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Convexity conditions for normal mean-variance
mixture distribution in joint probabilistic
constraints

Hoang Nam NGUYEN®, Abdel LISSER®

@ Laboratory of signals and systems, Centrale Supélec

Abstract

In this paper, we study the linear programming with probabilistic con-
straints. We suppose that the distribution of the constraint rows is a normal
mean-variance mixture distribution and the dependence of rows is repre-
sented by an Archimedean copula. We prove the convexity of the feasibility
set in some additional conditions. Next, we propose a sequential approxima-
tion by linearization which provides a lower bound and a gradient descent
method which provides an upper bound with numerical results.

Keywords:
Probabilistic constraints, Archimedean copulas, Normal mean-variance

mixture distributions, Convex optimization

1. Introduction

We study the following linear programming with joint probabilistic con-

straints:

Preprint submitted to Elsevier January 2, 2021



min 'z

subject to P{Ve<D}>1-c¢
r € Q. (1)

where @ is a closed convex subset of R" ; c € R, D := (D, .., Dg) € RE
is a deterministic vector, V := [vy, .., vk|T is a random matrix with size K xn,

where vy is a random vector in R", Vk =1, K and € € [0,1] .

1.1. Survey of literature

The probabilistic constraint optimisation has been widely studied since
longtime ago. Prékopa studied the concavity and quasi-concavity proper-
ties for probability distribution functions in his article [16] in 1970. Sen
introduced a relaxation method for probabilistic constraint programming
with discrete random variable in [21]. Lobo studied some applications of
second-order cone programming in [12]| which gave a new approach for solv-
ing problems of probabilistic constraints. Henrion gave a general structural
property for linear probabilistic constraints in [10]. In 2014, Cheng used the
second-order cone programming approach for solving his joint probabilistic
constraints problem in [4]. He supposed that the distribution of the con-
straint rows is elliptically distributed and the dependence of the rows follows
an Archimedean copula.

In this paper, we study the same probabilistic constraint problem as in [4].
We suppose that the distribution of the row vectors is normal mean-variance
mixture distributed and the dependence of the rows is an Archimedean cop-

ula. By assuming some conditions, we prove the convexity of the feasible set



of solutions. We propose two approximations method which gives a lower

bound and an upper bound and present some numerical results.e

1.2. Why is normal mean-variance mizture distribution?

Definition 1.1. A random variable X in R" is a normal mean-variance

mixture distribution if;

X=p+7yW+VWAZ,

where (1) Z is a n-dimension standard normal distribution N, (0,1,).

(2) W a positive random variable independent of Z.

(3) A € R™* is a matrix such that AAT = ¥, where ¥ a semidefinite
positive matrix € R™*",

(4) p and ~ are n-real vectors.

The relation between normal mean-variance distributions and elliptical

distributions is represented by the following proposition:

Proposition 1. [[13], theorem 3.25] Denote V., the set of characteristic
generators which generate a spherical distribution in dimension n, for all
n > 1. Hence, Y follows S,(¢) with ¥ € Vo if and only if Y = VW Z,
where Z is a n-dimension standard normal distribution N, (0,1,) independent

of W > 0.

Based on this proposition, we deduce that an elliptical distribution U
can be represented in the form U = pu + VWAZ with u € R*, A € R
and Z is a n-dimension standard normal distribution N,,(0,1,) if and only if

U= p+ AY, where Y follows S, (¢) and ¢ € V.
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The family of distributions normal mean-variance mixture represents a
comprehensive subset of the family of elliptical distributions. There exists
some elliptical distributions which cannot be represented in the form of a
normal mean-variance mixture distribution. However, it represents a big
subset of the family of elliptical distributions and plays an important role in
the elliptical world.

Next, we define an important subset of the family of normal mean-

variance mixture distributions , the family of hyperbolic distributions.

Definition 1.2. A random variable X is a hyperbolic distribution if it is a
normal mean-variance mixture where the random variable W in definition
(LT) is an inverse Gaussian distribution whose density function with respect

to the measure of Lebesgue is:

g(w) = Cuw* 'exp (—%(Xw_l + ww)> ,Yw € [0, 00).

where C' is a constant and the domain of variation of the parameters is:

X>0,1>0 if A<0.
y>0,1>0 if A=0.

x>0, >0 if A>0.

The family of hyperbolic distributions is a generalization of many elliptical
distributions. For example, the t-multivariate distribution with parameters

(X, i, v) is a particular case of hyperbolic distributions when A = 5% ; x = v



=0 pu=p;X=%;~v=0. We summarize some important elliptical
distributions (in dimension p) by the following table:

Density WXy A X | ¥

Normal C.exp (—1|z]]?) | w 0 0 01]0
t-distribution | C.(14+ B |, Ix 0| = |[v |0
Cauchy | C.(1+ ||z~ |pu| |0 Z [1]0
Laplace w20 1 01]-2
Pearson VII | C.(1+ %)_N p|X |0 5=N|m|O0

A disadvantage of elliptical distributions is that they are symmetric. We
should not use elliptical family for modelling in some cases. For example, we
can find some applications of hyperbolic distributions in modelling financial

in 7], [1], |20] and |19].

2. Normal mean-variance mixture constraints in linear program-

ming

In this section, we study the linear programming (II). We suppose that v;
are random vectors. We find some sufficient conditions (necessary if possible)
such as P{Vz < D} is a concave function with respect to z. A convex

optimization can be defined formally as following:



min  f(x)
subject to  gg(z) <0, k=0,m—1
Gx < h
Ax =1
r € Q.

where @ is a closed convex subset of R™; f(x) and g;(x) are convex func-
tions, 7 = 0,m — 1; h and b are n-real vectors ; G and A are deterministic

matrices.

2.1. Preliminaries

Proposition 2 ([11], lemme 3.1). Given F : R — [0,1] a distribution
function with (r + 1) - decreasing density for some r > 0 and a threshold
t*(r +1) > 0. Hence, the function z — F(z77) is a concave function on
(0,t*(r +1)7"). Moreover, F(t) <1, Vt € R.

Definition 2.1. (]4]) A real function f : R — R is K - monotone on an open

interval I C R with K > 2 if it is differentiable up to (K — 2)th - order and

the derivatives are satisfied by:

dk
—1)F—
(=1

and the function (—1)%-2 ;;;_,22 f(t) is non-increasing and convex on /.

t)>0,V0<k<K-—2etVtel.

