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ABSTRACT
This paper proposes a novel family of argumentation-based
logics for handling inconsistency. Starting with a base logic,
it builds arguments and attack relations between them. The
novelty of the approach lies in the fact that arguments are
evaluated using a ranking semantics which rank-orders ar-
guments from the most acceptable to the least acceptable
ones. Naturally, a second novelty is that the conclusions to
be drawn are ranked with regard to plausibility. We provide
a couple of axioms that such logics should enjoy and illus-
trate the approach with a particular ranking semantics. We
show that the new logics are more discriminating than ex-
isting argumentation-based logics. Moreover, they are good
candidates for measuring inconsistency in knowledge bases.

Categories and Subject Descriptors
I.2.3 [Deduction and Theorem Proving]: Nonmono-
tonic reasoning and belief revision; I.2.11 [Distributed Ar-
tificial Intelligence]: Intelligent agents

General Terms
Human Factors, Theory

Keywords
Handling inconsistency; Argumentation

1. INTRODUCTION
Argumentation is an alternative approach for handling in-

consistency (see [11]). Starting from a knowledge base en-
coded in a particular logical language, it builds arguments
and attack relations between them using a consequence op-
erator associated with the language, then it evaluates the ar-
guments using an acceptability semantics. Finally, it draws
the conclusions that are supported by the “winning” argu-
ments.
Recently, it was shown in [2] that argumentation systems

that are based on Tarskian logics [35] and Dung’s accept-
ability semantics [20] follow the same line of research as
well-known syntactic approaches for handling inconsistency,

namely the one that computes the maximal (for set inclu-
sion) consistent subbases (MCSs) of a knowledge base, and
draws the conclusions that follow from all of them [34]. In-
deed, it was shown that there are full correspondences be-
tween stable (respectively preferred, naive) extensions and
MCSs. This result generalizes the one provided in [16] for ar-
gumentation systems that are built on top of propositional
logic (thus a Tarskian logic) and that evaluate arguments
with stable semantics [20]. These formalisms are intuitive,
but have a sceptical behaviour towards inconsistency. They
only draw conclusions that follow from the formulae of the
knowledge base that are not involved in inconsistency. They
thus leave inconsistency unsolved. Let us consider the fol-
lowing illustrative example.

Example 1. Let Φ = {p,¬p, q, p → ¬q} be a proposi-
tional knowledge base. This base has three maximal (for set
inclusion) consistent subbases:

• Φ1 = {p, q},

• Φ2 = {p, p→ ¬q},

• Φ3 = {¬p, q, p→ ¬q}.

The common consequences of the three subbases are the tau-
tologies. The same output is reached by any argumentation
system that uses grounded, stable, semi-stable, preferred, and
naive semantics.

Note that none of the two conflicts {p,¬p} and {p, q, p→
¬q} is solved. Such output may seem unsatisfactory in gen-
eral and in multi agent systems where one needs an efficient
way for solving conflicts between agents.

Let us now have a closer look at the knowledge base Φ.
The four formulae in Φ do not have the same responsibility
for inconsistency. For instance, the degree of blame of p is
higher than the one of q since it is involved in more con-
flicts. Moreover, p is frontally opposed while q is opposed in
an indirect way. Similarly, ¬q is more to blame than q since
it follows from the controversial formula p.

This paper proposes a novel family of argumentation-based
logics which take advantage of such information in order to
handle effectively inconsistency. The new logics are built on
top of Tarskian logics. Their main novelty lies in the seman-
tics that are used for evaluating the arguments. Indeed, the
new logics use the ranking semantics introduced by several
scholars (e.g., [1, 10, 17, 32]). These semantics differ from
Dung’s ones in that they do not compute extensions of argu-
ments, but rather rank-order the arguments from the most



acceptable to the least acceptable ones. Moreover, they are
based on different principles. For instance, the number of
attackers is taken into account in ranking semantics while
it does not play any role in extension-based semantics. The
second key feature of our new argumentation-based logics
lies in that their conclusions are ranked with regard to plau-
sibility. Thus, formulas that appear in minimal conflicts may
not only be inferred but also rank-ordered from the most to
the least plausible ones.
We provide eight axioms that the new logics should enjoy.

These axioms serve as theoretical criteria for validating the
logics. For illustration purposes, we present two instantia-
tions of the approach. In the first one, the ranking seman-
tics is Burden (one of the semantics proposed in [1]) and
the attack relation between arguments is left abstract. This
instantiation covers thus a large set of logics. We show that
those logics satisfy all the axioms. The second instantia-
tion itself instantiates the first one. Indeed, it uses classical
propositional logic, an instance of Tarski’s logics, Burden se-
mantics and a particular attack relation, assumption-attack
[21]. Obviously, the resulting logic satisfies the axioms. It
satisfies some other desirable properties. Namely, the logic
captures an inconsistency measure discussed in [27].

The paper is structured as follows: We introduce argumentation-
based ranking logics (ARLs), followed by a couple of axioms
they should satisfy. Next, we define an instance of ARL,
Burden-based ARLs, and investigate its properties. Then,
we introduce Classical Burden-based ARL, an instance of
Burden-based ARLs. We compare the new approach with
existing work before concluding.

2. RANKING LOGICS
The new family of logics, called argumentation-based rank-

ing logics (or ranking logics for short), is built on top of
Tarskian logics [35]. According to Tarski, a logic is a set
of well-formed formulae and a consequence operator which
returns the set of formulae that follow from another set of
formulae. There are no requirements on the connectives used
in the language. However, the consequence operator should
satisfy some very basic properties.

Definition 1 (Logic). A logic is a tuple ⟨F , w, C⟩ where
F is a set of well-formed formulae, w is a well-order1 on F ,
C is a consequence operator, i.e., a function from 2F to 2F

such that for Φ ⊆f F2,

• Φ ⊆ C(Φ) (Expansion)

• C(C(Φ)) = C(Φ) (Idempotence)

• C(Φ) =
∪

Ψ⊆fΦ C(Ψ) (Compactness)

• C({ϕ}) = F for some ϕ ∈ F (Absurdity)

• C(∅) ̸= F (Coherence)

• {C({ϕ}) | ϕ ∈ F} is finite (Finiteness)

1A well-order relation on a set X is a total order on X with
the property that every non-empty subset of X has a least
element in this ordering.
2Ψ ⊆f Φ means that Ψ is a finite subset of Φ.

