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Logics of Reasonable Information Sources

Arnon Avron, Jonathan Ben-Naim and Beata Konikowska

Abstract

Extending the work of Belnap [3], we continue our
research on ESP structures, consisting of information
sources and a processor which collects information from
the sources, and develops it further using certain coherent
rules. We examine the case of reasonable sources which
provide coherent information, characterize the logic of a
single reasonable source, and prove that the logics gener-
ated by ESP structures with reasonable sources coincide
with the general source-processor logics described in our
previous work. However, we show that, unlike the case of
arbitrary sources, there are processor valuations in gen-
eral ESP structures which cannot be obtained from any fi-
nite number of valuations defined by reasonable sources.

1. Introduction

The development of new network technology allows
several agents to access and update large knowledge
bases, sometimes simultaneously. The process of com-
bining information from different sources and drawing
conclusions from it is very complex, especially in case
of a need to deal with contradictory information.

This problem was tackled first by Belnap in [3], and
his framework was extended by Carnielli and Lima-
Marques in [4]. Both works considered just the sim-
ple case of sources providing information only about
atomic formulas of some logical language (which corre-
sponds to the case of simple relational databases). This
does not capture all the situations encountered in prac-
tice. Thus knowledge bases and disjunctive databases
can provide information also about complex formulas.

A more general case was considered for the first time
in [2]. The framework investigated there consists of a
processor and a set of sources. A source may provide
the processor with information about arbitrary formu-
las of the classical propositional language. To each for-
mula ψ, it either assigns 1 to say that ψ is true, 0 to
say it is false, or nothing (“I”) if it has no informa-
tion about ψ. Thus each source in fact uses 3 truth-
values. In contrast (following Belnap’s suggestion) the

processor uses four truth-values, representing all possi-
ble combinations of the information on a formula that
the processor can obtain from the sources:

t = {1}, f = {0},⊤ = {0, 1},⊥ = ∅

Here t and f correspond roughly to the classical truth
values, while ⊤ represents inconsistent information,
and ⊥ — lack of information.

The processor uses the information provided by the
sources to assign the above truth-values to formulas.
The assignment is carried out in two stages:

• In the first stage, the processor collects the infor-
mation from the sources according to some strat-
egy. The most basic strategy is the existential one,
in which the processor initially includes a value
x ∈ {0, 1} in the value of a formula ψ iff some
source assigns x to ψ (In the universal strategy,
this happens if so do all the sources.). However,
the processor can also base its decision on the opin-
ion of the majority of sources, or of some subset
of preferred sources, or use some other strategy.

• In the second stage, the processor expands the sub-
set of {0, 1} which was initially assigned to a for-
mula in order to close it under certain coherence
constraints. Here the crucial assumption made in
[2] is that the final assignment v developed by
the processor should include everything that can
be derived from the classical truth tables with-
out assuming consistency or full knowledge. Thus
0 ∈ v(ϕ ∨ ψ) iff 0 ∈ v(ϕ) ∩ v(ψ), and 1 ∈ v(ϕ ∨ ψ)
if 1 ∈ v(ϕ) ∪ v(ψ). On the other hand it is pos-
sible that 1 ∈ v(ϕ ∨ ψ) even if 1 6∈ v(ϕ) ∪ v(ψ).
Moreover, because of the possibility of inconsis-
tency, it can also happen that 1 6∈ v(ϕ) even if
1 ∈ v(ϕ ∨ ψ) and 0 ∈ v(ψ).

Now Dunn-Belnap’s famous 4-valued matrix, which is
used in Belnap’s approach, is obtained in this frame-
work if the processor collects information according to
the existential strategy, and the sources provide in-
formation about atomic formulas only. However, if a
source is allowed to provide information about com-
pound formulas too, the above coherence constraints



mean that the processor respects a certain 4-valued
Nmatrix (non-deterministic matrix, see [1]), described
in [2] and presented later on in this paper.