Proposition 3 (|14]). Given ¢ : [0,1] — [0,400) a strictly decreasing func-
tion such that 1 (1) = 0. Hence, it is the generator of an archimedean copula

in dimension K if and only if =" is K-monotone on (0,1(0)).
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Definition 2.2. Given f : () x R — R a real function, where ) is a subset
of R™. We say that f is differentiable at x € @ if there exists a function

g: Q — R®" such that V0 € R, there exists a neighbourhood N(f) of 6 such
that if we note fy(g) the restriction of f on N(f), we have:

[fnoy(@+ €)= e () — <€ g(z) >]

€

:07

max

lim
e—0,ecR™

where R®" denotes the set of functions from R to R" and |||/ is the
maximum norm.
Moreover, we say that f is differentiable up to second-order at z if there

exists a function h : Q — R¥"™" such that we have:

lim (v (@ +e:) = e (@,)— < e g(x) > =2 h(x)e] _0
e—0,eeR™ ||.5||2
max
where RR"™" denotes the set of functions from R to R™*™.
Denote % := ¢ the derivative at first-order of f according to z and

% := h the derivative at second-order of f according to x.

In the programming (Il), we suppose that vy is a normal mean-variance
mixture distribution, for 1 < k£ < K. Next, we will show that the feasible

set of ([l is a convex set by adding some additional conditions.

2.2, Individual chance constraints

Suppose that K = 1 and V follows a normal mean-variance mixture

distribution with parameters (p, %, v) (cf. definition (II))). Suppose that
0¢ Q.



Lemma 2.1 (Proposition 5, |5]). The standard normal distribution has

3-decreasing density with a threshold t*(3) = /3.

The constraint in ([I]) can be rewritten as follows:

P, (vlTa: < D) >1—e
& Py ((uT + WA+ VW ZT ATz < D) >1—¢

& Py ((WVT S VWZTATYe < D — ;ﬂ;) >1—e

w D — 2T
PW,X —IJZT’)/—F VWXS# 21—6.
[z7E2 2 [z7 22 ][
ZTAT
By letting X := —1$ .
[EEPIEL P
X< T—VW+ T
#7522 VW[[zTEz2 ],
X< T—VW+ T
i [z752]]s VIW[[zTE2 ],
[ T D— T
SEy |0y | — VW ———H ) >1— 2)
i [EADIEYP VW|zTEz2 2

where € € (0,1), X follows a standard normal distribution N (0, 1), ®x is
the distribution function of X , W is a positive random variable independent
of X.

We have the following theorem:

Theorem 2.2. Consider the linear programming ({1). Let



M :={zxeQ|P{Vx <D} >1—¢} is the feasible set of {Il). Suppose
that K =1 and V' follows a normal mean-variance mixture distribution with
parameters (fu,3,7).

Suppose that:

(1) ¥ is a definite positive matriz with 0 < A\pin < Amaz , Where Ay 18
the biggest eigenvalue of ¥ and Ay is the smallest eigenvalue of 3.

(2) W is a random variable in [tmin, tmaz] With 0 < i < tae < tT.

(8) For all x € Q), we have:

c>0
1 Vb2 —4ac—b
and t—+2 2—ac or b < 4dac.
c

where:



a = (—279)*Apin + Qg oy
b= 2(=2")(D — 2" 1) Amin — 6(z"Z2) Iy |1l + By -

c= (D - xT:u)Q)\min + ez,u,E-

gy 1= ulz — \/(uTz)2 + Z (wizj —u;2;)?%.

1<i<j<n

Briyum = sz—\/<sz>2+ S iz — vz

1<i<j<n

Ov s =q 2 — \/(qu)2 + Z (qizj — qjz)2.

1<i<j<n
u=4(—z"7)y.
v =4(=z"y)y + 4D -z p)p.
q=4(D —a" p)p.

Z = 2.

(4) For all x € Q), we have:

2y/(=2T9)(D — a"p)
= > /3.

(—2Ty) > 0.

D — 2T > 0.
Hence, M is a convex set.

Proof. The proof of this theorem follows this outline:

—xTy D — 2Ty
(i) We show that f(z,W) = ——— VW + —— is
|72 | VW |[zTE2 ],
concave function according to x on @), for all W > 0.

a (-2)-
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(ii) By using (i), we show that ®x(f(z, W)) is a concave function accord-

ing to z, for all W > 0.

(ili) By using (ii), we show that Ey [®x(f(x,W))] is a concave function

according to x on Q).

(iv) By using (iii), we deduce that the feasible set of ([l) is a convex set.

_ T D — 2T
xly W xh

|27S2 5 V|27 |y
The (—2)— concavity of f(x, W) is equivalent to the convexity of the

Proof of (i). Let f(x,W) =

following function:

T
by
hz, W) := Tt 5
<—xT7\/W + \/LW(D - QST[L)>
T

W) + (@ = D + 267 (aTi— D)

Let W(2z"v)?+ 3 (27— D)* 422" (a"u— D) =: M. Denote H,h(z, W)
the gradient vector of h according to x and H2h(z, W) the Hessian matrix
of h according to x.

By a direct calculation, we deduce a formula of the gradient vector and

the Hessian matrix of h according to = as follows:

(*)Hyh(z, W) = 2.M 'Yz — M2 (2" Za).

2
: (2W1’T’}/.’}/ + W(Z‘T,u — D).+ 22y — D).y + 2$T7.,u> .

11



(*)HZh(z, W) =2M"" 2 —=8M 2. [(Wa'y + 2"y — D).(Savy" + y2"S)]

— 8M*. K%(ﬂu - D)+ x%) (Bapt + ,mTz)]

1
+6.M (2" X)), (WWT + gt Font + IWT) .

=2.M 7 [W(—z"y)+ D —az"p].

