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Abstract. Geographical information systems are one of the most important appli-

cation areas of belief revision. Recently, Würbel and colleagues [32] have applied

the so-called “removed sets revision” (RSR) to the problem of assessment of water

heights in a flooded valley. The application was partially satisfactory since only a

small part of the valley has been handled. This paper goes one step further, and pro-

poses an extension of (RSR) called “Prioritized Removed Sets Revision” (PRSR).

We show that (PRSR) performed using answer set programming makes possible

to solve a practical revision problem provided by a real application in the frame-

work of geographical information system (GIS). We first show how PRSR can be

encoded into a logic program with answer set semantics, we then present an adap-

tation of the smodels system devoted to efficiently compute the answer sets in order

to perform PRSR. The experimental study shows that the answer set programming

approach gives better results than previous implementations of RSR and in particu-

lar it allows to handle the whole valley. Lastly, some experimental studies compar-

ing our encoding with implementations based on SAT-solvers are also provided.

1 Introduction

In many applications, intelligent agents face incomplete, uncertain and inaccurate in-

formation, and often need a revision operation in order to manage their beliefs change 
in presence of a new item of information. The agent’s epistemic state represents his 
reasoning process and belief revision consists in modifying his initial epistemic state in 
order to maintain consistency, while keeping new information and removing the least 
possible previous information. Different strategies have been proposed for performing 
revision [30], [22]. Most of the revision approaches have been developed at the theo-

retical level, except few applications [31] and it turns out that in the general case the 
theoretical complexity of revision is high [8] [16]. An example of belief revision system 
is Removed Sets Revision which has been proposed in [21], [13], [15] for revising a set 
of propositional formulas. This approach stems from removing a minimal number of 
formulas, called removed set, to restore consistency.

Recently, Würbel and colleagues [32] have applied the so-called “removed sets re-

vision” (RSR) to the problem of assessment of water heights in a flooded valley. The



application was partially satisfactory since only a small part of the valley has been

handled. This paper considers a prioritized form of Removed Sets Revision, called Pri-

oritized Removed Sets Revision (PRSR). It shows how the encoding of PRSR using

answer set programming allows us to solve a practical revision problem coming from a

real application in the framework of geographical information system. In particular this

paper focuses on the following three issues:

– The notion of priority is very important in the study of knowledge-based systems

[10].When priorities attached to pieces of knowledge are available, the task of coping

with inconsistency is greatly simplified, since conflicts have a better chance to be

solved. Gärdenfors [11] has proved that upon arrival of a new piece of propositional

information, any revision process of a belief set which satisfies natural requirements,

is implicitly based on a priority ordering. In this paper we generalize the Removed

Sets Revision, to revise prioritized belief bases, called Prioritized Removed Sets

Revision.

– In the last decade, answer set programming is considered as one of convenient

tools to handle non-monotonic reasoning systems. Logic programs with answer

sets semantics can be equivalently described in terms of reducing logic programs

to default logic, autoepistemic logic or circumpscription. Morever, several efficient

systems have been developed [9], [4], [24], [20], [17]. We propose to formalize the

Prioritized Removed Sets Revision in terms of answer set programming and to adapt

the smodels system in order to compute preferred answer sets which correspond to

prioritized removed sets.

– When dealing with GIS we face incomplete and uncertain information. Since the

data come from different sources characterized by various data qualities, they may

conflict and require belief revision operations. Moreover, geographic information

systems are characterized by a huge amount of data. In [33], [32] three different

implementations of Removed Sets Revision have been experimented and compared

on application on geographic information system concerning the flooding problem.

The result was that an adaptation of Reiter’s algorithm for diagnosis [25] gave

the best results. Moreover, the Removed Sets Revision has been translated into a

SAT problem and an implementation has been performed using an efficient SAT-

solver MiniSat [7]. However, these approaches were not able to handle the whole

geographical area (composed of 120 compartments) and only a part of it composed

of 20 compartments for the adaptation of Reiter’s algorithm and composed of 40

compartments for the SAT translation has been considered.