The framework developed in [2] has one main defect:
While it imposes coherence constraints on the proces-
sor, it imposes none on the sources. One result of this,
proved in [2], is that as long as there are at least two dif-
ferent sources, the number of sources has no effect on
the resulting logic. In this paper, we consider a more re-
alistic framework, and assume that the sources are also
coherent. Moreover: unlike the processor, each source
should be expected to be consistent. These assump-
tions mean that the sources should respect an Nma-
trix too, but this time it is a 3-valued Nmatrix with
the truth-values {0, 1, I}, where I represents absence
of information. The said Nmatrix is more determinis-
tic than the one used by the processor. Thus, accord-
ing to the source Nmatrix it is impossible to assign 1 to
ϕ∨ψ and 0 to ψ without assigning 1 to ϕ. In fact, the
interpretation of ∨ in this Nmatrix is like in Kleene’s
3-valued matrix, except that I∨̃I = {I, 1}.

We shall call a source respecting the above-
mentioned Nmatrix reasonable. In the paper we
present the logic of a single reasonable source. Then
we show that if each source in a source-processor struc-
ture is reasonable, and the processor uses the exis-
tential strategy, then the resulting logics do de-
pend in an essential way on the number of sources
in the structure, and if no bound is imposed on
that number, the logic coincides with the most gen-
eral source-processor logic developed in [2]. This
shows that, from the logical viewpoint, limiting at-
tention to reasonable sources does not involve any
loss of generality. Finally, we give new characteriza-
tions for the basic classes of source-processor struc-
tures examined in [2].

2. Preliminaries

We begin with introducing the basic notions con-
nected with the information sources framework which
will be employed throughout the paper. For the sake
of simplicity, we assume that the formulas of classical
propositional logic on which the sources give informa-
tion are built using disjunction and negation only. Ac-
cordingly, all the matrices, Nmatrices and proof sys-
tems are presented here using the latter two connec-
tives only. However, this does not cause any loss of
generality compared to [2], where conjunction was also
used, as in all the considered cases conjunction can
be handled analogously to disjunction. Alternatively,
it can be expressed in terms of disjunction and nega-
tion using De Morgan laws, with the same results.

2.1. General source-processor framework

Definition 2.1 Let A and F be the set of all atomic
formulas and the set of all formulas, respectively, of the
language LC of propositional classical logic with con-
nectives limited to negation and disjunction only.

• By a source valuation we mean a function s : F →
{0, 1, I}1.

• By a processor-type valuation we mean a function
v : F → P({0, 1}).

• By a standard existential2 source-processor struc-
ture, shortly: ESP structure, we mean a tuple
S = 〈S, g, d〉, where:

1. S is a non-empty set of source valuations;

2. g is the processor-type valuation such that,
for any ϕ ∈ F and any x ∈ {0, 1}

x ∈ g(ϕ) iff ∃s ∈ S. s(ϕ) = x

3. d is the minimal processor-type valuation sat-
isfying the following conditions:

(d0) g(ϕ) ⊆ d(ϕ) for every formula ϕ;

(d1) 0 ∈ d(¬ϕ) iff 1 ∈ d(ϕ);

(d2) 1 ∈ d(¬ϕ) iff 0 ∈ d(ϕ);

(d3) 1 ∈ d(ϕ ∨ ψ) if 1 ∈ d(ϕ) or 1 ∈ d(ψ);

(d4) 0 ∈ d(ϕ ∨ ψ) iff 0 ∈ d(ϕ) and 0 ∈ d(ψ)

• Conditions (d1)–(d4) in Pt. 3 are called the stan-
dard coherence conditions for LC , and the minimal
valuation d specified there is called the processor
valuation corresponding to the ESP-structure S.

• A processor-type valuation v is called an ESP pro-
cessor valuation if there exists an ESP-structure
S = 〈S, g, d〉 such that v = d, i.e. v is the proces-
sor valuation corresponding to S.