: { [(—2"9)Z + 4(Zay" +4278)] + % (D — 2" )E + 4(Sap” + pa’ L) }

. |
+6.M2(a"Sx). (WWT + gt Font + WT) :

H2h(z, W)
2. M2
=W [(=2"7)’2 + 4(=2"7).(Z2y" +727%) + 3(a" Sx)y "] +

+ [2(=2")(D — 2" ) Z + 4(—2"y) (BT + 42" )] +
+ [4(D — 2" p)(Sap” + pa"S) + 3(2"Sx) (v + )] +
1
+ W (D — 2" p)*’S +4(D — 2" p)(Sap” + pa’S) + 3(2"Sa)up’ | .
1
=WA+ B+ —C.
WA+ B+ WC

where

A= (—2T9)28 + 4(—2"y).(Zay" + y2"8) + 3(zTS2) T
B =2(—z"y)(D — 2" )% + 4(=z" ) (S + 2t D)+
+4(D — 2" 1) (Sop” + patY) + 32T S) (ypt 4+ pyh).
C=(D—2"pu)?S+ 4D — 2" p)(Sap” + pa™S) + 3(2Sa)uu’ .
For that h is a convex function according to z for all W € [0,¢"], it is
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necessary that the Hessian matrix H2h(x, W) is semidefinite positive for all
(x, W) € @ x [0,t7]. That is equivalent to the semidefinite positivity of the
matrix WA + B + .C for all (z, W) € Q x [0,¢]. We have:

(1) A= (=2")’Z + 4(—2"7).(Zxy" +72"8) + 3(z" Sx)y".

Given M, N two any symmetric matrix. Denote M > N if the matrix
M — N is a semidefinite positive matrix.

By using this notation, we deduce the following inequalities:

3= Aminlld,,.

* 4(—2Ty)(ZzyT + y2TE) - is a symmetric matrix therefore diagonal-
izable. We can show that it has (n — 2) - eigenvalues which is 0 and 2 -

eigenvalues which are:

u'z + \/(uTz)2 + Z (wizj — u;zi)?.

1<i<j<n
where u = 4(—2T7)y and z = Yz.
" = 0.

Let apqy i=ulz — \/(uTz)2 + D icicien(Wizj — uzzi)?.

Hence, we deduce the following inequality:

A > [(—xT7)2/\mm + ozxmg} Id,,. (3)

(2) B = 2(—aT3)(D — a1 + 4(—a")(Sar" 4 2"
+4(D — 2T p)(Bxp’ + pxtS) + 3(2TSx) (yu + pnyT).

We have:

*Y = Aminld,.

13



ot + ey = =2yl ull.
*A4(—2T ) (BT +y2TE) + 4D — 2T p) (Bap” + paY) - is a symmetric
matrix, hence diagonaliazble. We can show that it has (n — 2) - eigenvalues

which is 0 and 2 - eigenvalues which are:

Tv+ \/(va)2 + Z (ziv; — 20;)?

1<i<j<n
where z = Yz and v = 4(—a1y)y + 4(D — 27 p) .

Let Boypx =v"z — \/(UTZ)Q + Dicicj<n(Vizj — v;2)*.

Hence, we deduce the following inequality:

B = [2(~a")(D = 2" i) Awin — 6" Sy lall + Boryn] e (4)

(3) C = (D —a2Tu)?2 4+ 4(D — 27 p)(Zap” + p2™S) + 3(x7Sz)up” .

We have:

Y= Apinld,.

*4(D — 2Tp)(Sap” + paY) - is a symmetric matrix, therefore diago-
nalizable. We can show that it has (n — 2) - eigenvalues which is 0 and 2 -

eigenvalues which are:

g+ \/(ZTC.I)2 + > (zg - %)

1<i<j<n
where ¢ := 4(D — 2T p)p and 2z = Y.
*pp” = 0.

Let 0,5 :=q¢"z — \/(qu)2 + D 1cicjen(@izi — 4j%i).

14



Hence, we deduce the following inequality:

C t (D - xT,U)Q)‘min + ex,u,Z'

By using ([3)), @), (@l), we deduce the following inequality:

1
WA+B+ivciwﬂpf%me+amﬁu%+

[2(=2"7)(D — & ) Amin — 6(z"S2) ||| 1l] + Beyu.x] T+
1
W [(D — I'T/i)Q)\min + Qx,,u,,E] Hdn

where:

Uy = ul 2 — \/(uTz)2 + Z (uiz; — ujz;)?.

1<i<j<n

Brcyu = sz—\/<sz>2+ S (o - v

1<i<j<n

Orps i=q z— \/(QTZ)2 + Z (97 — g52i)*
1<i<j<n

u=4(—=zy)y.

v=4(=z"y)y +4(D — 2" p)p.

q=4(D —a"p)u.

Z = 2.

Let a = (—279)*Ain + Qs
b=2(—z"v)(D — &7 p) Ain. — 6(x" S2)||¥ ||| 16l] + Baiyopzs
c=(D—aTpw)*Npin + 00 5.

15



Obviously, the semidefinite positivity of the Hessian matrix H2h(z, W) is
deduced by the positivity of Wa + b+ ¢, for all W € [0,¢1].

We deduce a sufficient condition as follows:

1 b2 —4ac—b
and —>—acor b? < 4ac.

where:

a = (—29)* Apin + Oy, 5-
b=2(—z")(D — 2" ) Ain — 6(z" S) |V [[| ]| + Buyops-

c= (D - xT:u>2)\min + Qx,,u,E-

e \/(uTz)2 + Z (wizj — u;2;)?.

1<i<j<n

1<i<j<n

Buryn = sz—\/<sz>2+ > (v — vz

1<i<j<n

Orps i=q 2 — \/(qu)z + Z (42 — qj2:)*

u = 4(—z"7)y.
v =4(=a")y +4(D — " p)p.
q=4(D —a" p)p.

Z = 2.

which is satisfied by the assumption (3) of the theorem.
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We deduce that f(z, W) is a (-2) - concave function according to = on @,
for all W € [0,¢1].

[
Proof of (i). Given x1,x9 € Q, W € [0,t%], « € [0,1]. We have:
flazy + (1= a)a, W] > [af (21, W) + (1 — @) f > (z2, W)] T
(by the (-2) - concavity of f by (i))
= Ox (f oz + (1 — )z, W)
> 0y ([af e, W) + (1= a)f (22, W)] 7 )
(by the strict increasing of ®x). (7)

By using the lemma (ZI), we deduce that the function ®x(t2) is a
concave function on (0, (t*)~2) where t* = v/3. We will show that f~2(z;, W)
is on (0, (t*)72).