In this paper we apply our answer sets programming encoding of PSRS to the frame-

work of Geographic Information Systems. An experimental study shows that our

approach gives better results than the adaptation of Reiter’s algorithm for diagnosis

and than an implementation based on a SAT-solver. These good results hold even if no

priority is introduced. The introduction of priorities allows to handle the whole area.

The paper is organized as follows. Section 2 gives a refresher on Removed Sets Revi-

sion. Section 3 presents the Prioritized Removed Sets Revision. Section 4 shows how

Prioritized Removed Sets Revision is encoded into logic programming with answer sets

semantics. Section 5 presents an adaptation of the smodels system for computing answer



sets for performing Prioritized Removed Sets Revision. In section 6 we perform an exper-

imental study which illustrates the approach on a real application, the flooding problem,

provided by CEMAGREF. We show that the answer set programming implementation

gives better results than the one obtained using an adaptation of Reiter’s algorithm and

than an implementation based on a SAT-solver. Section 7 concludes the paper.

2 Background

2.1 Removed Sets Revision

We briefly recall the Removed Sets Revision [32] which deals with the revision of a

set of propositional formulas by a set of propositional formulas. Let K and A be finite

sets of clauses. The Removed Sets Revision focuses on the minimal subsets of clauses

to remove from K, called removed sets[21], in order to restore consistency of K ∪ A.

More formally:

Definition 1. Let K and A be two sets of clauses such that K ∪A is inconsistent. R a

subset of clauses of K, is a removed set of K ∪ A iff (i) (K ∪ A)\R is consistent; ii)
∀R′ ⊆ K, R′ 6= R, if (K ∪A)\R′ is consistent then | R |<| R′ |1.

It can be checked that if R is a removed set then (K∪A)\R is a so-called cardinality-

based maximal consistent subbase of (K ∪A) [1], [13], [15]. Würbel et al.[32] adapted

the Reiter’s algorithm for diagnosis stemming from hitting sets [25] and implemented this

adaptation to efficiently compute the removed sets. Note also that there are several recent

compilations and implementations of removed sets revision, like the ones proposed in

[2], [18], [5]. However, in our application, we need to compute all preferred removed

sets which is not possible with these recent implementations.

2.2 Removed Sets Revision Translated into a SAT Problem

The Removed Set Revision can be translated into a SAT problem using the transformation

proposed by De Kleer for ATMS [14]. Each clause c of K is replaced by the formula

φc → c, where φc is a new variable, called hypothesis variable. If φc is assigned true

then φc → c is true iff c is true, this enforces c, on contrast if φc is assigned false then

φc → c is true whatever the truth value of c, the clause c is ignored. Let H(K) be the

transformed set of clauses. The Removed Set Revision of K by A corresponds to the

problem of looking for models of the set of clauses H(K) ∪ A which minimize the

number of falsified hypothesis variables φc. This leads to the definition of a preference

relation between interpretations. Let first introduce some notations. HK denotes the

set of hypothesis variables, i. e. HK = {φc | φc → c ∈ H(K)} and let ω be an

interpretation, NI(ω) denotes the number of hypothesis variables that are falsified by

the interpretation ω, i. e. NI(ω) =| {φc ∈ HK | ω 6|= φc} |
2.

Definition 2. Let ω be an interpretation, ω is a HK-preferred model of H(K) ∪ A iff

(i) ω ∈Mod(H(K) ∪A); (ii) ∀ω′ ∈Mod(H(K) ∪A), ω′ 6= ω, NI(ω) ≤ NI(ω′).
1 | R | denotes the number of clauses of R.
2 For the sake of simplicity, we identify an hypothesis variables and a propositional formula.



The link between removed sets and models of H(K) ∪A is made by the following

definition which assign each removed set R a set of models ofH(K)∪A denoted byMR.

Definition 3. Let R be a removed set of K∪A the set of models ofH(K)∪A generated

by R, denoted byMR, is a subset of Mod(H(K) ∪A) such that (i) ∀c ∈ R, M 6|= φc

where M ∈MR; (ii) ∀c ∈ H(K) ∪A\R, M |= φc where M ∈MR.