It can be seen that formulas of LC do not have suf-
ficient expressive power for describing some important
facts regarding the source-processor structures. First,
there is no way to express the fact that a certain for-
mula ϕ is not true, (i.e. 1 6∈ d(ϕ)), or to express dis-
junctive knowledge of the form “one of the formulas ϕ

and ψ is known to be true” (i.e. either 1 ∈ d(ϕ) or
1 ∈ d(ψ)). Second, LC does not possess an implica-
tion connective corresponding to the intended conse-
quence relation. To compensate for this, as the mech-
anism for reasoning about source-processor structures

1 In [2] we used partial functions from F to {0, 1}. The formula-
tion used here is equivalent, with I representing an undefined
value of such a function.

2 Other variants of processor strategies were mentioned and
briefly discussed in [2].



we will use Gentzen-type sequents, which can be used
to express the above two types of knowledge, and which
provide a non-nestable version of implication as well.

Definition 2.2

By a sequent we mean a structure of the form Γ ⇒ ∆,
where Γ and ∆ are finite sets of formulas. The set of all
sequents in the language LC is denoted by Seq.

Each source-processor structure generates a satisfac-
tion relation on formulas in F and sequents in Seq, de-
termined by the final processor valuation d:

Definition 2.3 A source-processor S = 〈S, g, d〉 is a
model of (satisfies):

• a formula ϕ ∈ F , in symbols |=S ϕ, iff 1 ∈ d(ϕ),

• a sequent Σ = Γ ⇒ ∆, in symbols |=S Σ, iff either
S is a model of some formula in ∆, or it is not a
model of some formula in Γ.

Accordingly, each source-processor structure or, more
generally, a class of source-processor structures, in-
duces the corresponding consequence relations:

Definition 2.4 Let J be a class of ESP structures.

• The formula consequence relation induced by J is
the relation ⊢J on P(F) ×F s.t. T ⊢J ϕ if every
S ∈ J which is a model of T is also a model of ϕ;

• The sequent consequence relation induced by J is
the relation ⊢J on P(Seq) × Seq s.t. Q ⊢J Σ if
every model S ∈ J of Q is also a model of Σ.

Note that for the sake of simplicity, we use the same
symbol for the formula consequence and sequent conse-
quence relations. However, it will be always clear from
the context which relation we actually have in mind.

Fact 2.1 For F ⊆ F and ϕ ∈ F :

• If F is finite, then F ⊢J ϕ iff ⊢J (F ⇒ ϕ).

• F ⊢J ϕ iff {⇒ ψ | ψ ∈ F} ⊢J (⇒ ϕ).

2.2. Non-deterministic Matrices

Since formalization of the source-processor frame-
work in the case when the sources can also provide in-
formation about complex formulas requires the use of
Nmatrices, we shall now quote the relevant notions.

Definition 2.5

1. A non-deterministic matrix (Nmatrix) for a propo-
sitional language L is a tuple M = 〈V,D,O〉,
where:

(a) V is a non-empty set of truth values.

(b) D is a non-empty proper subset of V.

(c) For every n-ary connective ⋄ of L, O includes
an n-ary function ⋄̃ : Vn → 2V − {∅}.

2. Let W be the set of formulas of L. A (legal) valu-
ation in an Nmatrix M is a function v : W → V
such that, for every n-ary connective ⋄ of L and ev-
ery ψ1, . . . , ψn ∈ W:

v(⋄(ψ1, . . . , ψn)) ∈ ⋄̃(v(ψ1), . . . , v(ψn))

3. A valuation v in an Nmatrix M is a model of:

• a formula ψ in M (v |=M ψ) if v(ψ) ∈ D.

• a set T ⊆ W in M (v |=M T ) if v |=M ψ for
all ψ ∈ T .

• a sequent Σ = Γ ⇒ ∆ (v |=M Σ) iff either
v |=M ψ for some ψ ∈ ∆, or v 6|=M ψ for
some ψ ∈ Γ.

4. The formula consequence relation induced by M is
the relation ⊢M on P(W)×W such that T ⊢M ϕ

if every model of T in M is also a model of ϕ.