Proof. In fact, we have:

—xTy D — ot ,u
[flan, W) = |— 7 VIV + ——=—
[EZoH B V|| 22
2 _
\/ H)D —zip) (by Cauchy inequality)

Z.ﬁEl

> t* (by the assumption (4) of the theorem)

=0 < flag. W) 2 < ()72
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Hence, by using the concavity of ®x(t2 ) on (0, (#*)72), we have:

O ([af 2w, W)+ (1= @) (s, W)] 7))
> a®x (f(x1. W)+ (1 —a)®x (f(z2, W)).
Hence, by combining with ([7), we deduce that ®x (f(z,W)) is a concave

function according to x on @, for all W € [0,¢7].
O

Proof of (iii). Let g(x, W) := &x(f(x,W)). By (ii), we shown that g(z, W)
is a concave function according to x on @, for all W € [0,¢7].
Noting that Ey : ¢ — Ew(g) is a linear transformation and the concavity

is conserved by the linear transformations, we deduce that:

Ew [®x(f(x,W))] — is a concave function according to x on Q.
[

Proof of (iv). Given z,y two points which satisfy the constraint (2)) and o €
[0,1]. We have:

Ew [@x(f(z,W))] =1 -

Ew [@x(f(y,W))] >1—e

Ew [@x(f(az + (1 —a)y,W))] =

> oBw [Qx(f(z, W) + (1 — a)Ew [Px (f(y, W))].
(by the concavity of Ey [®x (f(z, W))] by (iii)).

18



We deduce that Ey [Px(f(az + (1 —a)y, W))] > 1 —¢, as well as ax +
(1 — o)y satisfies the constraint (2)). Hence, the feasible set of (I]) is a convex

set.

2.3. Independent joint chance constraints

Suppose that v; follows a normal mean-variance mixture with parameters
(s, X4, 7vi), for 1 < i < K and the vectors v; are independent. Suppose that
0¢Q.

The constraint in ([Il) can be rewritten as follows:

P{Ve<D}>1-c¢
K
& H]P’ {v/z < D;} >1—¢€ (by the independence).

i=1
K T T
—L Y D —x"
& [ Ew, |@x, <—7\/Wi + —“)] >1—¢
i=1 [y P VW[5 |2
( by using the transformation of (2)) in the section (2.2)).

K —aT, D; — 2Ty
& log [ By, |®x, | ——— Wi+ ———F— > log(1 —e).

1 1
i=1 (B[P VWillaTEE ]
(8)

We have the following theorem:

Theorem 2.3. Consider the linear programming (). Let

19



M:={zxeQ|P{Ve <D} >1-—¢} the feasible set of ({1l). Suppose that
Vi =1, K, v; follows a normal mean-variance mizture with
parameters (f;, X, v;) and the vectors v; are independent.

Suppose that Vi = 1, K, we have:

(1) 3; is a definite positive matriz with 0 < X min < Nimaz » Where i maz
is the biggest eigenvalue of X; and \; jmin s the smallest eigenvalue of ¥;.

(2) W; is a positive variable in [t; min, timaz] With 0 < i min < timaz < t; .

(8) For all x € Q and i = 1, K, we have:

CZ‘>O.

1 \/b2_4zz_bz
and = > L 2ac or b < dac;.
i &

where:
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a; = <_xT7i)2)‘i,min + Oy vy 3+
by = A=a"3)(D; = 7D igmin — 6T E) il + B

c; = (Dz — ZL’THi)Q)\i,min + 6937#1’,22"

Ay 2 2= u'z — \/(UTZ)Z + Z (uizj - szi)Q.

1<i<j<n

Buyoisyss =V 2 = \/(UTZ)2 + Y (v —vm)2

1<i<j<n

Hmvﬂiyzi = qTZ - \/<QTZ)2 + Z (Qizj - szi)z-

1<i<j<n
u = 4(—z" )y

v =4(—2"v)y +4(D; — 2" i) -
q=4(D; — xTMi)Mi-

Z = ;.

(4) For all x € Q, we have:

Hence, M is a convex set.

Proof. Based on the proof of theorem (2.2), we deduce that

— T~ D. — 2T,

Dy, (x—l%\/Wi + Z—W)] is a concave function, i.e
12757 |2 VWillzT52 ||

that is also a log-concave function.

Ew,

i
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— 2T~ D. — 2Ty,
Hence, 3% log (Ewi Dy, (x—YZ\/I/Vi - Z—W)]) is a con-
l2T2E ] VALK Eapg
cave function. We deduce that the feasible set of () is convex.

]

2.3.1. Dependent joint chance constraints with independent copula

Suppose that v; follows a normal mean-variance mixture distribution with
parameters (u;, 3;,7;), for 1 <7 < K. Suppose that 0 ¢ Q.

The constraint in ([I]) can be rewritten as follows:

P{Ve<D}>1-c¢

@P{O{vfngi}} >1—e

=1

s Ey |E |1 T, Dy — Ty, Uwil | =1-e
UK Xi(o)s———— Wi ———————

[ 2 VWillaTEE
following the same procedure as ().

S Ew [@ (g1(z, W), .., 9x(x,W))] > 1 —e.

Here we suppose that W and X(x) are independent, with

ZT ATy
W= (W17 "7WK)7 X(]}) = (Xl(x)7 ,XK($)),XZ($) =T,
2737 |2
G W) = — Wi 9)
[Eap¥ P VIVl |2

where @ is the distribution function of X.

Remark. In general, unfortunately, we cannot prove the concativity of the

function @ (g1 (x, W), .., g (z, W)), i.e By [P (g1 (2, W), .., g (z, W))].
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Consequently, we suppose additionally that for i = 1, K, we have timin ~
timaz- Hence, we deduce that Ey [® (g1(x, W), .., gr (z, W))]

~2 Hfil(ti,mm — timin) X @ (g1(z,w1), .., gx (z, wk)), where w; is an arbi-
trary point on [t;min, timaz). Then the constraint in (I can be rewritten as

follows:

(I)(gl(‘raw1>77gK(x7wK>> 20 (10)
where X (z) := (X1(2), .., Xk(x)), Xi(z) := LAEZ’7
. . [2TE72 |2
27522 VWil[2TEE 2

and @ is the distribution function of X.

