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Abstract. Argumentation is a promising approach for reasoning with inconsis-

tent information. Starting from a knowledge base encoded in a logical language,

an argumentation system defines arguments and attacks between them using the

consequence operator associated with the language. Finally, it uses a semantics

for evaluating the arguments. The plausible conclusions to be drawn from the

knowledge base are those supported by “good” arguments.

In this paper, we discuss two families of such systems: the family using exten-

sion semantics and the one using ranking semantics. We discuss the outcomes of

both families and compare them.

1 Introduction

A paraconsistent logic consists of a language and a consequence operator returning 
rational conclusions even from inconsistent premises. Possibly, a paraconsistent logic 
may attach absolute or relative weights to the conclusions.

Note that inconsistency may be present in knowledge bases for mainly three reasons: 
i) a knowledge base may contain a default rule [10] which has exceptions and the former 
leads to an opposite conclusion than the latter; ii) in model-based diagnosis [9], the 
description of the normal behavior of a system may be conflicting with the observations 
made on this system; iii) an inconsistent knowledge base may result from the union of 
several consistent knowledge bases pertaining to the same domain [5]. Whatever the 
source of inconsistency, a paraconsistent logic is needed to deal with it.

As a consequence, there has been much work on constructing and investigating such 
logics. Two families can be distinguished: those that restore consistency (e.g., [10,11]) 
and those that tolerate inconsistency without exploding (e.g., [4,6]). One important in-

stance of the first family computes the maximal (for set inclusion) consistent subbases 
of a knowledge base, then chooses the conclusions that follow from all those subbases. 
Regarding the second family, a prominent approach considers many valued interpreta-

tions with the crucial particularity that they can be models of even inconsistent premises 
and thus can be used to draw conclusions.

Since early nineties, due to its explanatory power, argumentation has become a 
promising approach for handling inconsistency. An argumentation system consists of 
arguments, attacks between them and a semantics for evaluating the arguments. The 
latter are built from a knowledge base encoded in a particular language and using the 
consequence operator associated with the language. The attacks generally refer to the 
inconsistency of the base. Finally, the rational conclusions induced by such an argu-

mentation system are those supported by acceptable arguments wrt the semantics.
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In this paper, we recall the two families of semantics developed in the literature,

namely extension semantics introduced by Dung in [8] and ranking semantics defined

more recently in [1]. We discuss and compare the paraconsistent logics induced by each

family. We show that logics based on extension semantics return flat conclusions and

restore consistency while those based on ranking semantics return ranked conclusions

and tolerate inconsistency.

2 Argumentation Systems

Argumentation systems are built on an underlying monotonic logic. In this paper, we

focus on Tarski’s monotonic logics [12]. Indeed, we consider logics (L, CN) where L is

a set of well-formed formulas and CN is a consequence operator. It is a function from

2L to 2L which returns the set of formulas that are logical consequences of another set

of formulas according to the logic in question. It satisfies the following basic properties:

1. X ⊆ CN(X) (Expansion)

2. CN(CN(X)) = CN(X) (Idempotence)

3. CN(X) =
⋃

Y⊆fX
CN(Y )1 (Compactness)

4. CN({x}) = L for some x ∈ L (Absurdity)

5. CN(∅) �= L (Coherence)

A CN that satisfies the above properties is monotonic. The associated notion of consis-

tency is defined as follows:

Definition 1 (Consistency). A set X ⊆ L is consistent wrt a logic (L, CN) iff CN(X) �=
L. It is inconsistent otherwise.

Arguments are built from a knowledge base Σ ⊆ L as follows:

Definition 2 (Argument). Let Σ be a knowledge base. An argument is a pair (X, x)
s.t. 1) X ⊆ Σ, 2) X is consistent, 3) x ∈ CN(X) and X is minimal (for set inclusion)

wrt 1), 2) and 3).

Notations: Supp and Conc denote respectively the support X and the conclusion x
of an argument (X, x). For all S ⊆ Σ, Arg(S) denotes the set of all arguments that

can be built from S by means of Definition 2, Sub is a function that returns all the

sub-arguments of a given argument. For all E ⊆ Arg(Σ), Base(E) =
⋃

a∈E Supp(a).
Max(Σ) is the set of all maximal (for set inclusion) consistent subbases of Σ.

An argumentation system is defined as follows.

Definition 3. An argumentation system (AS) over a knowledge base Σ is a pair T =
(Arg(Σ),R) where R ⊆ Arg(Σ) × Arg(Σ) is an attack relation such that for all

a, b ∈ Arg(Σ), if (a, b) ∈ R, then Supp(a) ∪ Supp(b) is inconsistent.