And the following proposition holds:

Proposition 1. ∀M ∈ MR. R is a removed set iff M is a HK-preferred model of

H(K) ∪A.

Performing Removed Set Revision of K by A amounts to looking for the HK-

preferred models of H(K) ∪ A. This can be achieved using a SAT-solver. In order to

compare different implementations of Removed Set Revision we used the SAT-solver

MiniSat[7] which is a simplified version of the solver SATZOO that won the last SAT

2003 competition.

3 Prioritized Removed Sets Revision

We now present the Prioritized Removed Set Revision (PRSR) which generalizes the

Removed Set Revision presented in section 2.1 to the case of prioritized belief bases.

Let K be a prioritized finite set of clauses, where K is partitioned into n strata, i. e.

K = K1 ∪ . . . ∪Kn, such that clauses in Ki have the same level of priority and have

higher priority than the ones in Kj where j > i. K1 contains the clauses which are the

most prioritary beliefs in K, and Kn contains the ones which are the least prioritary in

K [1], see also [13].

When K is prioritized in order to restore consistency the principle of minimal change

stems from removing the minimum number of clauses from K1, then the minimum

number of clauses in K2, and so on. We generalize the notion of removed set in order

to perform Removed Sets Revision with prioritized sets of clauses. This generalization

first requires the introduction of a preference relation between subsets of K.

Definition 4. Let K be a consistent and prioritized finite set of clauses. Let X and X ′

be two subsets of K. X is preferred to X ′ iff (i) ∃i, 1 ≤ i ≤ n, | X∩Ki |<| X
′∩Ki |;

(ii) ∀j, 1 ≤ j < i, | X ∩Kj |=| X
′ ∩Kj |.

Prioritized removed sets are now defined as follows:

Definition 5. Let K be a consistent and prioritized finite set of clauses and let A be a

consistent finite set of clauses such that K ∪A is inconsistent. R, a subset of clauses of

K ∪ A, is a prioritized removed set iff (i) R ⊆ K; (ii) (K ∪ A)\R is consistent; (iii)
∀R′ ⊆ K, if (K ∪A)\R′ is consistent then R′ is not preferred to R.

4 Encoding PRSR in Answer Set Programming

We now show how we construct a logic program, denoted by PK∪A, such that the

preferred answer sets of PK∪A correspond to the prioritized removed sets of K ∪A. We

first construct a logic program in the same spirit of Niemelä in [19], and then define the

notion of preferred answer set in order to perform PRSR.



4.1 Translation into a Logic Program

Our aim in this subsection is to construct a logic program PK∪A such that the answer

sets of PK∪A correspond to subsets R of K such that (K ∪A)\R is consistent. For each

clause c of K, we introduce a new atom denoted by rc and V denotes the set of atoms

such that V = V +∪V −, with V + = Atom(K∪A)∪{rc | c ∈ K} and V − = {a′ | a ∈
Atom(K∪A)∪{rc | c ∈ K}}where Atom(K∪A) denotes the set of atoms occurring

in K∪A. The construction of PK∪A stems from the enumeration of interpretations of V

and the progressive elimination of interpretations which are not models of (K ∪ A)\R
with R = {c ∈ K | rc is satisfied }. This construction requires 3 steps: the first step

introduces rules such that the answer sets of PK∪A correspond to the interpretations of

the propositional variables occurring in V , the second step introduces rules that constraint

the answer sets of PK∪A to correspond to models of A, the third step introduces rules

such that answer sets of PK∪A correspond to models of (K ∪A)\R. More precisely:

(i) The first step introduces rules in order to build a one to one correspondence between

answer sets of PK∪A and interpretations of V +. For each atom a ∈ V + we

introduce two rules : a← not a′ and a′ ← not a where a′ ∈ V − is the negative

atom corresponding to a.