Suppose that there exists an archimedean copula C' which does not de-
pend on z such that
D (g1(z,w1), .., 9k (z,wg)) = C[Fi(g1(x,w1)), .., Fx(gr(z,wk))], where F;
the distribution function of X;(z) which is a standard normal distribution
and C(u) = =Y (Zfil WW)), where 1) is a generator of C'. We reformulate
the constraint (I0) as follows:
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D (g1(w,w1), -, g (T, W) > 0
<O [F1<gl(wil>>7 ©* FK(.gK(wiK))] Z 0

@me@mwmswm

(by the decreasing property of )
& Fi(gi(z,w) 2 0V o (0)], Vi =LK

K
Z&i =1
=1

& gi(zw) 2 < FY {p [aiw(é)]}_g, Vi=1K

S a1 (1)

We have the following theorem:

Theorem 2.4. Consider the linear programming (1). Let

M = {zeQ|P{Vae<D}>1-—¢} the feasible set of (). Suppose
that Vi = 1, K, v; follows a normal mean-variance mizture with parameters
(pis X4, 7vi). Suppose that W; is a positive random variable in [t; min, ti maz]

With t; min = timaz. Let LAlTx = X;(z),V1<i< K and x € Q.

3

Suppose that the mulllfziici;ilgte copula of X (x) = (Xi(x),.., Xk(z)) is in-
dependent of x. Moreover, W and X(x) are independent. Denote C the
multivariate copula of X (). Suppose that C is an archimedean copula where
Y is a generator. Suppose that 6 > CI)N(OJ)(\/g).

Suppose that Vi = 1, K we have:

(1) 3; is a definite positive matriz with 0 < X min < Nimaz » Where A maz

is the biggest eigenvalue of X; and \; ymin is the smallest eigenvalue of ¥;.
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(2) W; is a random variable in [t; min, timaz] With 0 < i min < timaz < t; .

(8) For allx € Q and i =1, K, we have:

¢ > 0.

1 \/b2_4zz_bz
and e > L 2ac or b? < 4a,c;.
i Ci

where:

a; = (_xT’Yi)Q)\i,min + Qg oy 35
bi = 2(—a" %) (Ds — 2" 1) Nismin — 6(2" Si) ||l 13l + By s

c = (l)Z - $T/Li)2/\i,mm + 9137/—’47;721"

Ay~ 3 = UTZ — \/(UTZ)2 + Z (U,iZj — UjZi)2.

1<i<j<n

1<i<j<n

Bz =0 2 = \/(UTZ)2 + Y (v —vE)2

O s 2; = ¢z~ \/(qu)z + Z (izj — qj2i)*

1<i<j<n
u = 4(=z"y) .
v =4(=x"y)y + 4(Di — x" ) s
q = 4(D; — =" i) .

Z = 2.

(4) For all x € Q, we have:
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' >3, Vi=1K
Vatyz ’ ’
(—2"7) >0
D — 2" > 0.

Hence, M is a convex set.

Proof. The proof of this theorem follows this outline:

(i) We show that g;(z, w;) is a (-2)-concave function according to x on @,
Yw; € [timins timaz)-

(ii) We show that Fi(_l) { Y [0 (0)] }72 is a convex function according
to «; on [0, 1].

(iii) By using (i) and (ii), we deduce that the feasible set of ([l) is a convex

set.
Proof of (i). The proof follows from theorem (2.2). O

Proof of (ii). Let H = Y [a;1)(0)]. By a direct calculation, we deduce the

following formulation:

PH () x " (H)
daZ =T J(H)

(]

By using the properties of a generator of an archimedean copula, we

deduce that ig > 0, i.e H is a convex function according to «; (*).

We prove that u(x) := Fi(fl)(:zt)_2 is a concave function according to x if

> F(V3) (%),
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Proof. In fact, let Fi(_l)(x) = v, we have:

6v* — 2072

u(z) = —-+—.
% exp(—v?)

Hence, we deduce that «”(x) < 0 if and only if 2 > Fj(v/3). O
We prove that (D [a;0(0)] > F;(v/3) (¥F%).

Proof. In fact, by using the fact that 0 < a; < 1 and § > F}(v/3), we deduce
the proof. O

We need the following lemma:

Lemma 2.5. [[13]] Let My, My C R and My, My are convex sets. Suppose
fi: My — Ms is a convex function on My and fo : My — R is a decreasing
and concave function on My. Then, the composition function fy o fi is a

convex function on M.

By applying (*),(**),(***) and the lemma (23], we deduce the convexity

of FY {uV [asp(0)]} .
]

Proof of (iii). By using (i) and (ii), we deduce that all constraints are convex.

]

]
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2.4. Dependent joint chance constraints with general copula

We rewrite the constraint of (I]) in the previous section as follows:

(g1 (z,w1), .., gx (z, wg)) >0
<O [F1<gl(wi1>>7 © FK(.gK(xawK))] Z 0

& gilw,w) 2 < FOV {0 [pp(0)]) 7, Vi=T, K
K

Z&i =1.

=1

In this section, we suppose that the copula C' is a function C(z) of z,
and for all z, C(z) is an Archimedean copula with generator v¢,. The last

constraint is rewritten as follows:

& gila,w)? < FO () lans, 0))} 7, vi= TR
K

ZO@ =1.

=1

The only difference between this case and the independent copula case
is that the element on the right-hand side Fi(_l) {@/Jé_l) [Ozi@bx(ﬁ)]}i does
not depend on z, then that is a function depending only on «;. Based on
the same proof of the previous section, we only need to find a family of
generators 1, such that @D;g_l) [a;1,(0)] is a convex function with respect to
(x, ;). Unfortunately, we do not have the convexity in this case because of

«;. However, if there exists a lower bound € > 0 for the a; (i.e oy > €), we can

prove that if 8 ~ 1, we have the convexity. We have the following theorem:
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Theorem 2.6. Consider the linear programming (1)). Let

M the feasible set of (). Suppose that ,(t) = g(:c)(fﬁ —1) (a Clayton
copula family with g(x) > 0). Suppose that g(x) is continuously differentiable
up to second order (cf. definition (2.3)) where ¢"(x) < 0 and there exists a
d > 0 such that g(z) > 9, VYo € Q. Suppose que 0 > q>N(O,1)(\/§>-

Suppose that Vi = 1, K we have:

(1) 3; is a definite positive matriz with 0 < X min < Nimaz » Where A maz

is the biggest eigenvalue of X; and \; min ts the smallest eigenvalue of ¥;.

(2) For allx € Q and i =1, K, we have:

c; > 0.

1 \/b2_4zz_bz
and e > L 2ac or b? < 4a,c;.
i Ci

where:
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a; = (_xT’Yi)Q)\i,min + Qg oy 35
bi = 2(—a")(D; — xTMz')Ai,mm — 6(z" ) |yillll il + Ba,yi s S

c = (DZ — SL’T/L@')2>\i,mm + 990,#1',22"

Ay~ 3 = UTZ — \/(UTZ)2 + Z (U,iZj — UjZi)2.