5. The sequent consequence relation induced by M is
the relation ⊢M on P(Seq) × Seq such that:
∀Q ⊆ Seq∀Σ ∈ Seq, Q ⊢M Σ iff, for every valua-
tion v in M, v |=M Q implies v |=M Σ.

Note that the formula and sequent consequence rela-
tions are bound by the relationships given in Fact 2.1.

2.3. Main previous results

In [2] we examined some basic variants of source-
processor structures, and characterized the logic corre-
sponding to those structures. The fundamental result,
extending Belnap’s work, was the characterization of
the most general source-processor logic, generated by
the class of ESP structures in which the processor uses
the existential strategy, and the sources can provide in-
formation about complex formulas too.

Consider the four-valued Nmatrix M4
I = 〈V,D,O〉

with V = {f,⊥,⊤, t},D = {⊤, t},O = {¬̃, ∨̃}, and the
following interpretations of the connectives:

¬̃
f {t}
⊥ {⊥}
⊤ {⊤}
t {f}

∨̃ f ⊥ ⊤ t

f {f,⊤} {t,⊥} {⊤} {t}
⊥ {t,⊥} {t,⊥} {t} {t}
⊤ {⊤} {t} {⊤} {t}
t {t} {t} {t} {t}

In [2] we proved implicitly the following result:

Theorem 2.1 The set of processor valuations obtained
in standard ESP structures coincides with the set of legal
valuations in the Nmatrix M4

I .



An immediate consequence of that result was the
following characterization of the most general source-
processor logic:

Corollary 2.1 The logic generated by all ESP struc-
tures is identical with the logic generated by the Nma-
trix M4

I , i.e., both the formula consequence relation and
the sequent consequence relation generated by the class
of all ESP structures and by the Nmatrix M4

I are respec-
tively identical.

In addition, we obtained the following characteriza-
tions of the logics corresponding to three special cases
of the general source-processor framework for the exis-
tential strategy of the processor:

Theorem 2.2

• The logic generated by the class of all ESP struc-
tures in which the sources provide information about
atomic formulas only isDunn-Belnap’s logic, gener-
ated by the 4-valued Dunn-Belnap’s (deterministic)
matrix.

• The logic generated by ESP structures in which the
sources provide information about atomic formu-
las only, and taken together provide some informa-
tion about all such formulas, is D’Ottaviano and da
Costa’s (deterministic) 3-valued basic paraconsis-
tent logic [6].

• The logic L3
I generated by ESP structures in which

the sources taken together provide some information
about all atomic formulas coincides with the logic
generated by the 3-valued NmatrixM3

I = 〈V,D,O〉,
where V = {f,⊤, t},D = {⊤, t},O = {¬̃, ∨̃}, and
the connectives are interpreted as follows:

¬̃
f {t}
⊤ {⊤}
t {f}

∨̃ f ⊤ t

f {f,⊤} {⊤} {t}
⊤ {⊤} {⊤} {t}
t {t} {t} {t}

3. A reasonable source and its logic

3.1. Behaviour of a reasonable source

As explained in the introduction, particular atten-
tion should be paid to reasonable sources. These are
sources which when providing information extend the
knowledge they have with all consequences that can
be derived from it based on classical truth tables, but
without assuming completeness of information. In ad-
dition, a reasonable source should not provide incon-
sistent information. Thus, e.g., a source s is not rea-
sonable if s(ϕ) = 1 but s(ϕ ∨ ψ) = I. On the other
hand, for a reasonable source s, s(ϕ∨ψ) = 0 must im-
ply s(ϕ) = s(ψ) = 0.