The well-ordering w enables to arbitrarily select a repre-
sentative formula among equivalent ones. Its exact defini-
tion is not important for the purpose of the paper. Finiteness
ensures a finite number of non-equivalent formulae. This
condition is not considered by Tarski. However, it is very
useful since it will avoid redundant arguments as we will see
later. It is worthy to recall that classical logic satisfies this
condition when the number of propositional variables is fi-
nite, which is a quite common assumption in the literature.
Finally, note that any logic that satisfies the first five con-
ditions is monotonic. The notion of consistency associated
with a logic is defined as follows:

Definition 2 (Consistency). A set Φ ⊆ F is con-
sistent wrt logic ⟨F , w, C⟩ iff C(Φ) ̸= F . It is inconsistent
otherwise.

Before introducing the notion of argument, let us first
define when pairs of formulas are equivalent.

Definition 3 (Equivalent formulas). Let ⟨F , w, C⟩
be a logic and ϕ, ψ ∈ F . The formula ϕ is equivalent to ψ
wrt logic ⟨F , w, C⟩, denoted by ϕ ≡ ψ, iff C({ϕ}) = C({ψ}).

The building block of ranking logics is the notion of ar-
gument. An argument is a reason for concluding a formula.
Thus, it has two main components: a support and a con-
clusion. In what follows, two arguments having the same
supports and different yet equivalent conclusions are not dis-
tinguished, they are rather seen as the same argument. The
reason is that those arguments are redundant and increase
uselessly and misleadingly the argumentation graph both
from a theoretical and computational point of view.

Definition 4 (Argument). Let ⟨F , w, C⟩ be a logic
and Φ ⊆f F . An argument built from Φ is a pair (Ψ, ψ),

• Ψ ⊆ Φ and Ψ is consistent,

• ψ is the w-smallest element of {ψ′ ∈ F | ψ′ ≡ ψ} such
that ψ ∈ C(Ψ),

• @Ψ′ ⊂ Ψ such that ψ ∈ C(Ψ′).

Notations: Supp and Conc denote respectively the support
Ψ and the conclusion ψ of an argument (Ψ, ψ). For all
Φ ⊆f F , Arg(Φ) denotes the set of all arguments that can
be built from Φ by means of Definition 4.

Proposition 1. For all Φ ⊆f F , Arg(Φ) is finite.

Proof. Let ⟨F , w, C⟩ be a logic and Φ ⊆f F . There
is a finite number of consistent subsets of Φ, thus a finite
number of supports of arguments. Let us show that the
number of possible conclusions of arguments is also finite.
From the finiteness condition of the logic, the set of non-
equivalent formulae is finite. Moreover, from the definition
of argument, in each set of equivalent formulae only one
formula may be the conclusion of arguments. Thus, Arg(Φ)
is finite.

Since information may be inconsistent, arguments may
attack each other. In what follows, such attacks are captured
by a binary relation, denoted by R. For two arguments a, b,
(a, b) ∈ R (or aRb) means that a attacks b. For the sake of
generality, R is left unspecified. It can thus be instantiated
in various ways (see [25] for examples of instantiations of
R). However, we assume that it is based on inconsistency.



Definition 5 (Conflict-dependency). Let ⟨F , w, C⟩
be a logic and Φ ⊆f F . An attack relation R ⊆ Arg(Φ) ×
Arg(Φ) is conflict-dependent iff for all a, b ∈ Arg(Φ), if
(a, b) ∈ R then Supp(a) ∪ Supp(b) is inconsistent. For all
a ∈ A, Att(a) = {b ∈ A | (b, a) ∈ R}.

All the attack relations discussed in [25] are conflict-dependent.

Definition 6 (Argumentation function). An argu-
mentation function G on a logic ⟨F , w, C⟩ transforms any
set Φ ⊆f F into a finite directed graph3 ⟨Arg(Φ),R⟩ where
R ⊆ Arg(Φ)×Arg(Φ) is a conflict-dependent attack relation.

Unlike existing argumentation-based logics which use the
family of semantics defined in [20] for the evaluation of ar-
guments, our logics use the family of ranking semantics in-
troduced in [1, 10, 17, 32]. Starting with an argumentation
graph, these semantics rank the arguments from the most
acceptable to the least acceptable ones. It is worth point-
ing out that the two families of semantics are founded on
different principles and neither one refines the other.

Definition 7 (Ranking). A ranking on a set X is a
binary relation ≼ on X such that: ≼ is total (i.e., ∀x, y ∈ X,
x ≼ y or y ≼ x), reflexive (i.e., ∀ x ∈ X, x ≼ x) and
transitive (i.e., ∀ x, y, z ∈ X, if x ≼ y and y ≼ z, then
x ≼ z).
Intuitively, x ≼ y means that x is at least as good as y. So,
y ̸≼ x means that x is strictly better than y.

Definition 8 (Ranking semantics). A ranking seman-
tics is a function S that transforms any finite directed graph
⟨A,R⟩ (A being the set of nodes and R the set of edges) into
a ranking on A.

We are now ready to introduce argumentation-based rank-
ing logics (ARLs). An ARL is a logic (in the sense of Def-
inition 1) which rank-orders with regard to plausibility the
formulas drawn using its consequence operator. It is defined
upon a base logic which is supposed to behave in a rational
way when information is consistent but exhibits an irrational
behaviour in presence of inconsistency. Propositional logic
is an example of such logic. ARL restricts thus the base
logic’s inference power.
An ARL proceeds as follows: For any set Φ of formulas

in the base logic, it defines its corresponding argumentation
graph. The conclusions to be drawn from Φ using the conse-
quence operator of the ARL are the formulas that are sup-
ported by arguments. The ranking of arguments constructed
by a ranking semantics is used in order to rank-order those
conclusions from the most plausible to the least plausible
ones. The idea is the following: a formula is ranked higher
than another formula if it is supported by an argument which
is more acceptable than any argument supporting the sec-
ond formula. It is worth mentioning that this is not the only
way for comparing formulae on the basis of their supporting
arguments. However, we have chosen an intuitive relation
which is, in addition, validated by some inconsistency mea-
sure as we will see in a next section.

Definition 9 (ARL). An argumentation-based rank-
ing logic (ARL) is a tuple L = ⟨F , w, C′,K⟩ based on base
logic ⟨F , w, C⟩, argumentation function G, ranking semantics
S, where:
3In the literature, the pair ⟨Arg(Φ),R⟩ is also called argu-
mentation system.

• ⟨F , w, C′⟩ is a logic such that for all Φ ⊆f F ,
C′(Φ) = {ϕ ∈ F | ∃a ∈ Arg(Φ) with G(Φ) = ⟨Arg(Φ),R⟩
and Conc(a) ≡ ϕ wrt logic ⟨F , w, C⟩}.