Bz =02 = \/(UTZ)2 + Y (v v

O s 5; = ¢z~ \/(qu)z + Z (Gizj — qj2i)*

u = 4(=z"y) .
v=A4(—=z" )y +4D; — " ) .
q=4Di — 2" p;) .

Z = 2.

(4) For all x € Q, we have:

(—2T7) > 0.
D—a"p>0.

Hence, there exists w(e, ) depending on € and 6 such that V0 > w(e, 6),

we have M is a conver set.

Proof. Based the same proof of theorem (2.4]), we only need to prove that
U, x) == é_l)[aiww(Q)] is convex with respect to (x,q;), V0 > w(e, ), for

some w(e, d).
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Let u, : R — R a family of real functions depending on x such that there
exists ¢, € L(R,R") and v, € M,,»,(R) such that ¢, = %uw and v, = %ux
(cf. definition ([2Z2])). For a function f : R® — R, we have the following

equations:

[ (f(2))] = ¢:(f(2) + ue(f (). [ (2)- (12)
%[qm(f(x))] = 0:(f(2)) + ¢ (f(2)).f ()" (13)

Let J = 0(0); Ky =¢85 L= 4K,; M, = 5K,

We deduce the following equations:

500 = (7 1)_g(m)

Lu(t) = Kolt) | s ~how (5 +1) | o)

0= | (5 ~1ox (5 * 1)) e <t+gt<x>>2]
< K05/ @) @ + 50 (s —low (= 41) ) ')

t+g
R
K(1) = Kx<t>—9(<ff ;(j)()?
10 = 5,00 [ 29 10 (1) - WD D o), (14)
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We have: %U(ai,ﬁ) = J?K!(a;J) > 0. Hence, the necessary and suffi-
cient condition for the convexity of U(«;, ) is the semidefinite positivity of

the following symmetric matrix:

& & @ 2 \"
da? do? (dwdai) (d:vdai)

= Ql X Mx(azj) + QQ X [L;c<az‘])Lx(J)T + Lx(‘])L;:(O‘Z‘])T]

[U(ai, )]

+ Qs x L (i J) L (o )T (15)

where

Q1 = JK!(a:]) (1 -—K;(O‘J))

TYTR()
Q=TT )
K (0;.J) K" (0]
_ L J2 T

R 0
0, ol KUK o) K and) 200 Ki(on] Kyfad) Koo

1= K7, () K (J)? K(J)?
Qs =" (16)

By using the equations of (I4]), we deduce that the equation (IH) is equiv-

alent to the following equation:
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where

42 2 2 2\
—_— — U 79
[de da? (dxdai) (dzdai> Ule, @)

= Ax ¢"(x) 4+ (B1 + By + By + By + Bs) x ¢'(2)¢'(z)"

33
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_l’_
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G

1
£

VR
L

N

_l’_
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N——

«Q

&

—_ 1

—_

" Lnfﬁ§<>“bg(§%?+')}‘
B = PRt G P—%(?Tjgﬁﬁwﬂx
<mJﬁiuﬂ‘k%(§%%+1>>?*wjﬁi@»(g&>‘cmrimm>]'
Z%:JKA%ﬂQ[ g9(x) bg<%i+1>_auwuya¢

a;iJ +g(x) 7 \g(z) o] + g(x)]?

/\\_/

J

[J—l—g( ) — log(% )

n
[J+g ( 2 J+g ][aJﬁiﬁ)_ng%g+i>}

X

+ JK, (0 J)*x

A ﬁwﬂ% )]
Xhii@ﬂ%<4;*”> %%ﬁéﬁl

&=&W”£iﬂﬂﬂhu&m?MG%+er

lg(z) + 1][J + g()] 2 lg(z) +1)°
XP%J ol +9@ Y T g _gmﬁ
2K () g(z) o a;J _ad[g(x) + 1) ’
By =~ Hslow]) Lu+g@fg(m@*”) [mJ+mmP] (18)

When 6 ~ 1, we deduce that J ~ 0. By using the Taylor development,

we can show the following equalities:
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+ a?
By~ J3x BT %
? 2g(z)*
By~ —JF ailg(w) +1]
g(x)?
1
B, ~ —J4
! . 4g(x)*
2
o
By~ —J* :
° 9@

Remark. Here, we denote A ~ B if % — 1, when J — 0.

By using the assumptions that ¢”(z) < 0, a; > € and g(z) > ¢, we deduce
that there exists a w(e,d) depending on (¢,6d) such that for all 6 > w(e, d),

we have:

d2 d2 d2 d2 T

We deduce that U(w, x) is a convex function with respect to (ay, ).

3. Approximation methods and numerical results

3.1. Individual chance constraints case

In theorem (Z2) where K = 1, n is the dimension, we choose , D =

200 xn, tt =1, p =~ = (-1,-1,..,—1), ¥ = Id,, (identity matrix) , i.e
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Ve=| " |+w]| + /W Z where Z is a standard normal distribution

—1 —1

in dimension n and W is a positive random variable taking values in [0, 1],
independent of Z. Here, we suppose that W follows an uniform random
variable on [tmin, tmaz], Where 0 < ¢, < tmae < 1. Moreover, we suppose
that the domain @ :={z | 1 <z; <2, Vi=1,n}.

We show that the linear programming (I) is convex.

Proof. We show that these above assumptions satisfy the assumptions in

theorem (2.2)).

In fact, we can show the following inequalities:

0 > a > —30n?. (condition on a)
|b| < 12n.D + 64n*. (condition on b)

¢>(D+n)(D —19n). (condition on c)

where:
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a= (—:ET’V)Q)\mm T Qg3
b=2(—=2"Y)(D = &" 1) Amin — 6(2Z2) [y |2l + By oz

c=(D - xT,u)Q)\mm + 053

Aoz i=ulz — \/(uTz)2 + Z (wizj —u;2;)%

1<i<j<n

ﬁx,%u’z = UTZ — \/(UTZ)2 + Z (UZ'ZJ‘ — ’UjZi)Q.

1<i<j<n

Orps i=q 2 — \/(qu)2 + Z (qizj — qjz:)2.

1<i<j<n
u=4(—z"7)7.
v=d(=a"y)y + 4D — 2" pp.
¢=4(D —z"p)p.

Z = 2x.

