≤ 2, ∀i = 1, n. (28-0)

Suppose that the solution of the problem (28-0) is x1.

• Solve the following linear optimisation:

min cTx

s.c u(x0.w) + (x− x0) ∗ u′(x0, w) ≤ θ

u(x1.w) + (x− x1) ∗ u′(x1, w) ≤ θ

1 ≤ xi ≤ 2, ∀i = 1, n. (28-1)

Suppose that the solution of the problem (28-1) is x2.

• Repeat the process until we achieve some convergence tolerance ǫ > 0.

3.1.2. Upper bound approximation

Consider a Lagrangien function as following:

L(x, λ) = cTx− λ [u(x, w)− θ] .
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By the conditions of Karush-Kuhn-Tucker, there exists λ ≥ 0 such that

if x∗ is the solution of the original problem (21), (x∗, λ) is the solution of the

following deterministic optimisation:

min cTx− λ [u(x, w)− θ]

1 ≤ xi ≤ 2, ∀i = 1, n.

To solve this problem, we will use a descent gradient method which is

presented as following:

Algorithm 2 Descent gradient algorithm

• Choose randomly x0 in the admissible set of the original problem (21),

λ0 ≥ 0 as well as two positive sequences (ǫk) and (ρk). Solve the

following linear optimisation:

• Given xk and λk, we update xk+1 and λk+1 as following:

xk+1 = xk − ǫk [c+ λku
′(x, w)]

λk+1 = λk − ρk [θ − u(x, w)]

Here, we present some simulation results with different values of w and

n (where the axe y present the objective value cTx).
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Figure 1: Series of lower bound and upper bound for n=5,w=0.8.

Gap between upper bound and lower bound: 0.079

Figure 2: Series of lower bound and upper bound for n=5,w=0.5.

Gap between upper bound and lower bound: 0.2
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Figure 3: Series of lower bound and upper bound for n=100,w=0.8.

Gap between upper bound and lower bound: 0.0008

Figure 4: Series of lower bound and upper bound for n=100,w=0.5.

Gap between upper bound and lower bound: 0.0017
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3.2. Independent joint chance constraints case

We can rewrite the problem (1) as follows:

min cTx

s.c P
{

V Tx ≤ D
}

≥ 1− ǫ

⇔
K
∏

i=1

∫ ti,max

ti,min

Ψi(x,Wi) dWi ≥ 1− ǫ

1 ≤ xj ≤ 2, ∀j = 1, n, (22)

where gi(x,Wi) :=
−xTγi

‖xTΣ
1
2
i ‖2

√
Wi +

Di − xTµi

√
Wi‖xTΣ

1
2
i ‖2

, for all i = 1, K.

When ti,min and ti,max are close, we can solve the following alternative

problem:
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min cTx

s.c
K
∏

i=1

Ψi(x, wi) ≥ θ

⇔ g−2
i (x, wi) ≤

[

Φ−1
N (0,1)(θ

αi)
]−2

αi ≥ 0

K
∑

i=1

αi = 1

⇔ ui(x, α, wi) ≤ 0, ∀i = 1, K

αi ≥ 0, ∀i = 1, K

K
∑

i=1

αi = 1

1 ≤ xi ≤ 2, ∀i = 1, n. (23)

with 0 < θ < 1, wi ∈ [0, 1], α := (α1, .., αK)
T ,

ui(x, α, wi) := g−2
i (x, wi)−

[

Φ−1
N (0,1)(θ

αi)
]−2

.

We show that under some additional conditions, ui is a convex function

with respect to (x, α). That’s enough to show that
[

Φ−1
N (0,1)(θ

αi)
]−2

is a

concave function with respect to αi.

We need the following lemma:

Lemma 3.1. For each i = 1, K,
[

Φ−1
N (0,1)(θ

αi)
]−2

is a concave function with

respect to αi if θ ∈
[

ΦN (0,1)(
√
3), 1

]

.

Proof. Let g1 : [0, 1] → [θ, 1] such that g1(x) = θx, and g2 : [θ, 1] → [0,∞]

such that g2(x) = Φ−1
N (0,1)(x)

−2. We deduce that g1 is a convex function and
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g2 is a decreasing function. Then, by applying lemma (2.5), we need to show

that g2 is a concave function.

In fact, let Φ−1
N (0,1)(x) = u, we have:

g2(x)
′′ =

6u−4 − 2u−2

1
2π

exp(−u2) .

Hence, we deduce that g2(x) ≤ 0 if and only if x ≥ ΦN (0,1)(
√
3).

In theorem (2.3) whereK is the number of constraints, n is the dimension,

we choose , Di = 200 × n, t+i = 1, µi = γi = (−1,−1, ..,−1), Σi = Idn

(identity matrix), wi = 0.8, for all i = 1, K − 1 and DK = 400 × n, t+K = 1,

µK = γK = (−2,−2, ..,−2), ΣK = Idn (identity matrix), wK = 0.8.