(ii) The second step rules out answer sets of PK∪A which correspond to inter-

pretations which are not models of A. For each clause c ∈ A such that

c = ¬a0 ∨ · · · ∨ ¬an ∨ an+1 ∨ · · · ∨ am, the following rule is introduced:

false← a0, · · · , an, a′
n+1, · · · , a

′
m and in order to rule out false from the models

of A: contradiction← false, not contradiction.

(iii) The third step excludes answer sets S which correspond to interpretations which

are not models of (K ∪ A)\Ci with Ci = {c | rc ∈ S}. For each clause c of K

such that c = ¬b0 ∨ · · · ∨¬bn ∨ bn+1 ∨ · · · ∨ bm, we introduce the following rule:

rc ← b0, · · · , bn, b′
n+1, · · · , b

′
m.

The steps (i) and (ii) are very similar to the ones proposed by Niemela, but the third

one (iii) is new and is introduced for revision.

We denote by RK the set RK = {rc | c ∈ K} and R+

K (resp. R−
K) denotes the

positive (resp. negative) atoms of RK . We denote by CL the mapping from R+

K to K

which associates to each atom of R+

K the corresponding clause in K. More formally,

∀rc ∈ R+

K , CL(rc) = c. The following result holds.

Proposition 2. Let K be a consistent and prioritized finite set of clauses and let A be a

finite consistent set of clauses. S is an answer set of PK∪A iff (K ∪ A)\CL(S ∩ R+

K)
is consistent.

In order to compute the answer sets corresponding to prioritized removed sets we

introduce the notion of preferred answer set.

4.2 Preferred Answer Sets

Let K = K1 ∪ . . . ∪ Kn. For 1 ≤ i ≤ n, the set RKi
denotes RKi

= {rc | rc ∈
RK , and c ∈ Ki} ∪ {r

′
c | r′

c ∈ RK , and c ∈ Ki}. The positive and the negative

part of RKi
are respectively denoted by R+

Ki
= {rc | rc ∈ RK and c ∈ Ki} and

R−
Ki

= {r′
c | r′

c ∈ RK and c ∈ Ki}.



Definition 6. Let K be a consistent and prioritized finite set of clauses. Let S and S′

two sets of literals. S is preferred to S′ iff

(i) ∃i, 1 ≤ i ≤ n, | S ∩ R+

Ki
|<| S′ ∩ R+

Ki
|; (ii) ∀j, 1 ≤ j < i, | S ∩ R+

Kj
|=|

S′ ∩R+

Kj
|.

We are now able to define the notion of preferred answer set.

Definition 7. Let S be a set of atoms. S is a preferred answer set of PK∪A iff (i) S is

an answer set of PK∪A ; (ii) ∀S′ an answer set of PK∪A, S′ is not preferred to S .

The following result generalizes proposition 2.

Proposition 3. Let K be a consistent and prioritized finite set of clauses and let A be a

finite consistent set of clauses. R is a prioritized removed set of K ∪A iff there exists a

preferred answer set S such that CL(S ∩R+

K) = R.

In order to get a one to one correspondence between preferred answer sets and

prioritized removed sets, instead of computing the set of preferred answer sets of PK∪A

we compute X the set of subsets of literals of RK which are interpretations of RK

and that lead to preferred answer sets. More formally: X = {X an interpretation of

RK | ∃S, a preferred answer set, such that X ∩RK = S ∩RK}.

5 Adaptation of Smodels for PRSR

We now present the computation of Prioritized Removed Sets Revision based on the

adaptation of the smodels system; for more details see [12], [20], [28]. This is achieved

using two algorithms. The first algorithm, Prio, is an adaptation of the smodels system

algorithm which computes the set of subsets of literals of RK which lead to preferred

answer sets and which minimize the number of clauses to remove from each stratum.

The second algorithm, Rens, computes the prioritized removed sets of K ∪A, applying

the principle of minimal change defined in 5 for PRSR, that is, stratum by stratum.