The assumptions of theorem (2Z.2) can be rewritten as follows:

1) C>0<:>D+i$i>4 ixﬂr (ixi)2+ Do (wi— )
i=1 i=1 i=1

1<i<j<n

We have the following inequality where D = 200 x n and 1 < x; <
2, Vi=1,n.
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1 Vb2 —4dac—D

2) — >
) AN 2c
1 _ Vb2 —4dac+|b|
= —2> .
it 2c
1 Vb? + 120n? b
= — > + 120n%c + | | (by using the condition on a)
it 2c
|b|+2+/30n/c + |b|
&= pis V2 5 . (by using the Cauchy inequality)
c

By using the conditions on b and ¢, we have the following inequality.

2\/(—xT’y)(D —zTp)
Nror e
2\/(22;1 ;) (D + Y0 ) ~ /3.
Z?:l 7

By using the fact that D =200 xn and 1 < z; <2, Vi = 1,n, we deduce

3)

=

the proof.
m

Hence, by the theorem ([22), if 2 # 0, the function g(x) := P(VIz <

200 x n) =
S LT i 200 x n4+ >0 @

= Ew [QDN 0.1 < = W + >] is a concave func-
AN VW]

tion in the domain @ = {(z1,..,2,)" |1 <2; <2, 1 <i<n} where V :=
-1 -1

+wl - + VW Z where Z is a standard normal distribution in
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dimension n and W is an uniform random variable on [0, 1], independent of

Z.

As well as, the following linear programming;:

min 'z

s.c P{VTIL‘SQOOXH}Zl—E

1<, <2, Vi=1,n, (19)
T -1 -1

where z = h , Vo= h +w |- + VW Z where Z is a
Tn —1 -1

standard normal distribution in dimension n and W is an uniform random
variable on [0, 1], independent of Z.

is a convex programming.

A 200 A
Let g(z, W) := 2iz1® VW XNt ) @

el ¥ T T e
U(z, W) := ®pro1) (g(x, W)).

Then, the linear programming (I9)) can be rewritten as following:

min ¢’z

tmn.:r
s.c / Uz, W)dWV >1—¢

tmin

1<z,<2, Vi=T1,n (20)

When t,,;, and t,,,, are close, we can solve the following alternative prob-

lem:
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min ¢’z

s VU(z,w) >1—c¢
-2 -1 -2
o g2z, w) < [@N(OJ)Q - e)] —. 9
< u(z,w) <0

1<z, <2, Vi=1n. (21)

with w € [0, 1].

By the proof of theorem (22)), we have u(z.WW) is a convex function.

3.1.1. Lower bound approximation

Here, we use an outer-approximation algorithm (cf. [23]) to find a lower
bound for the problem (2II). The idea is to linearize the convex constraint
u(z, W) < 0 by its first order Taylor expansion u(zg.w)+(x—xo)*u'(zg, w) <
0, solve the problem with the linearized constraint, we obtain x;. Then, add
the linearized constraint u(x;.w)+(x—x1)*u'(x1,w) < € in list of constraints,
solve the new problem, we obtain x5. Repeat the process, we obtain a lower
bound serie x,, of the original problem. More precisely, we have the following

algorithm:
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Algorithm 1 Outer-approximation algorithm

e Choose randomly a xy. Solve the following linear optimisation:

min 'z

s.c u(zow) + (z — xg) * U (zo,w) <6

1<x;, <2, Vi=1,n. (28-0)

Suppose that the solution of the problem (280) is x;.

e Solve the following linear optimisation:

min 'z

s.c u(zow) + (z — x) * U (zo,w) <6
w(xrw) + (x — xq) * ' (2, w) <0

1<z, <2, Vi=1n. (28-1)

Suppose that the solution of the problem (28] is xs.

e Repeat the process until we achieve some convergence tolerance ¢ > 0.

3.1.2. Upper bound approzimation

Consider a Lagrangien function as following;:

L(z,\) = "o — Xu(z,w) — 6].
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By the conditions of Karush-Kuhn-Tucker, there exists A > 0 such that
if 2* is the solution of the original problem (2II), (z*, A) is the solution of the

following deterministic optimisation:

min ¢’ — \u(z, w) — 0]

1<, <2, Vi=1,n.

To solve this problem, we will use a descent gradient method which is

presented as following:

Algorithm 2 Descent gradient algorithm

e Choose randomly zg in the admissible set of the original problem (21]),
Ao > 0 as well as two positive sequences (¢*) and (p*). Solve the

following linear optimisation:

e Given xy and A\, we update x, 1 and A\, as following:

Tp1 = T — € [c+ Mt (7, w)]

Akl = A — Pk [0 — u(z,w)]

Here, we present some simulation results with different values of w and

n (where the axe y present the objective value ¢'z).
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& . —— lower bound
L
L
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L
e ]
L
=7 .
L]
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-111 #»
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2 4 L - 1

Figure 1: Series of lower bound and upper bound for n=5,w=0.8.

Gap between upper bound and lower bound: 0.079

54 @ = pper bound

] —— |lower bound

-10 - L

111 ®

Figure 2: Series of lower bound and upper bound for n=5,w=0.5.

Gap between upper bound and lower bound: 0.2
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b —— upper bound
L ]
—125D . = |ower bound
-1500 4 @
L ]
1750 o
L ]
—20061 -
L ]
-2350 1 *
L ]
25001 %
—278D 1 L
T T T T T T
1] 10D XD xXin XD L7 41

Figure 3: Series of lower bound and upper bound for n=100,w=0.8.

Gap between upper bound and lower bound: 0.0008

—1004 -
—— upper bound

—1250 —— lower bound

—1540 -

—1750

—2250

—2500 -

—2780 \
L]

Figure 4: Series of lower bound and upper bound for n=100,w=0.5.

Gap between upper bound and lower bound: 0.0017

44



3.2. Independent joint chance constraints case

We can rewrite the problem () as follows:

min 'z

s.c IP{VTx<D}>1—e

<:>H/ W) dW; >1—¢

t'L min

1<z; <2, Vj=1,n, (22)

—z' D; — " —
where g;(z, W;) := x—Z\/VVi + —x'li, foralli =1, K.
2757 |2 VWillaT 57 |2

When #; in and t; 4, are close, we can solve the following alternative

problem:
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min c'z
K
s.c H U, (z,w;) >0
i=1
-2 -1 ain] 2
(673 2 0

K
ZC(Z‘ =1
i=1

S wi(r,a,w;) <0,Vi=1,K

Q; ZO,VZ: 1,K

K

o=

=1

1<2; <2, Vi=1,n. (23)

with 0 < 0 <1, w; € [0,1], a := (aq, .., ak)T,
—2
ui(, o, w;) = g; 2 (x, w;) — [@;[1(071)((90”)] :
We show that under some additional conditions, u; is a convex function
—2
with respect to (x,«). That’s enough to show that [@X}(O’l)(ﬁai)] is a
concave function with respect to «;.