Note that (a, b) ∈ R (or aRb) means that a attacks b. It is also worth mentioning that

the set Arg(Σ) may be infinite even when the base Σ is finite.

1
Y ⊆f X means that Y is a finite subset of X.



3 Logics Induced by Extension Semantics

The most popular semantics were proposed by Dung in his seminal paper [8]. Those

semantics as well as their refinements (e.g. in [3,7]) partition the powerset of the set of

arguments into two classes: extensions and non-extensions. Every extension represents

a coherent point of view. We illustrate the kind of paraconsistent logics induced by such

semantics on the most popular ones, namely naive, stable and preferred. Before giving

the formal definitions of the three semantics, we first introduce two key concepts on

which they are based.

Definition 4 (Conflict-freeness–Defence). Let T = (A,R) be an argumentation sys-

tem, E ⊆ A and a ∈ A.

– E is conflict-free iff ∄a, b ∈ E such that aRb.
– E defends an argument a iff ∀b ∈ A such that bRa, ∃c ∈ E such that cRb.

Definition 5 (Semantics). Let T = (A,R) be an argumentation system and E ⊆ A.

– E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.

– E is a preferred extension iff it is a maximal (w.r.t. set ⊆) set that is conflict-free and

defends its elements.

– E is a stable extension iff it is conflict-free and attacks any argument in A \ E .

Notations: Extx(T ) denotes the set of all extensions of T under semantics x where

x ∈ {n, p, s} and n (resp. p and s) stands for naive (respectively preferred and stable).

When we do not need to refer to a particular semantics, we write Ext(H)(T ) for short.

Example 1. The argumentation system depicted below

d a f g

c

e b

has five naive extensions: E1 = {a, c, g}, E2 = {d, e, f}, E3 = {b, d, f}, E4 = {a, e, g},

E5 = {a, b, g}; one stable E3 and two preferred extensions E3 and E6 = {a, g}.

It is worth recalling that stable extensions are naive (respectively preferred) exten-

sions but the converses are not always true. Moreover, an argumentation framework

may have no stable extensions.

Let us now define the plausible conclusions that may be drawn from a knowledge

base Σ by an argumentation system. The idea is to infer a formula x from Σ iff it is the

conclusion of at least one argument in every extension of the system.

Definition 6 (Flat conclusions). Let T = (Arg(Σ),R) be an argumentation system

over a knowledge base Σ. The set of plausible conclusions of T is

Output(T ) =

{

{x ∈ L | ∀E ∈ Ext(T )∃a ∈ E s.t. Conc(a) = x} if Ext(T ) �= ∅
∅ else



In [2] a comprehensive study has been made on the family of logics described in this

section. It has been shown that when an argumentation system satisfies two key proper-

ties, then there is a full correspondence between the naive extensions of the system and

the maximal consistent subbases of the knowledge base. More formally:

Postulates 1 (Closure under sub-arguments – Consistency). Let T = (Arg(Σ), R)
be an argumentation system over a knowledge base Σ. For all E ∈ Ext(T ),

– if a ∈ E , then Sub(a) ⊆ E . We say that T is closed under sub-arguments.

– Concs(E) is consistent. We say that T satisfies consistency.

Theorem 1. [2] Let T = (Arg(Σ), R) be an argumentation system over a knowledge

base Σ. If T satisfies consistency and is closed under sub-arguments (under naive se-

mantics), then:

– For all E ∈ Extn(T ), Base(E) ∈ Max(Σ).
– For all S ∈ Max(Σ), Arg(S) ∈ Extn(T ).

Let us now characterize the set of inferences that may be drawn from a knowledge

base Σ by any argumentation system under naive semantics. It coincides with the set of

inferences that are drawn from the maximal consistent subsets of Σ.

Theorem 2. [2] Let T = (Arg(Σ), R) be an argumentation system over a knowledge

base Σ such that T satisfies consistency and is closed under sub-arguments (under

naive semantics).

Output(T ) =
⋂

Si∈Max(Σ)

CN(Si).

A similar study has been conducted for stable and preferred semantics. It has been

shown that there are two families of attack relations. The first family leads to coherent

systems (i.e., their stable extensions coincide with their preferred ones). Furthermore,

stable extensions coincide with the naive ones. Such systems collapse then with the

above discussed ones. The second family of relations allows choosing only some max-

imal consistent subbases of the knowledge base.

It is worth noticing that the paraconsistent logics defined from argumentation sys-

tems that use extension semantics restore consistency and return flat consequences.