One way to ensure this is to make the source satisfy
the analogues of the coherence conditions (d1)—(d4)
imposed on the processor in Def. 2.1 with membership
replaced by equality:

Definition 3.1 An information source s is called
weakly coherent iff, for any ϕ ∈ F , it satisfies the fol-
lowing conditions:

(s1) s(¬ϕ) = 0 iff s(ϕ) = 1;

(s2) s(¬ϕ) = 1 iff s(ϕ) = 0;

(s3) s(ϕ ∨ ψ) = 1 if s(ϕ) = 1 or s(ψ) = 1;

(s4) s(ϕ ∨ ψ) = 0 iff s(ϕ) = 0 and s(ψ) = 0

Unfortunately, the conditions are now too weak, for
Condition (s3) does not prevent a source s from as-
signing 1 to ϕ ∨ ψ even if s(ϕ) = 0 and s(ψ) = I —
while a reasonable source should be able to infer from
s(ϕ ∨ ψ) = 1 and s(ϕ) = 0 that s(ψ) = 13. To rem-
edy this, we might replace the implication in (s3) by
equivalence, obtaining the following definition:

Definition 3.2 An information source s is called
strongly coherent iff, for any ϕ ∈ F , it satisfies Condi-
tions (s1), (s2), (s4) of Def. 3.1, and:

(s3’) s(ϕ ∨ ψ) = 1 iff s(ϕ) = 1 or s(ψ) = 1.

The latter conditions mean that the source observes
the 3-valued Kleene Matrix M3

K = 〈V,D,O〉, with
V = {1, 0, I},D = {1},O = {¬̃, ∨̃} and the following
interpretations of the connectives:

¬̃
0 1
1 0
I I

∨̃ 0 1 I
0 0 1 I
1 1 1 1
I I 1 I

However, Condition (s3) is overly restrictive, compared
to the behaviour we require from a reasonable source
s. Namely, we do not rule out the possibility that a
source s might know that ϕ ∨ ψ is true without know-
ing either that ϕ is true or that ψ is true. This can hap-
pen when s does not know the classical values of ϕ and
ψ — i.e., when s(ϕ) = s(ψ) = I.

Hence, instead of the Kleene matrix, a reasonable
source should really obey an Nmatrix obtained out of
the Kleene matrix by replacing I as the value of I∨̃I
with the set {1, I}, and all the other entries – by the

3 Note that such a coherence condition, in opposition to the pre-
ceding ones, cannot be required of the processor — for it might
receive inconsistent information from the sources.



corresponding singletons sets. This results in the Nma-
trix M3

r = 〈V,D,O〉, with V,D as above, and the fol-
lowing interpretations of negation and disjunction:

¬̃
0 {1}
1 {0}
I {I}

∨̃ 0 1 I
0 {0} {1} {I}
1 {1} {1} {1}
I {I} {1} {I, 1}

Thus we define a reasonable source as follows:

Definition 3.3 An information source s is called rea-
sonable if s is a legal valuation in the Nmatrix M3

r.

3.2. Logic of a single reasonable source

By Def. 3.3, the logic defined by a single reasonable
source is the logic generated by the the Nmatrix M3

r.

Definition 3.4 The sequent calculus C3
r :

Axioms:

(A1) ϕ ⇒ ϕ (A2) ϕ,¬ϕ ⇒

Structural inference rules: Weakening, Cut

Logical inference rules:

Γ, ϕ ⇒ ∆

Γ,¬¬ϕ ⇒ ∆

Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

Γ ⇒ ∆,¬ϕ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
Γ,⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ
Γ ⇒ ∆,¬ψ Γ, ϕ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆

Γ,¬ϕ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∨ ψ)

Definition 3.5 Let C3
r be the calculus obtained from C3

r

by limiting the applications of the cut rule to formulas oc-
curring in the premises of sequent derivations. In other
words: If S = {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} then S ⊢C3

r

Σ if

there is a proof of Σ from S in C3
r where all cuts are made

on formulas in
⋃n

i=1
(Γi ∪ ∆i) (in particular: ⊢C3

r

Σ iff Σ

has a cut-free proof in C3
r ).

Theorem 3.1 The calculus C3
r is finitely strongly sound

and complete for ⊢M3
r

, i.e., for any finite set of sequents
S ⊆ Seq and any sequent Σ ∈ Seq, S ⊢M3

r

Σ iff S ⊢C3

r

Σ.