• For all Φ ⊆f F , for all ϕ, ψ ∈ C′(Φ), ⟨ϕ, ψ⟩ ∈ K(Φ) iff
∃a ∈ Arg(Φ) such that Conc(a) ≡ ϕ and ∀b ∈ Arg(Φ)
such that Conc(b) ≡ ψ, ⟨a, b⟩ ∈ S(G(Φ)) with G(Φ) =
⟨Arg(Φ),R⟩.

For a given set Φ of formulas, ⟨ϕ, ψ⟩ ∈ K(Φ) means that
ϕ is at least as plausible as ψ.

Remark 1. For the sake of simplicity, throughout the pa-
per, we refer to an ARL as a tuple L = ⟨F , w, C,G,S, C′,K⟩.

Remark 2. Unlike existing argumentation-based logics,
an ARL may return an inconsistent set of consequences.

A straightforward result says that an ARL does not infer
conclusions which are not drawn under its base logic.

Proposition 2. Let L = ⟨F , w, C,G,S, C′,K⟩ be an ARL.
For all Φ ⊆f F , C′(Φ) ⊆ C(Φ).

Proof. Let L = ⟨F , w, C,G,S, C′,K⟩ be an ARL and
Φ ⊆f F . G(Φ) = ⟨Arg(Φ),R⟩ such that for all a ∈ Arg(Φ),
Conc(a) ∈ C(Φ) (from Definition 4).

3. AXIOMS
An ARL should satisfy some axioms, each of which ex-

presses an intuitive and mandatory property. Below, we
propose two categories of axioms: axioms of the first cate-
gory describe properties of ARL’s consequence operator C′

whereas axioms of the second category constrain the rank-
ing function K.

Since the base logic behaves in a rational way when infor-
mation is consistent, it is natural that both logics coincide
in this case.

Axiom 1 (Consistency). Let L = ⟨F , w, C,G,S, C′,K⟩
be an ARL. We say L satisfies consistency iff, for all Φ ⊆f

F , if Φ is consistent wrt logic ⟨F , w, C⟩, then C′(Φ) = C(Φ).

While this axiom may seem obvious, it is surprisingly not
satisfied by several many-valued logics as we will see in Sec-
tion 6. The next axiom expresses that when information is
consistent, all formulae are equally plausible.

Axiom 2 (Flatness). Let L = ⟨F , w, C,G,S, C′,K⟩ be
an ARL. We say L satisfies flatness iff, for all Φ ⊆f F , if Φ
is consistent wrt logic ⟨F , w, C⟩, then K(Φ) = C′(Φ)×C′(Φ).

ARLs should also avoid absurd inferences.

Axiom 3 (Non-Trivialization). Let L = ⟨F , w, C,
G, S, C′, K⟩ be an ARL. We say L satisfies non-triviality
iff, for all Φ ⊆f F , C′(Φ) ̸= F .

The next axiom concerns the free formulae wrt the base
logic of an argumentation-based ranking logic. The free for-
mulae of a given set Φ of formulae are those that are not
involved in any conflict, i.e., minimal (for set inclusion) in-
consistent subset of Φ.

Definition 10 (Conflicts–Free formulae). Let
⟨F , w, C⟩ be a logic and Φ ⊆f F .



• A conflict of Φ is any Ψ ⊆ Φ such that Ψ is inconsis-
tent and for all ϕ ∈ Ψ, Ψ \ {ϕ} is consistent.

• A formula ϕ ∈ Φ is free iff there does not exist a con-
flict Ψ of Φ such that ϕ ∈ Ψ.

Free(Φ) denotes the set of free formulae of Φ.

The logical consequences of free formulae should be in-
ferred by the consequence operator C′.

Axiom 4 (Free Recovering). Let L = ⟨F , w, C, G,
S, C′, K⟩ be an ARL. We say L satisfies free recovering iff,
for all Φ ⊆f F , C(Free(Φ)) ⊆ C′(Φ).

The following property is straightforward.

Proposition 3. If an ARL L = ⟨F , w, C, G, S, C′, K⟩
satisfies free recovering axiom, then for all Φ ⊆f F ,
Free(Φ) ⊆ C′(Φ).

Proof. Let L = ⟨F , w, C, G, S, C′, K⟩ be an ARL which
satisfies free recovering. Thus, for all Φ ⊆f F , C(Free(Φ)) ⊆
C′(Φ). Since C satisfies the Expansion axiom (in Definition
1), then Free(Φ) ⊆ C(Free(Φ)). Consequently, Free(Φ) ⊆
C′(Φ).

Logical consequences of free formulae are all equally plau-
sible. Furthermore, they are at least as plausible as any
non-free formula.

Axiom 5 (Free Precedence). Let L = ⟨F , w, C, G,
S, C′, K⟩ be an ARL. We say L satisfies free precedence iff,
for all Φ ⊆f F , for any ϕ ∈ C(Free(Φ)) ∩ C′(Φ), for any
ψ ∈ C′(Φ), ⟨ϕ, ψ⟩ ∈ K(Φ).

The strict version of the previous axiom gives precedence
to free formulae over any other formula.

Axiom 6 (Strict Free Precedence). Let L = ⟨F ,
w, C, G, S, C′, K⟩ be an ARL. We say L satisfies strict free
precedence iff, for all Φ ⊆f F , for any ϕ ∈ C(Free(Φ)) ∩
C′(Φ), for any ψ ∈ C′(Φ) \ C(Free(Φ)), ⟨ψ, ϕ⟩ /∈ K(Φ).

The next axioms concern the ranking of arbitrary formu-
lae (i.e., formulae that are not free). The first one states
that any formula is at most as reliable as its logical conse-
quences. This means that logically stronger formulae bring
potentially more blame. A similar axiom is defined in [27]
for inconsistency measures.

Axiom 7 (Dominance). Let L = ⟨F , w, C,G,S, C′,K⟩
be an ARL. We say L satisfies dominance iff, for all Φ ⊆f F ,
for any ϕ, ψ ∈ C′(Φ), if ϕ ∈ C({ψ}) then ⟨ϕ, ψ⟩ ∈ K(Φ).

ARLs that satisfy dominance rank equally equivalent for-
mulae.

Proposition 4. Let L = ⟨F , w, C,G,S, C′,K⟩ be an ARL.
If L satisfies dominance, then for all Φ ⊆f F , for any ϕ, ψ ∈
C′(Φ), if ϕ ≡ ψ wrt logic ⟨F , w, C⟩, then ⟨ϕ, ψ⟩ ∈ K(Φ).