We need the following lemma:

N -2
Lemma 3.1. For eachi =1, K, [CD_I(O 1)(9°‘i)] is a concave function with

respect to a; if 0 € [CIDN(OJ)(\/g), 1}.

Proof. Let gy : [0,1] — [, 1] such that g;(z) = 6%, and g, : [6,1] — [0, <]

such that go(z) = @Xfl(o 1)(35)_2. We deduce that g is a convex function and
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g2 is a decreasing function. Then, by applying lemma (2.5), we need to show
that ¢, is a concave function.

In fact, let q)X/I(o,l)(x) = u, we have:

6u~* — 2u2
2x exp(—u?)’

Hence, we deduce that go(z) < 0 if and only if z > QJN(OJ)(\/g).

92($)” =

]

In theorem (2.3]) where K is the number of constraints, n is the dimension,
we choose ) Dl = 200 x n, t:_ = 17 i = Vi = (_17_17..,_1)7 Zz = ]Idn
(identity matrix), w; = 0.8, for all i = 1, K — 1 and D = 400 x n, t{: = 1,
pr =k = (=2,-2,..,—2), ¥g = Id, (identity matrix), wg = 0.8.

The problem (] can be rewritten as follows:

min 'z

sc gy (wwn) - [q)Xfl(o,1)(9a)] B <0
2 (rwn) — 4 [0k, (69)] <0
a, >0
(K—1a+p=1
1<z; <2, Vi=1,n. (24)
Let M(a) = @&1(071)(90‘). We approximate M («) by M(1).
o(k)

For k >> 1, we have ®u1)(k) = 1 — &2, where ¢(z) is the density

function of a standard Gaussian distribution and for £ ~ 0, « is bounded,

we have (1 — k)* =~ 1 — ak. By applying that, we have:
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where M(1) = @;,1(071)(9)
Here, we present some simulation results with w = 0.8, with different
values of n (dimension) and K (number of constraints) (where the axe y

present the objective value ¢!'r).

51 &
L & . . o upper bound
* .
—— |lower bound
—+ 1 -
_? - ®
L ]
_ﬂ -
L ]
_H -
_lu u
111 »
T T T T T T
2 4 L & 18

Figure 5: Series of lower bound and upper bound for n=5 (dimension), K=5 (number of

constraints)

Gap between upper bound and lower bound: 1.167
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140 { ® L] [ ® L] —— upper bound
160 - . » ® —— |ower bound
—1B0 - *

—200 -
—2H -
—240 -

—284 1

Figure 6: Series of lower bound and upper bound for n=5 (dimension), K=100 (number

of constraints)

Gap between upper bound and lower bound: 15.621
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o — upper bound
1300 - —— |ower bound
1800 -
1700 -
1600 -
15001 o ®* o o o o ® . @
T T T T T T
2 4

Figure 7: Series of lower bound and upper bound for n=100 (dimension), K=100 (number

of constraints)

Gap between upper bound and lower bound: 0.099

3.3. Dependent joint chance constraints with independent copula case

We can see that the independent case is a particular case when we choose
Y(x) = —log(z). In this case, we choose ¥(x) = log(z)? (a Gumbel-Hougaard
generator type).

In theorem (24]), where K is the number of constraints, n is the dimen-
sion, we choose , D; =200 x n, t =1, u; = v, = (=1,-1,..,—1), 3; = Id,
(identity matrix), w; = 0.8, for all i = 1, K — 1 and Dy = 400 x n, t}. = 1,
g =Yk = (—2,-2,..,—2), ¥x = Id,, (identity matrix), wx = 0.8.

The problem (J) can be rewritten as follows:
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min c'x
sc g% (wwy) — [@;}(m)(aﬁ)} - <0
o) — 4 [0, (0V9)] <0
a, >0
(K-1la+p=
1<x; <2, Vi=1,n. (25)

Here, we present some simulation results with w = 0.8, with different
values of n (dimension) and K (number of constraints) (where the axe y

present the objective value c¢’x).

on- @ ® L L [ ] L L 4 —— upper bound

—— |ower bound

Figure 8: Series of lower bound and upper bound for n=5 (dimension), K=5 (number of

constraints)

Gap between upper bound and lower bound: 1.0065

o1



o = L] [ ] : L] » L 4 —— upper bound

—— |ower bound

Figure 9: Series of lower bound and upper bound for n=5 (dimension), K=100 (number

of constraints)

Gap between upper bound and lower bound: 0.0636
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2154 -

Figure 10: Series of lower bound and upper bound for n=100 (dimension), K=100 (number

of constraints)

Gap between upper bound and lower bound: 0.0999

3.4. Dependent joint chance constraints with dependent copula case

This case is the same scenario of the independent copula case when 6 =~ 1.

We prove that as follows:

Let M (o, x) := Fi(_l) {zﬁé‘” [a,-z/zgc(Q)]}. By applying
Pe(t) = g(x)[tﬁl) — 1], we have:

M(aj, ) = Fi(_l) { [ai (Qﬁi) _ 1> N 1} —g(a:)}

For k >> 1, we have Fj(k) ~ 1 — @, where ¢(x) is the density function
of a standard Gaussian distribution and for k£ =~ 0, « is bounded, we have

(1 —k)* ~1— ak. By applying these approximations, we deduce that:
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G(M (e, x)) ¢(M(1, z))

M(azz) —©
where M (1,z) = F;(0), for all .
We can see that M («;,x) does not depend on z. Moreover, this value is

exactly equal to ™ (6).

4. Conclusion

In this paper, we studied the problem of linear optimisation with joint
probabilistic constraints.When the distribution of the constraint rows is a
normal mean-variance mixture distribution and the dependence of random
variables is represented by an archimedean copula, we shown the convexity
of the feasibility set and found some new convexity results. There are some
limitations in the simulation results because of the complexity of conditions
for convexity. In this case, we cannot show the convexity for a wide subset
of this family of distributions. We are going to relax the complexity in some

next research results.
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