5.1 Prio: An Adaptation of Smodels System

Let K = K1∪ . . .∪Kn. Consider the stratum k. Let L be a subset of literals which is an

interpretation of RK1∪...∪Kk−1
leading to an answer set and let X be the set of subsets

of literals which are interpretations of RK1∪...∪Kk
leading to an answer set and such

that they remove the same number of clauses from Kk. More formally: ∀X, Y ∈ X ,

| X ∩R+

K1∪...∪Kk
|=| Y ∩R+

K1∪...∪Kk
|. The algorithm Prio(PK∪A, L, k,X ) returns

the sets of literals which are interpretations of RK1∪...∪Kk
that either contain L or belong

to X and that minimize the number of clauses to remove from Kk, that is the number of

rc such that c ∈ Kk. The Prio algorithm constructs a set of literals L′ from L where, as

in the construction of smodels, several cases hold:

(i) if L′ is inconsistent then L′ does not lead to an answer set therefore X is returned.

(ii) if L′ is consistent then again several cases hold:

(1) if L′ removes more clauses from Kk than an element ofX thenX is returned.



(2) if L′ leads to the same answer set than an element of X then X is returned.

(iii) if L′ is consistent and covers Atom(PK∪A) then

(3) if L′ removes less clauses from Kk than any element ofX thenX is cancelled

and L′ ∩ Lit(RK1∪...∪Kk
) is returned else L′ ∩ Lit(RK1∪...∪Kk

) is added

to X
(iv) if L′ is consistent and does not cover Atom(PK∪A) then using some heuristics a

new atom a ∈ Atom(PK∪A) is selected such that a 6∈ L′. The algorithm starts

again with L′∪{a} and keeps inX ′ the sets of literals of RK1∪...∪Kk
that minimize

the number of clauses to remove from Kk and strarts again with L′ ∪ {¬a}.

algorithm Prio(PK∪A, L, k,X )
L and L′ are sets of literals, a is an atom

begin

L′ ← Expand(PK∪A, L)
if L′ is inconsistent then

return X
else

if (1) ∃X ∈ X , | L′ ∩R+

K1∪...∪Kk
|>| X ∩R+

K1∪...∪Kk
| then

return X
else

if (2) L′ ∩ Lit(RK1∪...∪Kk
) ∈ X then

return X
else

if L′ covers Atom(PK∪A) then

if (3) ∃X ∈ X , | L′ ∩R+

K1∪...∪Kk
|<| X ∩R+

K1∪...∪Kk
| then

return {L′ ∩ Lit(RK1∪...∪Kk
)}

else

return X ∪ {L′ ∩ Lit(RK1∪...∪Kk
)}

end if

end if

end if

end if

else

a← Heuristic(PK∪A, L′)
X ′ ← Prio(PK∪A, L′ ∪ {a}, k + 1,X )
return Prio(PK∪A, L′ ∪ {¬a}, k + 1,X ′)

end if

end

The main adaptations of the original smodels algorithm consist in: (1) avoiding all the

subsets of literals of RK1∪...∪Kk
leading to an answer set which removes more clauses

from Kk than those in X ; (2) not computing several times the same subsets of literals

of RK1∪...∪Kk
leading to an answer set; (3) comparing each new subset of literals of

RK1∪...∪Kk
leading to an answer set with the elements of X , if the new subset removes

less clauses from Kk than those in X then X is replaced by it.

5.2 Rens: An Algorithm Computing the Prioritized Removed Sets

We finally present the algorithm which computes the prioritized removed sets of K ∪A.

The idea is to proceed stratum by stratum using the Prio algorithm defined in the previous



subsection. We start with the empty set and we first compute, the subsets of literals of

RK1
leading to an answer set which minimize the number of clauses to remove from K1,

then among these subsets we compute the subsets of literals of RK1∪K2
leading to an

answer set which minimize the number of clauses to remove from K2, and so on. From a

stratum to another, the algorithm Prio described in the previous subsection provides the

subsets of literals of RK1∪...∪Kk
leading to an answer set which minimize the number

of clauses to remove from Kk. The algorithm is the following:

algorithm Rens(PK∪A)
X and Y are two sets of sets of literals, k is an integer

begin

k ← 1
X ← {∅}
while k ≤ n do

Y ← {∅}
while X 6= ∅ do

choose an element X ∈ X
Y ← Prio(PK∪A, X, k,Y)
X ← X\{X}

end while

X ← Y
k ← k + 1

end while

return {CL(X ∩R+

K1∪...∪Kk
) | X ∈ X}

end

And the following proposition holds.