The next axiom captures the following idea: Assume three
formulae ϕ, ψ, δ /∈ C(Free(Φ)) such that C({ϕ, ψ}) = C({δ}).
If ϕ and ψ are independent, then the blame of δ is the sum
of blame of both ϕ and ψ, and thus δ is weaker than the two
other formulae.

Axiom 8 (Conjunction Dominance). Let L = ⟨F , w,
C, G, S, C′, K⟩ be an ARL. We say L satisfies conjunction
dominance iff, for all Φ ⊆f F , for any ϕ, ψ, δ ∈ C′(Φ) \
C(Free(Φ)), if C({ϕ, ψ}) = C({δ}), δ /∈ Φ, and ∀(X,ϕ) ∈
Arg(Φ) , ∀(X ′, ψ) ∈ Arg(Φ), C(X) ∩ C(X ′) = C(∅), then
⟨ϕ, δ⟩ /∈ K(Φ).

The axioms are compatible, i.e., they can be satisfied all
together.

Theorem 1. The eight axioms are compatible.

Most of them are independent, i.e., none of them implies
the others. Notable exceptions are: strict free precedence
which implies free precedence, and conjunction dominance
which implies dominance.

Proposition 5. Strict free precedence implies free prece-
dence. Conjunction dominance implies dominance.

4. BURDEN-BASED RANKING LOGICS
The aim of this section is to show that there are ARLs

for which all axioms hold. For that purpose, we propose
an instantiation in which the parameter S (i.e., the ranking
semantics) is specified. Note that the resulting instance is
still relatively general since it covers a broad range of base
logics and attack relations.

Our aim is not to propose a novel ranking semantics, but
to use an existing one. There are several alternatives (e.g.,
[1, 10, 32]). We choose the Burden semantics which has been
introduced in [1]. The main reason is that this semantics
has been axiomatized in [1]. In other words, its underlying
principles and its properties are known.

Burden semantics (Bbs) assigns a burden number to every
argument. This number represents the weight of the attacks
on an argument. The semantics follows a multiple steps
process. In the initial step, the burden number is 1 for all
arguments. Then, in each step, all the burden numbers are
simultaneously recomputed on the basis of the number of
attackers and their burden numbers in the previous step.
More precisely, for every argument a, its burden number
is set back to 1, then, for every argument b attacking a,
the burden number of a is increased by a quantity inversely
proportional to the burden number of b in the previous step.

Definition 11 (Burden numbers). Let A = ⟨A,R⟩
be a finite directed graph, i ∈ {0, 1, . . .}, and a ∈ A. We

denote by Buri(a) the burden number of a in the ith step:

Buri(a) =

{
1 if i = 0;
1 +

∑
b∈Att(a)

1
Buri−1(b)

otherwise.

By convention, if Att(a) = ∅, then
∑

b∈Att(a)
1

Buri−1(b)
= 0.

Example 2. Assume an argumentation graph made of
three arguments: a, b, and c such that aRb and bRc. The
burden numbers of each argument are summarized in the ta-
ble below. These numbers do not change beyond step 2.

Step i a b c
0 1 1 1
1 1 2 2
2 1 2 1.5



It is worthy to recall that the burden numbers of argu-
ments always converge. Arguments are compared lexico-
graphically on the basis of their burden numbers.

Definition 12 (Bbs). The burden-based semantics Bbs
transforms any argumentation graph A = ⟨A,R⟩ into the
ranking Bbs(A) on A such that ∀ a, b ∈ A, ⟨a, b⟩ ∈ Bbs(A)
iff one of the two following cases holds:

• ∀ i ∈ {0, 1, . . .}, Buri(a) = Buri(b);

• ∃ i ∈ {0, 1, . . .} such that Buri(a) < Buri(b) and ∀ j ∈
{0, 1, . . . , i− 1}, Burj(a) = Burj(b).

⟨a, b⟩ ∈ Bbs(A) means that a is at least as acceptable as b.

Example 2 (Cont) The argument a is more acceptable
than c which is itself strictly more acceptable than b.

It is easy to check that this semantics privileges arguments
that have less attackers.

Proposition 6. Let A = ⟨A,R⟩ be a finite directed graph.
For all a, b ∈ A, if |Att(a)| < |Att(b)|, then ⟨b, a⟩ /∈ Bbs(A).

We are now ready to define burden-based ranking logics.

Definition 13 (Burden-based logics). A burden-
based ranking logic is an ARL L = ⟨F , w, C, G, S, C′, K⟩
such that S is Bbs.

Example 3. Assume a set Φ ⊆ F from which the argu-
mentation graph of Example 2 is generated. Thus, Conc(a)
is more plausible than Conc(c) and Conc(c) is more plausible
than Conc(b). Each conclusion is as plausible as any of its
equivalent formulae.

We show next that all the eight axioms are satisfied by
burden-based ARLs. This provides a theoretical validation
for this family of logics. Six out of eight axioms hold for any
attack relation.

Theorem 2. Burden-based ARLs satisfy consistency, non
trivialization, free-recovering, flatness, equivalence and con-
junction dominance.

Proof. Let ⟨F , w, C⟩ be a logic, Φ ⊆f F andA= ⟨Arg(Φ),
R⟩ be the corresponding argumentation graph. Assume that
Φ is consistent and let ϕ ∈ C(Φ). Thus, ∃Ψ ⊆ Φ such that
Ψ is the minimal, for set inclusion, subset of Φ such that
ϕ ∈ C(Ψ). Then, ⟨Ψ, ϕ⟩ ∈ Arg(Φ) and ϕ ∈ C′(Φ). So,
C(Φ) ⊆ C′(Φ).
Let ϕ∗ be the formula such that C({ϕ∗}) = F . Thus, the

set {ϕ∗} is inconsistent. However, since for any argument
⟨Ψ, ψ⟩, the set Ψ is consistent, then so is for ψ. Conse-
quently, there is no argument in Arg(Φ) whose conclusion is
ϕ∗. Thus, C′(Φ) ̸= F .
By definition, Free(Φ) is consistent, so is for C(Free(Φ))

since by idempotence, C(Free(Φ)) = C(C(Free(Φ))). Thus,
for all ϕ ∈ C(Free(Φ)), ∃⟨Ψ, ϕ⟩ ∈ Arg(Free(Φ)). Since
Arg(Free(Φ)) ⊆ Arg(Φ), then ϕ ∈ C′(Φ) and C(Free(Φ)) ⊆
C′(Φ).
Assume that Φ is consistent. SinceR is conflict-dependent,

then R = ∅. Consequently, for all a ∈ Arg(Φ), for all
i = 0, 1, ..., Buri(a) = 1. Thus, Bbs(A) = Arg(Φ) × Arg(Φ).
Consequently, K(Φ) = C′(Φ)× C′(Φ).