Proof (sketch) As it is easy to see that C3
r is

strongly sound for ⊢M3
r

, it suffices to prove the strong

completeness of C3
r for finite premise sets.

We argue by contradiction. Suppose that for a finite
set of sequents S and a sequent Σ0 we have S ⊢M3

r

Σ0,
but S 6⊢C3

r

Σ0. We construct a counter-valuation v such

that v |=M
3

r S but v 6|=M
3

r Σ0. Call a sequent Γ ⇒ ∆

saturated if it is closed under the logical rules in C3
r ap-

plied backwards (e.g., if ¬(ϕ ∨ ψ) ∈ Γ then both ¬ϕ

and ¬ψ are in Γ, while if ¬(ϕ∨ψ) ∈ ∆ then either ¬ϕ

or ¬ψ is in ∆). To construct the valuation v, we con-
struct inductively an extension Γ∗ ⇒ ∆∗ of Σ0 which
is a saturated sequent, and define v as follows:

• For any atomic p, v(p) =





1 if p ∈ Γ∗

0 if ¬p ∈ Γ∗

I otherwise

• For any formulas ϕ, ψ: v(¬ϕ) =





1 if v(ϕ) = 0
0 if v(ϕ) = 1
I otherwise

v(ϕ∨ψ) =





1 iff v(ϕ) = 1 or v(ψ) = 1 or
v(ϕ) = v(ψ) = I and (ϕ ∨ ψ) ∈ Γ∗

0 iff v(ϕ) = 0 and v(ψ) = 0
I otherwise

Then it can be shown that v is a well-defined, legal
valuation for M3

r. Moreover, we have v |=M
3

r S and

v 6|=M
3

r Σ0, so v is the desired counter-valuation.

As C3
r is a restriction of C3

r and the full cut rule is
sound for M3

r, Theorem 3.1 has the following immedi-
ate consequence:

Corollary 3.1 The calculus C3
r is finitely sound and

complete for ⊢M3
r

, and the cut rule is admissible in it.

Note that C3
r can be obtained from the calculus C4

I

for the most general, 4-valued source-processor logic L4
I

given in [2] by replacing rule (∨ ⇒) of C4
I , which is not

valid for M3
r, with the two (∨ ⇒)-rules given here.

4. Source-processor logics for ESP

structures with reasonable sources

Now we show that instead of ESP structures with ar-
bitrary, possibly irrational sources, we can confine our-
selves to ESP structures with reasonable sources.

Theorem 4.1 The logicL4
R generated by theESP struc-

tures in which all sources are reasonable is identical with
the most general source-processor logicL4

I , defined by the
class of all ESP structures with no coherence conditions
imposed on the sources.

Proof (Sketch) As each processor valuation gener-
ated by reasonable sources is a legal processor valuation
in the general 4-valued framework of Section 2.1, then
L4

I ⊂ L4
R. To prove the converse inclusion, we show

that each such general processor valuation v can be ob-
tained from valuations defined by reasonable sources.
To this end, we split v into a family of source valua-
tions Sv defined as follows:



1. For any atomic formula p ∈ A, we include in Sv

source valuations s0
p, s

1
p such that:

s0
p(p) =

{
0 if 0 ∈ v(p)
I otherwise

s1
p(p) =

{
1 if 1 ∈ v(p)
I otherwise

and si
p(q) = I for q ∈ A, q 6= p, i = 0, 1.

2. For any formula ψ = α∨β such that 1 ∈ v(α∨β),
we include in Sv a source valuation sψ such that:

sψ(α ∨ β) = 1, sψ(χ) = I for every proper
subformula χ of α ∨ β

3. The above partial source valuations are extended
to all formulas in F according to the truth tables
of the Kleene matrix M3

K .

Then it can be shown that:

1. Each s ∈ Sv represents a reasonable source.

2. The final processor valuation d obtained out of the
source valuations in Sv according to Definition 2.1
coincides with v.

An analogous result holds for the logics generated
by the special cases of ESP structures examined in [2]:

Proposition 4.1 Theorem 2.2 remains true for ESP
structures containing reasonable sources only.