Proposition 4. Let K be a consistent and prioritized finite set of clauses and let A

be a finite consistent set of clauses. R is prioritized removed set of K ∪ A iff R ∈
Rens(PK∪A).

6 Application in the Framework of GIS

6.1 Description of the Application

The aim of the application is to assess water height at different locations in a flooded

valley. The valley is segmented into compartments in which the water height can be

considered as constant. We want to assess a minimum/maximum interval of water height

for each compartment in the valley. We have two sources of information about these

compartments (aside from the knowledge of their geographical layout), see figure 1.

The first source of information (S2) is a set of hydraulic relations between neigh-

bouring compartments. This source is incomplete (not all neighbouring compartments

are connected) and quite certain. The second source of information (S1) consists of a set

of initial assessments of minimal and/or maximal submersion heights for some compart-

ments (i.e. this source in incomplete). This information is uncertain. For more details

see [23] and [32].



compartment A

compartment B

A+ = 1.3m

initial assessment of max submersion height

flow relation

B− = 1.3

initial assessment of min submersion height

Fig. 1. Visual description of the sources of information in the flooding application.

6.2 Representation with a Logic Program

The available knowledge is translated into a set of propositional formulas. The descrip-

tion of the variables (water heights) and their domains leads to n-ary positive clauses

(enumeration of possible values) and binary negative clauses (mutual exclusion of the

values). The initial assessments of water heights for some compartments are translated

into a set of monoliteral clauses representing the assessed heights. In the following, we

denote by S1 the set of clauses describing the initial assessments.

Concerning hydraulic relations, we have seen that they are expressed in terms of

inequalities on the bounds of the water height. They are translated into binary negative

clauses representing the exluded tuples of values. In the following, we denote by S2 the

set of clauses containing the clauses representing the hydraulic relations and the variable

descriptions. S1 is consistent, and S2 is consistent, but S1 ∪ S2 can be inconsistent. We

want to drop out some of the initial assessments of S1 in order to restore consistency.

This leads to the revision of S1 by S2.

Example 1. Let A and B be two compartments, defining the following variables : A+ and

A− for maximal and minimal submersion height for compartment A, and B+ and B−

for the same counterparts for B. These variables are defined on a domain D = {1, 2, 3}.
There is a flow pouring from A to B and there are assessments telling us that the

maximum submersion height is 2 for A and 3 for B. The translation leads to a set S2

containing : (a) clauses describing the variables,















A
+

1
∨ A

+

2
∨ A

+

3
, ¬A

+

1
∨ ¬A

+

2
, ¬A

+

1
∨ ¬A

+

3
, ¬A

+

2
∨ ¬A

+

3
,

A
−

1
∨ A

−

2
∨ A

−

3
, ¬A

−

1
∨ ¬A

−

2
, ¬A

−

1
∨ ¬A

−

3
, ¬A

−

2
∨ ¬A

−

3
,

B
+

1
∨ B

+

2
∨ B

+

3
, ¬B

+

1
∨ ¬B

+

2
, ¬B

+

1
∨ ¬B

+

3
, ¬B

+

2
∨ ¬B

+

3
,

B
−

1
∨ B

−

2
∨ B

−

3
, ¬B

−

1
∨ ¬B

−

2
, ¬B

−

1
∨ ¬B

−

3
, ¬B

−

2
∨ ¬B

−

3















,

and (b) the clauses describing the inequalities representing the flow relation (i.e. A+ ≥
B+, A− ≥ B−, A+ > B−),







¬A
+

1
∨ ¬B

+

2
, ¬A

+

1
∨ ¬B

+

3
, ¬A

+

2
∨ ¬B

+

3
,

¬A
−

1
∨ ¬B

−

2
, ¬A

−

1
∨ ¬B

−

3
, ¬A

−

2
∨ ¬B

−

3
,

¬A
+

1
∨ ¬B

−

1
, ¬A

+

1
∨ ¬B

−

2
, ¬A

+

1
∨ ¬B

−

3
, . . . , ¬A

+

3
∨ ¬B

−

3







.