Let ϕ ∈ C′(Φ) and X = {x ∈ F | x ≡ ϕ}. From the
definition of argument, only one element of X, say x∗, is
supported by arguments. Let A∗ = {a ∈ Arg(Φ) | Conc(a) =
x∗}. Since Bbs ensures a total order on Arg(Φ), then ∃a ∈
A∗ such that for all b ∈ A∗, ⟨a, b⟩ ∈ Bbs(Arg(Φ)). Thus,
for all ψ ∈ C′(Φ) such that ϕ ≡ ψ, ⟨ϕ, ψ⟩ ∈ K(Φ) and
⟨ψ, ϕ⟩ ∈ K(Φ).

Let ϕ, ψ, δ ∈ C′(Φ) \ C(Free(Φ)). Assume that C({ϕ, ψ})
= C({δ}), δ /∈ Φ, and ∀(X,ϕ) ∈ Arg(Φ) , ∀(X ′, ψ) ∈ Arg(Φ),
C(X)∩C(X ′) = C(∅). Let A = {a ∈ Arg(Φ) | Conc(a) ≡ ϕ},
B = {b ∈ Arg(Φ) | Conc(b) ≡ ψ}, C = {c ∈ Arg(Φ) | Conc(c) ≡
δ}. A ̸= ∅, B ̸= ∅ and C ≠ ∅ (since ϕ, ψ, δ ∈ C′(Φ)). Since
δ /∈ Φ and (3), then for all c ∈ C, Supp(c) = Supp(a)∪Supp(b)
for a ∈ A and b ∈ B. Moreover, |Att(c)|= |Att(a)|+|Att(b)|.
Since ϕ, ψ ∈ C′(Φ) \ C(Free(Φ)), then |Att(a)| ≥ 1 and
|Att(b)| ≥ 1. Thus, |Att(c)| > |Att(a)| and |Att(c)| >
|Att(b)|. From Prop. 6, ⟨c, a⟩ /∈ Bbs(A) and ⟨c, b⟩ /∈ Bbs(A)
for all a ∈ A and for all b ∈ B. Then ⟨ϕ, δ⟩ /∈ K(Φ) and
⟨ψ, δ⟩ /∈ K(Φ).

Free precedence is also satisfied by Burden-based ARLs.
This is mainly due to the fact that any argument whose
support contains only free formulae has no attackers.

Proposition 7. Let A = ⟨Arg(Φ),R⟩ be an argumenta-
tion graph built on a logic ⟨F , w, C⟩ and Φ ⊆f F . For all
a ∈ Arg(Free(Φ)), Att(a) = ∅.

A consequence of the previous result is that arguments
built from the free part of a set of formulae have all the
same burden number 1. This means also that they are all
equally acceptable with respect to Bbs, and are at least as
acceptable as any other argument built from the same set.

Proposition 8. Let A = ⟨Arg(Φ),R⟩ be an argumenta-
tion graph built on a logic ⟨F , w, C⟩ and Φ ⊆f F .

• For all a ∈ Arg(Free(Φ)), ∀i ∈ {0, 1, . . .}, Buri(a) = 1.

• For all a ∈ Arg(Free(Φ)), for all b ∈ Arg(Φ), ⟨a, b⟩ ∈
Bbs(A).

Proof. Let A = ⟨Arg(Φ),R⟩ be an argumentation graph
built on Φ ⊆f F . From Prop. 7, for all a ∈ Arg(Free(Φ)),
Att(a) = ∅. From Def. 11, it follows that ∀ i ∈ {0, 1, . . .},
Buri(a) = 1. Let b ∈ Arg(Φ). For all i ∈ {0, 1, . . .},
Buri(b) ≥ 1. Thus, ⟨a, b⟩ ∈ Bbs(A).

From this result, we can show that burden-based ARLs
satisfy free precedence.

Theorem 3. Burden-based ARLs satisfy free-precedence.

Proof. Let A = ⟨Arg(Φ),R⟩ be built on a logic ⟨F , w, C⟩
and Φ ⊆f F . Assume that C(Free(Φ)) ̸= ∅. Since C(Free(Φ))
is consistent, then for each ϕ ∈ C(Free(Φ)), ∃a ∈ Arg(Free(Φ))
such that Conc(a) ≡ ϕ. From Prop. 8 ∀ i ∈ {0, 1, . . .},
Buri(a) = 1. Thus, there is no argument in favour of ϕ which
is more acceptable than a. Thus, for all ϕ, ψ ∈ C(Free(Φ)),
⟨ϕ, ψ⟩ ∈ K(Φ).

Let ϕ ∈ C(Free(Φ)) and a ∈ Arg(Free(Φ)) such that
Conc(a) ≡ ϕ. Let ψ ∈ C′(Φ)\C(Free(Φ)), and let b ∈ Arg(Φ)
be one of the most acceptable arguments in favor of ψ. From
Prop. 8, ⟨a, b⟩ ∈ Bbs(A), thus ⟨ϕ, ψ⟩ ∈ K(Φ).



Free precedence holds for any conflict-dependent attack
relation. Things are different for strict precedence axiom.
We show that it holds when the attack relation satisfies a
very basic property. The idea is that an argument whose
support contains at least one non-free formula should be
attacked. To say it differently, any argument that uses a
controversial formula in its support should be attacked. This
is a natural requirement.

Definition 14 (Conflict-sensitiveness). Let ⟨F , w,
C⟩ be a logic and Φ ⊆f F . An attack relation R ⊆ Arg(Φ)×
Arg(Φ) is conflict-sensitive iff for all a ∈ Arg(Φ), if there
exists a conflict C ⊆ Φ such that C ∩ Supp(a) ̸= ∅, then
Att(a) ̸= ∅.

We show next that strict precedence is satisfied when the
attack relation is conflict-sensitive.

Theorem 4. For any burden-based ARL L = ⟨F , C,G,S,
C′,K⟩, for all Φ ⊆f F , if the attack relation of G(Φ) is
conflict-sensitive, then L satisfies strict free-precedence.

Proof. Let A = ⟨Arg(Φ),R⟩ be built on a logic ⟨F , w, C⟩
and Φ ⊆f F . Assume that C(Free(Φ)) ̸= ∅. Let ϕ, ψ ∈
C′(Φ) such that ϕ ∈ C(Free(Φ)) and ψ /∈ C(Free(Φ)). Thus,
∃a ∈ Arg(Free(Φ)) such that Conc(a) ≡ ϕ and from Prop. 7,
Att(a) = ∅. Since ψ /∈ C(Free(Φ)), then ∀b ∈ Arg(Φ) such
that Conc(b) ≡ ψ, ∃C ⊆ Φ such that C is a conflict and
C ∩ Supp(b) ̸= ∅. Since R is conflict-sensitive, Att(b) ̸= ∅.
From Prop. 6, ⟨b, a⟩ /∈ Bbs(A), thus ⟨ψ, ϕ⟩ /∈ K(Φ).