4 Logics Induced by Ranking Semantics

Ranking semantics have been introduced in [1] as an alternative approach for evaluating

arguments. Their basic idea is to rank arguments from the most to the less acceptable

ones, instead of computing extensions. In what follows, we illustrate the approach with

burden-based semantics (Bbs) introduced in [1]. Bbs assigns a burden number to every

argument. The heavier the burden of an argument, the weaker its attacks.



Definition 7 (Burden numbers). Let T = (Arg(Σ),R) be an argumentation system,

i ∈ {0, 1, . . .}, and a ∈ Arg(Σ). We denote by BurT i(a) the burden number of a in the

ith step, i.e.:

Buri(a) =

{

1 if i = 0;
1 +

∑

b∈Att(a) 1/Buri−1(b) otherwise.

where Att(a) = {b ∈ Arg(Σ) | (b, a) ∈ R}.

By convention, if Att(a) = ∅, then

∑

b∈Att(a)

1/Buri−1(b) = 0.

Let us illustrate this function in the following example.

Example 2. Assume the argumentation system depicted in the figure below.

a b c

The burden numbers of each argument are summarized in the table below. Note that

these numbers will not change beyond step 2.

Step i a b c
0 1 1 1

1 1 2 2

2 1 2 1.5
...

...
...

...

Arguments are compared lexicographically on the basis of their burden numbers as

follows:

Definition 8 (Bbs). The burden-based semantics Bbs transforms any argumentation

system T = (Arg(Σ),R) into the ranking Bbs(T ) on Arg(Σ) such that ∀ a, b ∈
Arg(Σ), 〈a, b〉 ∈ Bbs(T ) iff one of the two following cases holds:

∀ i ∈ {0, 1, . . .}, Buri(a) = Buri(b);
∃ i ∈ {0, 1, . . .}, Buri(a) < Buri(b) and ∀ j ∈ {0, 1, . . . , i− 1}, Burj(a) = Burj(b).

Intuitively, 〈a, b〉 ∈ Bbs(T ) means that a is at least as acceptable as b. Let us see in

an example how the semantics works.

Example 2 (Cont). According to Bbs, the argument a is strictly more acceptable than

c which is itself strictly more acceptable than b.

The plausible conclusions of an argumentation system that uses ranking semantics

are simply those supported by at least one argument. Note that a formula and its nega-

tion may both be plausible. This means that the approach tolerates inconsistency. More

importantly, the conclusions are ranked from the most to the least plausible ones. A

formula is ranked higher than another formula if it is supported by an argument which

is more acceptable than any argument supporting the second formula.



Definition 9 (Ranked conclusions). Let T = (Arg(Σ), R) be an argumentation sys-

tem over a knowledge base Σ. The output of T is the pair Output(T ) = 〈C,�〉 such

that:

C = {Conc(a) | a ∈ Arg(Σ)}
x � y iff ∃a ∈ Arg(Σ) such that Conc(a) = x and ∀b ∈ Arg(Σ) such that Conc(b) =
y, 〈a, b〉 ∈ Bbs(T ).

Unlike certain well-known inconsistency-tolerating logics (like the the 3 and 4 val-

ued ones [4,6]), the above logics satisfy the following crucial property: if the premises

are consistent, the conclusions coincide with those of CN.

5 Conclusion

Argumentation is a natural approach for handling inconsistency. It is more akin to the

way humans deal with inconsistency in everyday life. Indeed, generally people con-

struct arguments pros and arguments cons opinions. As a consequence, the results of an

argumentation approach are easier to grasp for an end-user. Yet, the approach is efficient

since, as discussed in the paper, it is able to capture existing approaches (in the case of

extension semantics) or even also to outperform some approaches on certain points (in

the case of ranking semantics).

References

1. Amgoud, L., Ben-Naim, J.: Ranking-based semantics for argumentation frameworks. In: Liu,

W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 134–147.

Springer, Heidelberg (2013)

2. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. Journal of

Applied Non-Classical Logics 23(3), 229–267 (2013)

3. Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: A general schema for argumentation

semantics. Artificial Intelligence Journal 168, 162–210 (2005)

4. Belnap, N.D.: A Useful Four-Valued Logic. In: Dunn, J., Epstein, G. (eds.) Modern Uses of

Multiple-Valued Logic, pp. 7–37. Oriel Press (1977)

5. Cholvy, L.: Automated reasoning with merged contradictory information whose reliability

depends on topics. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946,

pp. 125–132. Springer, Heidelberg (1995)

6. D’Ottaviano, I., da Costa, N.: Sur un problème de Jaśkowski. In: Comptes Rendus de
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