The set S1 contains the initial assessments, that is, S1 =
{

A+

2 , B+

3

}

. In practice, of

course, the problem is compactly encoded by means of cardinality constraints.

For each clause c ∈ S1 we introduce a new atom rc and we construct a logic program

PS1∪S2
according to the translation proposed in section 4.1.



Example 2. Considering the previous example, the encoding is as follows: The genera-

tion rules for each propositional variables and each new atom rc: (i) A+

1 ← not A
′
+

1 ,

A
′
+

1 ← not A+

1 , etc. One rule for each clause of S2. The translation of the set S2 be-

gins as follows : (ii) false ← not A+

1 , not A+

2 , not A+

3 , false ← A+

1 , A+

2 , etc. and

the contradiction detection rule : contradiction ← not contradiction, false. One

rule for each clause of S1. The translation of the set S1 gives the following rules: (iii)

rA
+

2

← A
′
+

2 , rB
+

3

← B
′
+

3

6.3 Experimental Study and Comparison

This subsection presents a summary of experimental results provided by our answer set

programming (ASP) encoding of RSR and PRSR. The tests are conducted on a Pentium

III cadenced at 1GHz and equipped with 1GB of RAM.

Comparison between ASP encoding and REM algorithm. We first compare our ASP

encoding to the REM algorithm presented by Würbel and al. in [32] which computes

the removed sets by using a modification of Reiter’s algorithm for the computation of

minimal hitting sets.

Due to the lack of space we do not reproduce the tests provided in [32] by the

REM algorithm, we just recall that REM was only able to handle 25 compartments

(see [32] for more details). We compared ASP encoding to REM algorithm and we

observed that until 20 compartments, the two approaches behave similarly. However,

from 25 compartments, the answer set approach is significally better than REM approach.

Moreover ASP encoding can handle the whole area of 120 compartments.

Comparison between ASP encoding and SAT encoding. We now compare the ASP

encoding to a SAT encoding implemented with an efficient SAT-solver, MiniSat. The

test deals with an increasing number of compartments from ten (210 variables, 2387

clauses) to sixty four compartments (1381 variables, 18782 clauses). The aim of this

test is to compare the two approaches performances on the application and to identify

their limits. Ten tests have been performed for a same number of compartments and an

average running time on the ten tests is given.

Until 35 compartments, the two approaches behave similarly. From 40 compartments,

the ASP encoding begins to give better results, and from 45 compartments the ASP

encoding is significally better than the SAT encoding. From 50 compartments the SAT

encoding reaches a limit in CPU time (10 hours). The ASP encoding can deal with 60

compartments with a reasonable running time (few minutes) and reaches a limit in CPU

time around 64 compartments. This is illustrated in figure 2.

Benefit of adding priorities. Prioritized Removed Set Revision is performed with a

stratification of S1 induced from the geographic position of compartments. Compart-

ments located in the north part of the valley are preferred to the compartments located in

the south of the valley. Using a stratification of S1 table 2 shows that Rens significally

reduces the running time.

In the flooding application we have to deal with an area consisting of 120 compart-

ments and the stratification mentioned above is useful to deal with the whole area. Using

the stratification table 2 shows that Rens can deal with the whole area with a reasonable

running time.
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Fig. 2. Comparison between ASP encoding and SAT encoding in the flooding application.

Table 1. Gains induced by Rens.