Let us now introduce another property of attack relations.

Definition 15 (Monotonic attack relation). Let
⟨A, R⟩ be an argumentation graph. The relation R is mono-
tonic iff for all a, b, c ∈ A,

(Supp(a) ⊆ Supp(b)) ⇒ (cRa⇒ cRb)

Dominance is guaranteed for logics that use monotonic
attack relations.

Theorem 5. For any burden-based ARL L = ⟨F , C,G,S,
C′,K⟩, for all Φ ⊆f F , if the attack relation of G(Φ) is
monotonic, then L satisfies dominance.

Proof. Let A = ⟨Arg(Φ),R⟩ be built on a logic ⟨F , w, C⟩
and Φ ⊆f F . Let ϕ, ψ ∈ C′(Φ) such that ϕ ∈ C({ψ}). Let
A = {a ∈ Arg(Φ) | Conc(a) ≡ ψ}. Note that A ̸= ∅ since
ψ ∈ C′(Φ). For all a ∈ A, ψ ∈ C(Supp(a)) (by definition of
argument). From monotonicity of C, ϕ ∈ C(Supp(a)). So, for
all a ∈ A, ∃a′ ∈ Arg(Φ) such that Supp(a′) ⊆ Supp(a) and
Conc(a′) ≡ ϕ. Since R is monotonic, then Att(a′) ⊆ Att(a).
There are two cases: i) Att(a) = Att(a′). Thus, ∀ i ∈
{0, 1, . . . , }, Buri(a) = Buri(a

′). This means that ⟨a, a′⟩ ∈
Bbs(A) and ⟨a′, a⟩ ∈ Bbs(A). ii) Att(a′) ⊂ Att(a). Thus,
∀i ∈ {0, 1, . . . , }, Buri(a) = Buri(a

′)+Σc∈Att(a)\Att(a′)
1

Buri−1(c)
.

It follows that Buri(a) > Buri(a
′) which means that ⟨a, a′⟩ /∈

Bbs(A). This means that for all a ∈ A, ∃a′ ∈ Arg(Φ) such
that Conc(a′) ≡ ϕ and ⟨a′, a⟩ ∈ Bbs(A). Since Bbs(A) re-
turns a total preorder, then ∃a′ ∈ Arg(Φ) such that for all
a ∈ A, ⟨a′, a⟩ ∈ Bbs(A). Thus, ⟨ϕ, ψ⟩ ∈ K(Φ)

Note that equivalence which follows from dominance is
satisfied for any attack relation, i.e., even for those that
violate monotonicity.

5. CLASSICAL BURDEN-BASED LOGICS
The aim of this section is twofold: i) to fully illustrate

the approach introduced so far by fixing all the parameters
of an ARL, and ii) to show that the new approach is more
discriminating than existing argumentation based logics.

Burden-based logics are still general and two of its pa-
rameters (the base logic and the attack relation) are not
specified. In this section, we study one particular instance
of burden-based logics, the so-called classical burden-based
logic. The latter uses propositional logic with a finite num-
ber of variables in the language. This assumption, very
common in the literature, ensures the finiteness condition
of Definition 1. The attack relation between arguments is
assumption-attack introduced for the first time in [21].

Definition 16 (Assumption attack). Let ⟨F , w, C⟩
be propositional logic. An argument ⟨Ψ, ψ⟩ attacks an argu-
ment ⟨Ψ′, ψ′⟩, denoted by ⟨Ψ, ψ⟩ Ras ⟨Ψ′, ψ′⟩, iff ∃ϕ ∈ Ψ′

s.t. ψ ≡ ¬ϕ.

This relation is conflict-dependent, monotonic and conflict-
sensitive.

Proposition 9. The relation Ras is conflict-dependent,
monotonic and conflict-sensitive.

Let us define the classical burden-based ranking logic.

Definition 17 (Classical burden-based logic).
Classical burden-based logic is the burden-based ARL L =
⟨F , w, C, G, S, C′, K⟩ such that:

• ⟨F , w, C⟩ is the classical propositional logic with a finite
number of propositional variables

• For all Φ ⊆f F , the attack relation of G(Φ) is Ras

Example 1 (Cont) Recall the propositional knowledge
base Φ = {p,¬p, q, p → ¬q}. Assume that the non equiva-
lent formulae selected by the well-ordering w are as follows:

p ∧ ¬p ¬p ∧ ¬q ¬p p→ ¬q p ∨ ¬p
¬p ∧ q ¬q p→ q
p ∧ ¬q p↔ q q → p
p ∧ q p↔ ¬q ¬p→ q

q
p

The set Arg(Φ) contains the 21 following arguments.

a ⟨{¬p, q},¬p ∧ q⟩ k ⟨{q, p→ ¬q}, p↔ ¬q⟩
b ⟨{q, p→ ¬q},¬p ∧ q⟩ l ⟨{q}, q⟩
c ⟨{p, p→ ¬q}, p ∧ ¬q⟩ m ⟨{p}, p⟩
d ⟨{p, q}, p ∧ q⟩ n ⟨{¬p}, p→ ¬q⟩
e ⟨{¬p},¬p⟩ o ⟨{p→ ¬q}, p→ ¬q⟩
f ⟨{q, p→ ¬q},¬p⟩ y ⟨{¬p}, p→ q⟩
g ⟨{p, p→ ¬q},¬q⟩ z ⟨{q}, p→ q⟩
h ⟨{p, q}, p↔ q⟩ r ⟨{p}, q → p⟩
i ⟨{¬p, q}, p↔ ¬q⟩ s ⟨{p},¬p→ q⟩
j ⟨{p, p→ ¬q}, p↔ ¬q⟩ t ⟨{q},¬p→ q⟩

u ⟨∅, p ∨ ¬p⟩

The set C′(Φ) contains the conclusions of the arguments
and their equivalent formulae. Due to space limitation and
the large number of attacks, we do not give all of them here.
Examples of attacks are ⟨f, r⟩ and ⟨g, l⟩. From the graph of
attacks, the following burden numbers are computed (table
on the left). The ranking on Arg(Φ) is as shown in the table
on the right.