The problem (1) can be rewritten as follows:

min cTx

s.c g−2
1 (x, w1)−

[

Φ−1
N (0,1)(θ

α)
]−2

≤ 0

g−2
1 (x, w1)− 4

[

Φ−1
N (0,1)(θ

β)
]−2

≤ 0

α, β ≥ 0

(K − 1)α + β = 1

1 ≤ xi ≤ 2, ∀i = 1, n. (24)

Let M(α) = Φ−1
N (0,1)(θ

α). We approximate M(α) by M(1).

For k >> 1, we have ΦN (0,1)(k) ≈ 1 − φ(k)
k

, where φ(x) is the density

function of a standard Gaussian distribution and for k ≈ 0, α is bounded,

we have (1− k)α ≈ 1− αk. By applying that, we have:
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φ(M(α))

M(α)
= α× φ(M(1))

M(1)
,

where M(1) = Φ−1
N (0,1)(θ)

Here, we present some simulation results with w = 0.8, with different

values of n (dimension) and K (number of constraints) (where the axe y

present the objective value cTx).

Figure 5: Series of lower bound and upper bound for n=5 (dimension), K=5 (number of

constraints)

.

Gap between upper bound and lower bound: 1.167
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Figure 6: Series of lower bound and upper bound for n=5 (dimension), K=100 (number

of constraints)

.

Gap between upper bound and lower bound: 15.621
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Figure 7: Series of lower bound and upper bound for n=100 (dimension), K=100 (number

of constraints)

.

Gap between upper bound and lower bound: 0.099

3.3. Dependent joint chance constraints with independent copula case

We can see that the independent case is a particular case when we choose

ψ(x) = − log(x). In this case, we choose ψ(x) = log(x)2 (a Gumbel-Hougaard

generator type).

In theorem (2.4), where K is the number of constraints, n is the dimen-

sion, we choose , Di = 200 × n, t+i = 1, µi = γi = (−1,−1, ..,−1), Σi = Idn

(identity matrix), wi = 0.8, for all i = 1, K − 1 and DK = 400 × n, t+K = 1,

µK = γK = (−2,−2, ..,−2), ΣK = Idn (identity matrix), wK = 0.8.

The problem (1) can be rewritten as follows:
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min cTx

s.c g−2
1 (x, w1)−

[

Φ−1
N (0,1)(θ

√
α)
]−2

≤ 0

g−2
1 (x, w1)− 4

[

Φ−1
N (0,1)(θ

√
β)
]−2

≤ 0

α, β ≥ 0

(K − 1)α + β = 1

1 ≤ xi ≤ 2, ∀i = 1, n. (25)

Here, we present some simulation results with w = 0.8, with different

values of n (dimension) and K (number of constraints) (where the axe y

present the objective value cTx).

Figure 8: Series of lower bound and upper bound for n=5 (dimension), K=5 (number of

constraints)

.

Gap between upper bound and lower bound: 1.0065
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Figure 9: Series of lower bound and upper bound for n=5 (dimension), K=100 (number

of constraints)

.

Gap between upper bound and lower bound: 0.0636
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Figure 10: Series of lower bound and upper bound for n=100 (dimension), K=100 (number

of constraints)

.

Gap between upper bound and lower bound: 0.0999

3.4. Dependent joint chance constraints with dependent copula case

This case is the same scenario of the independent copula case when θ ≈ 1.

We prove that as follows:

Let M(αi, x) := F
(−1)
i

{

ψ
(−1)
x [αiψx(θ)]

}

. By applying

ψx(t) := g(x)[t
−1
g(x) − 1], we have:

M(αi, x) = F
(−1)
i

{

[

αi

(

θ
−1
g(x) − 1

)

+ 1
]−g(x)

}

For k >> 1, we have Fi(k) ≈ 1− φ(k)
k

, where φ(x) is the density function

of a standard Gaussian distribution and for k ≈ 0, α is bounded, we have

(1− k)α ≈ 1− αk. By applying these approximations, we deduce that:
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φ(M(αi, x))

M(αi, x)
= αi ×

φ(M(1, x))

M(1, x)
,

where M(1, x) = Fi(θ), for all x.

We can see that M(αi, x) does not depend on x. Moreover, this value is

exactly equal to F
(−1)
i (θαi).

4. Conclusion

In this paper, we studied the problem of linear optimisation with joint

probabilistic constraints.When the distribution of the constraint rows is a

normal mean-variance mixture distribution and the dependence of random

variables is represented by an archimedean copula, we shown the convexity

of the feasibility set and found some new convexity results. There are some

limitations in the simulation results because of the complexity of conditions

for convexity. In this case, we cannot show the convexity for a wide subset

of this family of distributions. We are going to relax the complexity in some

next research results.
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