# of compartments #strata time Rens (s) # of variables # of clauses

64 2 55 1381 18782

64 3 21 1381 18782

64 4 24 1381 18782

64 5 19 1381 18782

Table 2. Gains induced by Rens on an area containing 120 compartments.

# of compartments #strata time Rens (s) # of variables # of clauses

120 2 24132.49 2343 33751

120 3 3047.55 2343 33751

120 4 1698.67 2343 33751

120 5 424.62 2343 33751

7 Concluding Discussion

This paper generalized Removed Sets Revision to prioritized belief bases (Prioritized

Removed Sets Revision) and shows that PRSR can be successfully encoded into answer

set programming. An implementation stemming from smodels system is proposed and

an experimental study in the framework of GIS shows that the answer set approach gives

better results than the REM algorithm based on the adaptation of Reiter’s algorithm for

diagnosis and than an implementation based on an efficient SAT-solver MiniSat. Indeed,

it first allows to deal with the whole area if priorities are provided, and even if there are no

priorities, it can deal with 64 compartments, which is impossible with the REM algorithm

nor with the SAT approach. It is important to note that both ASP encoding and SAT

encoding introduce new variables (basically associated to clauses of the knowledge base).

In order to compute answer sets corresponding to prioritized removed sets we intro-

duced the notion of preferred answer set, an interesting question to investigate is how

to directly encode this notion of preference in the logic program in order to get a direct

one to one correspondence between answer sets and prioritized removed sets.

In [29], Extended language of smodels has been proposed as well as optimization

statements for the smodels system. In PRSR we use cardinality constraints for encoding

the data more compactly, however a first experimentation shows that the use of the



optimization statements like the minimize statement is not suitable because all answer

sets are first generated then the required ones are filtered according to the minimize

statement. The adaptation of smodels avoids the generation of all answer sets and the

Rens algorithm partition the set of answer sets in classes such that only one answer set

is computed by class.

A future work will compare our approach to other extensions of ASP. Among them,

Prioritized Logic Programming (PLP) which deals with preferences among literals

[26]. Answer Set Optimization approach (ASO) [3], which uses two different logic

programs, the first one generates all the possible answer sets and the context dependent

preferences are described in the second one. Several approaches have been proposed for

dealing logic programs with preferences where the preference relation is a preference

among rules like in [6]. A comparative study [27] has shown that these approaches can

be characterized in terms of fixpoints, order preservation and translation into standard

logic programs. Most of these approaches first generate all answer sets for a program

then select the preferred ones. On contrast, we adapted the smodels algorithm in order

to directly compute the preferred answer sets.
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7. N. Eén and N. Sörensson. An Extensible SAT-solver. In Proceedings of 6th International

Conference on Theory and Applications of Satisfiability Testing, 2003.

8. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates

and counterfactual. Artificial Intelligence, 57:227–270, 1992.

9. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. the kr system dlv: progress report,

comparison and benchmarks. In Proceedings of KR’98, pages 406–417, 1998.

10. R. Fagin, J. D. Ullman, and M. Y. Vardi. On The Semantic of Updates in Databases. In

Proceedings of the 2nd ACM Symp. on Principles of Data Base Systems, pages 352–365,

1983.

11. P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford

Books. MIT Press, Cambridge, 1988.



12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Pro-

ceedings of the International Conference on Logic Programming, pages 1070–1080, 1988.
13. De Kleer J. Using crude probability estimates to guide diagnosis. Artificial Intelligenc,

45:381–392, 1990.
14. J. De Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–162, 1986.
15. D. Lehmann. Belief revision revisited. In Proceedings of 14th Int. Joint Conference on

Artificial Intelligence, pages 1534–1539, 1995.
16. Paolo Liberatore and Marco Schaerf. The complexity of model checking for belief revision

and update. In AAAI’96, pages 556–561, 1996.
17. T. Linke. More on nomore. In Proceedings of NMR’02, 2002.
18. P. Marquis and N. Porquet. Resource-bounded paraconsistent inference. Annals of Mathe-

matics and Artificial Intelligence, 39:349–384, 2003.
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