i = 0 i = 1 i = 2 i = 3
u 1 1 1 1

m, s, r 1 3 1.83 2.41
e, n, y 1 2 1.33 1.54
l, z, t 1 2 1.25 1.48
o 1 2 1.25 1.48
d, h 1 4 2.05 2.89
b, f, k 1 3 1.50 1.96
c, g, j 1 4 2.05 2.89
a, i 1 3 1.58 2.02

u
o, l, z, t
e, n, y
b, f, k
a, i

m, r, s
c, d, g, h, j

The conclusions of the arguments are ranked as follows:

p ∨ ¬p
p→ ¬q, q, p→ q, ¬p→ q

¬p
¬p ∧ q, p↔ ¬q

p, q → p
p ∧ ¬q, ¬q, p ∧ q, p↔ q

Due to the equivalence property (see Theorem 2), any for-
mula which is equivalent to a conclusion x of an argument
will be ranked at the same level as x. For instance, p ∧ p
is as plausible as p. Note that ¬p is more plausible than p,
and q is more plausible than ¬q. Thus, unlike existing ar-
gumentation approaches, our approach solves both conflicts
of the base Φ.

Let us now investigate the properties of classical burden-
based logic. Obviously, it satisfies all the axioms satisfied by
burden-based ARLs.

Theorem 6. Classical burden-based logic satisfies all the
axioms.

We show that the ranking produced by classical burden-
based logic captures in some cases a well-known inconsis-
tency measure [27]. The latter assigns a degree of blame
to each formula of a knowledge base. This degree is the
number of conflicts in which the formula is involved. Before
presenting the formal result, let us first estimate the number
of attacks an argument may receive. It is the number of con-
flicts in which the formulae of the support of the argument
are involved.

Notation: Let ⟨F , w, C⟩ be a logic and Φ ⊆f F . MIC(Φ)
denotes the set of conflicts of Φ (see Def. 10).

Proposition 10. Let A = ⟨Arg(Φ), Ras⟩ be an argumen-
tation graph built over Φ. For all a ∈ Arg(Φ),

|Att(a)| =
∑

ϕ∈Supp(a)

|{Ψ ∈ MIC(Φ) | ϕ ∈ Ψ}|

Proof. Let A = ⟨Arg(Φ), Ras⟩ be an argumentation
graph built over Φ, a ∈ Arg(Φ) and Supp(a) = {ψ1, . . . , ψn}.
Let Def(ψ) denote the set {b ∈ Arg(Φ) | Conc(b) ≡ ¬ψ}.
From the definition of Ras, |Att(a)| = |Def(ψ1)| + . . . +
|Def(ψn)|. For each ψi ∈ Supp(a), we show that there is
a bijection between Def(ψi) and {Ψ ∈ MIC(Φ) | ψi ∈ Ψ}.
Let b ∈ Def(ψi). Thus, Supp(b) ⊢ 4¬ψi. From the mini-
mality of Supp(b), it follows that Supp(b) ∪ {ψi} ∈ MIC(Φ).
Let now bk, bj ∈ Def(ψi). Assume that Supp(bk) ∪ {ψi} =
Supp(bj) ∪ {ψi}, then bk = bj . Thus, each argument in

4The symbol ⊢ denotes the classical inference.

Def(ψi) refers to one conflict and two arguments refer to
distinct conflicts. Let Ψ ∈ MIC(Φ) such that ψi ∈ Ψ. Thus,
Ψ \ {ψi} is a minimal (for set inclusion) consistent set that
infers ¬ψi. Thus, ⟨Ψ \ {ψi},¬ψi⟩ ∈ Def(ψi).

We show now that if a formula ϕ of a knowledge base (a
set of formulae) is involved in more conflicts than another
formula ψ of the base, then ψ is more plausible than ϕ. This
result is only true in case each formula in the base cannot
be inferred from another consistent subset of the base.

Theorem 7. Let L = ⟨F , w, C, G, S, C′, K⟩ be the clas-
sical burden-based logic, and Φ ⊆ F such that for all ϕ ∈ Φ,
@Ψ ⊆ Φ \ {ϕ} such that Ψ is consistent and ϕ ∈ C(Ψ).

For all ϕ, ψ ∈ C′(Φ) ∩ Φ, if |{Ψ ∈ MIC(Φ) | ϕ ∈ Ψ}| >
|{Ψ′ ∈ MIC(Φ) | ψ ∈ Ψ′}|, then ⟨ϕ, ψ⟩ /∈ K(Φ).

Proof. Let L = ⟨F , w, C, G, S, C′, K⟩ be the classical
burden-based logic, and Φ ⊆ F such that for all ϕ ∈ Φ,
@Ψ ⊆ Φ \ {ϕ} such that Ψ is consistent and ϕ ∈ C(Ψ).
Thus, for all ϕ ∈ Φ such that {ϕ} is consistent, there exists
a single argument supporting it, ⟨{ϕ}, ϕ⟩. Assume now two
consistent formulae ϕ, ψ ∈ C′(Φ) ∩ Φ. Let a = ⟨{ϕ}, ϕ⟩ and
b = ⟨{ψ}, ψ⟩. Assume also that x = |{Ψ ∈ MIC(Φ) | ϕ ∈
Ψ}| > y = |{Ψ′ ∈ MIC(Φ) | ψ ∈ Ψ′}|. From Proposition 10,
|Att(a)| = x and |Att(b)| = y. From Proposition 6, it follows
that ⟨a, b⟩ /∈ Bbs(A). Consequently, ⟨ϕ, ψ⟩ /∈ K(Φ).

Works on inconsistency measures focus only on the for-
mulae of the base and completely neglect their logical con-
sequences. Our approach focuses on both. That’s why the
two approaches may not find the same results in the gen-
eral case. Indeed, it may be the case that a formula ϕ of a
base is involved in more conflicts than another formula ψ of
the same base, but ϕ follows logically from a subset of the
base and this subset constitutes a more acceptable argument
than the one supporting ψ. Thus, our approach will rank ϕ
higher than ψ while the inconsistency measure will prefer ψ.

6. RELATED WORK
In what follows, we compare our approach with existing

works on handling inconsistency in knowledge bases.

6.1 Argumentation-based approaches
Most of existing argumentation-based logics (ALs) use

Dung’s semantics [20] for the evaluation of arguments. Those
semantics compute sets of acceptable arguments, called ex-
tensions. There are mainly two families of ALs: the ALs
that are built on top of a Tarskian logic (e.g., [16, 25]) and
the ALs that use a rule-based logic (e.g., [3, 13, 22]). Rule-
based logics do not satisfy Tarski’s axioms, thus the corre-
sponding ALs are not concerned by our study. Regarding
the first family of ALs, it was shown recently in [2] that
such ALs coincide with the syntactic approach which com-
putes the maximal consistent subbases of a knowledge base.
Such logics do not solve conflicts unlike our approach which
does. The validation of the classical burden-based ARL by
a well-known inconsistency measure testifies this point.