Despite Theorem 4.1 and Proposition 4.1, there is a
crucial difference between the corresponding frame-
works. In case of arbitrary sources, it is in fact enough
to consider ESP structures with just two sources, for
they generate the same logic as all ESP structures.
However, the logic of ESP structures with reason-
able sources cannot be generated by structures with
a bounded finite number of sources:

Proposition 4.2 There are ESP processor valuations
which cannot be obtained from any finite number of valu-
ations defined by reasonable sources.

Proof Let p0, p1, p2, . . . be an infinite sequence of
atomic formulae, and define formulae B1, B2, . . . by:

• B1 = p0 ∨ p1;

• Bn+1 = ¬(B1∨B2∨...∨Bn)∨pn+1 for n = 1, 2, . . .,
where B1 ∨ B2 ∨ ... ∨ Bn is left-associative.

We define the desired processor valuation v by taking

v(pk) = ⊥ for all k ≥ 0;
v(Bn) = t, v(B1 ∨ B2 ∨ ... ∨ Bn) = t, and
v(¬(B1 ∨ B2 ∨ ... ∨ Bn)) = f for all n ≥ 1

and extending v to other formulae according to the
Dunn-Belnap matrix [3]. Then v is a valid ESP pro-
cessor valuation. Suppose now S is a set of reasonable

sources generating the valuation v. Then, as v(pk) = ⊥
for all k ≥ 0, we must necessarily have s(pk) = ⊥ for
all k ≥ 0 and each s ∈ S. Hence if a reasonable source
s ∈ S assigns 1 to some Bn, then it assigns I to ev-
ery Bk such that k > n — and so also to every Bk

such that k < n. This easily implies that for every k

we need a different source s ∈ S that assigns 1 to Bk

to ensure that v(Bi) = t. Hence S must be infinite.
As the motivation for our work is handling infor-

mation from arbitrarily many sources, then Proposi-
tion 4.2 clearly implies that structures based on rea-
sonable sources are more adequate than those with
arbitrary sources - for a framework reducible to two-
element structures is trivial from practical viewpoint.

5. Conclusions and future work

A natural next step in our research will be to extend
the language of ESP structures with suitably inter-
preted quantifiers to obtain a first-order logic of source-
processor structures. Another direction will be consid-
ering a more realistic, “deductive” version of a reason-
able source, which possesses information about a finite
number of formulas only, but uses it to deduce infor-
mation about other formulas.

Further, the problems considered in our work bear
an obvious relationship to the works on on social choice,
e.g. [5], where a group of individuals aggregate their
individual judgments on some interconnected proposi-
tions into the corresponding collective judgment. Hence
another direction of future work would be to try to ap-
ply our approach to the problems of social choice.

References

[1] A. Avron, and I. Lev, Non-deterministic Multiple-valued

Structures, Journal of Logic and Computation, Vol. 15
(2005), 241-261.

[2] A. Avron, J. Ben-Naim, and B. Konikowska, Processing

Information from a Set of Sources, in Towards Mathe-

matical Philosophy, (D. Makinson, J. Malinowski, and
H. Wansing, eds.), Trends in Logic 28, 165–186, Springer,
2009.

[3] N. D. Belnap, A useful four-valued logic, In G. Epstein
and J. M. Dunn, editors, Modern Uses of Multiple-

Valued Logic, 7-37. Reidel, Dordrecht, 1977.

[4] W. A. Carnielli and M. Lima.-Marques, Society seman-

tics for multiple-valued logics, in Proc. of XII EBL, (Walter
A. Carnielli and Itala M. L. D’Ottaviano, eds.), AMS Se-
riesContemporaryMathematics,Volume235, 33-52, 1999.

[5] F.DietrichandC.List,Strategy-Proof JudgmentAggrega-

tion, Economics and Philosophy, vol.23, pp.269-300, 2007.

[6] I.M.L. D’Ottaviano and N.C.A. da Costa, Sur un
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