6.2 Inconsistency measures
Works on inconsistency measures look for measuring the

degree of inconsistency of a knowledge base (e.g. [18, 26, 27,
28, 29]). The very basic measure considers the number of
minimal conflicts of a base as the degree of inconsistency of



that base. Such measures are not relevant to our approach
since they do not focus on individual formulae. Other works
(e.g., [27]) defined ways for measuring the degree of blame of
the formulae of a base. Such degrees make it possible to com-
pare pairs of formulae. However, these works focused only
on the formulae of the base and completely neglect their log-
ical consequences. Our approach focuses on both. When the
formulae of the knowledge base do not follow from consis-
tent parts of the base, our approach returns the same results
as some measures, but in the general case it does not. We
believe that our approach is more natural since it focuses on
the different ways of getting a formula (being an element of
a base or a logical consequence of the base). It returns thus
more accurate results. Moreover, it analyses more deeply the
conflicts that raise in a knowledge base thanks to the attack
relation. Our approach can be seen as a rich inconsistency
measure. Finally, it is worthy to recall that works on incon-
sistency measures considered propositional knowledge bases
while our approach considers a larger class of logics.

6.3 Many-valued logics
A large branch of logics for handling inconsistency con-

sists of many-valued logics, i.e., logics based on interpre-
tations that can assign more than two values to formulae.
Such values may represent degrees of truth or information
states indicating whether the truth or falsity of a formula is
supported by some information. The crucial point is that a
classically inconsistent set of formulae is always satisfied by
some many-valued interpretations, so these interpretations
can be used to derive non-trivial conclusions.
An important many-valued logic is the three-valued one

from [19]. A formula can be assigned to one of the three
following information states: {1} (the truth of the formula is
supported by some information, but not its falsity), {0} (its
falsity is supported, but not its truth), and {0, 1} (both its
truth and falsity are supported). This logic was introduced
to answer a question posed in 1948 by S. Jaśkowski, who was
interested in systematizing theories capable of containing
contradictions. Further investigations of this logic can be
found in e.g. [5] and [15].
Another important many-valued logic is the four-valued

one motivated in [7, 8]. The three first values are the same
as above, i.e., {0}, {1}, and {0, 1}. The fourth one {} means
that neither the truth nor the falsity of the formula is sup-
ported by some information. As a consequence, the main
difference with the three-valued logic described previously
is that classical tautologies are no longer automatically de-
rived. This logic has been investigated in e.g. [4], where
it is shown in particular that the algebraic structure of the
present four-valued interpretations plays a central role in the
bilattices proposed in [23, 24]. The present four-valued logic
has also been extended in [14], where a general framework,
called society semantics, was introduced with the aim of pro-
viding various ways of processing information from multiple
sources, each leading to a particular many-valued logic.
Another four-valued logic was introduced in [6]. The val-

ues are {}, {0}, {1}, and {0, 1} with the same meanings. The
main difference with the two previous logics is the following:
information can be provided directly about compound for-
mulae, while, in the two previous logics, information can be
provided only about atomic formulae and then propagated
to the compound ones. As a consequence, an interpretation
is no longer truth-functional. In particular, if v(φ) = {0}

and v(ψ) = {0}, then v(φ ∨ ψ) can be either {0} or {0, 1}
(instead of only {0}). This non-determinism reflects the fact
that 1 belongs or does not belong to v(φ∨ψ) depending on
the direct information about φ ∨ ψ, while 0 is indirectly
forced into v(φ ∨ ψ) by the information about φ and ψ.

The three logics described above have two points in com-
mon. First, all the conclusions have the same level of reli-
ability. In particular, they do not formally distinguish be-
tween free conclusions and the other conclusions. Second,
they do not coincide with classical logic in case of classically
consistent databases (at least without an additional mecha-
nism). Two advantages of our present ranking logics is that
they always rank at the top the elements of the free part of
the premisses and they naturally draws exactly the classical
conclusions from consistent premisses.

6.4 Works on nonmonotonic reasoning
The idea of ranking formulae can also be found in works

on nonmonotonic reasoning. In some works, the ranking is
an input like in [12] where a knowledge base is equipped
with a partial or total preordering. The latter reflects cer-
tainty degrees of formulae. In our approach the ranking is an
output and reflects at what extent inferences are plausible.
In works like [9, 30, 31] or even system Z [33], defaults are
ranked from the most general to the most specific ones. In
our approach no distinction is made between the formulae
of a knowledge base.

7. CONCLUSION
In this paper, we tackled the important problem of han-

dling inconsistency in knowledge bases. Starting from the
observation that most existing argumentation-based logics
have at their heart the idea of computing the maximal con-
sistent subbases of an inconsistent knowledge base, then
choosing the conclusions that follow from all the subbases,
we argued that such formalisms do not really solve the incon-
sistency. They rather choose all what is out of inconsistency
and forget the rest. We proposed a novel approach which
effectively solves inconsistency. The formalism presents var-
ious other features: first, it defines a logic which returns a
ranking of the conclusions, unlike existing logics that com-
pute a flat set of conclusions from a knowledge base. Second,
the logic avoids absurd inferences and in case of consistent
knowledge bases, it coincides with classical logics, as desired.
Third, it enjoys many other desirable properties expressed
by the axioms. Last but not least, it makes an elegant bridge
between works on inconsistency measures and formalisms for
handling inconsistency. To the best of our knowledge, this
is the first work in this direction.

This work can be extended in different ways. First, we
would like to find a complete characterization of the ranking
produced by classical-burden logics. Another line of research
consists of investigating other logics produced using other
ranking semantics among the ones proposed in [1, 10, 17].
We plan also to investigate the impact of the attack relation
on the final ranking. Finally, we plan to investigate the
computational issues of the approach.
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problème de Jaśkowski. In Comptes Rendus de

l’Académie des Sciences de Paris (1970), vol. 270,
pp. 1349–1353.

[20] Dung, P. M. On the Acceptability of Arguments and
its Fundamental Role in Non-Monotonic Reasoning,
Logic Programming and n-Person Games. AIJ 77
(1995), 321–357.

[21] Elvang-Gøransson, M., Fox, J., and Krause, P.
Acceptability of arguments as ‘logical uncertainty. In
ECSQARU (1993), pp. 85–90.
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