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In this experimental study, we report on the mixing properties of interfacial colloidal floaters
(glass bubbles) by chemical and hydrodynamical currents generated by self-propelled camphor disks
swimming at the air-water interface. Despite reaching a statistically stationary state for the glass
bubbles distribution, those floaters always remain only partially mixed. This intermediate state
results from a competition between (i) the mixing induced by the disordered motion of many
camphor swimmers and (ii) the unmixing promoted by the chemical cloud attached to each individual
self-propelled disk. Mixing/unmixing is characterized globally using the standard deviation of
concentration and spectra, but also more locally by averaging the concentration field around a
swimmer. Besides the demixing process, the system develops a "turbulent-like" concentration spectra,
with a large-scale region, an inertial regime and a Batchelor region. We show that unmixing is due
to the Marangoni flow around the camphor swimmers, and is associated to compressible effects.

PACS numbers:

I. INTRODUCTION

Particles floating on water and stirred by turbulence tend to segregate into string-like clusters [1–4] as they disperse.
Similarly, a passive scalar (let say the concentration field of a given substance) stirred on a turbulent interface is also
found to exhibit pronounced persistent heterogeneities [5], never reaching a perfectly mixed state. Such a turbulent

interfacial unmixing can have dramatic consequences in environmental, geophysical and industrial flows. It is for
instance responsible for the accumulation of pollutants (such as micro-plastic debris) floating at the surface of the oceans
[6, 7], and is probably also to be associated to coastal mixing fronts [8] as well as to the dynamics of phyto-plankton
blooms and patchiness [9, 10].

In this respect, clustering of floaters on a turbulent interface contrasts with the usual intuition that turbulence always
enhances the mixing of tracer particles and passive scalars, with an effective turbulent diffusivity orders of magnitude
larger than the simple molecular diffusivity, classically leading to a rapid homogenization of stirred substances. This is
all the more true that such a clustering is observed regardless of any attractive interactions between floaters, such
as the so-called cheerios effect [11]. Indeed, such counter-intuitive response to turbulent stirring is known to occur
when there exist sources of compressibility in the system. This has been long recognized for the transport of inertial
particles, with the so-called preferential concentration phenomenon [12] associated to the effective compressibility that
arises from inertia-induced departure between particles’ velocity and stirring – incompressible– flow velocity [13]).

In the case of floaters, the compressibility source responsible for the persistent clustering does not rely on additional
physical effects as above, but is readily provided by the flow. Indeed the 2D interfacial turbulent field of relevance is a
priori compressible due to the presence of upwelling regions (acting as divergent zones or sources) and downwelling
regions (acting as convergent zones or sinks), even in the case where the 3D stirring turbulence underneath the
interface is itself incompressible [2, 3, 5, 14]. This results in a final state which is statistically stationary (though
out-of-equilibrium) where on one hand turbulent mixing tends to homogenize the particles spatial distribution while
compressibility effects sustain the non-uniformities with dense regions at the convergent zones and depleted regions at
the divergent zones.

For both the turbulent clustering of floaters and the one of inertial particles the effective compressibility is related to
some underlying coupling to the overall turbulent mixing process. In recent studies [15–19] our groups have shown that
similar compressible effects on the transport and mixing properties of particles can be induced by the particle response
– a so-called phoretic drift – to environmental field gradients. This environment sensing strategy can be built from
various phoretic phenomena: diffusiophoresis (drift induced by chemical concentration gradients), thermophoresis (drift
induced by thermal gradients), electrophoresis (drift induced by electric field gradients), etc. Experiments, simulations
and analytical models [15–19] show that such phoretic particles acquire an effectively compressible dynamics, even
though the underlying flow is perfectly incompressible. Active (self-propelled) particles, which can be seen as an
extreme case of phoretic particles (with self-generated gradients driving their drift), have also been reported to exhibit
clustering when stirred by incompressible chaotic or turbulent flows [20, 21].
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FIG. 1: (a) Experimental setup: water tank filled with 1 cm millipore water. At the surface, N interfacial swimmers (camphor
disks). At the beginning of the experiment, a patch of passive floaters (40± 2mg of glass bubbles) is introduced in the system
near the center of the bath. A LED plate emits light from above and a camera acquires light transmitted through the setup. (b)
Typical image recorded after ten minutes for N = 15 swimmers with radius R =2.5mm.

In this article, we propose to experimentally investigate a new original configuration of interfacial mixing, where
small floating particles are stirred by active interfacial particles, in the absence of any other underlying forced flow.
More precisely, we consider the mixing of a patch of micrometric hollow glass spheres floating on water, stirred by
millimetric interfacial active camphor disks [22]. The motivation of exploring this configuration is two-folds: (i) in a
recent study [22] we have shown that the dynamics of such active disks mimics very accurately the statistical multi-scale
properties of homogeneous isotropic turbulence (in particular a Kolmogorov like spectrum has been found), although
the underlying flow itself remains almost at rest; it is therefore tempting to investigate the mixing induced when
such active disks are used as stirrers. (ii) The self-motility of these camphor disks is driven by self generated surface
tension gradients (related to a symmetry breaking of the dissolution of camphor in water) [23]; one may therefore
expect that the mixed micro-particles experience some additional phoretic drift (due to the surface tension gradients)
eventually leading to an effective compressibility behaviour, as previously described. As a consequence, although no
actual fluid turbulence (neither compressible nor incompressible) is present in the system, the proposed configuration
shares qualitative properties with interfacial turbulent mixing: a stirring mechanism (active camphor particles) with
turbulent-like statistical features and a source of possible compressible effects (related to the presence of surface tension
gradients).

We explore the global and multi-scale mixing properties when a small patch of glass bubbles is released at the
free surface and stirred by the active camphor disks. We observe, that similarly to interfacial turbulent mixing, a
final non-uniform steady state is reached for the concentration field of the micro-particles, with the existence of
densely seeded regions and depleted regions (in the trail of the active camphor stirrers). A spectral analysis of the
concentration field reveals striking quantitative analogies with the turbulent mixing of a passive scalar. Finally a close
investigation of the dynamics in the vicinity of individual stirrers confirms the role played by compressible effects
induced by Marangoni flows driven by tension surface gradients in the chemical wake of the active camphor stirrers.

II. MATERIALS AND METHODS

A. Experimental setup

Camphor disk swimmers are made by punching an agarose sheet (0.5mm in thickness) filled with solid camphor
grains [22–24]. Depending on the size of the puncher, the radius R of the camphor disks considered hereafter ranges
from 1 to 4mm. A number N (ranging from 7 to 45 [44]) of freshly made swimmers is deposited at the surface of
a 1 cm-thick water subphase (Elga PureLab Flex ultra-pure water) in a circular glass cell (Fig. 1a). All around the
cell, a thin floating plastic ring is placed at the edge, that cancels the capillary meniscus, avoiding the trapping of
floaters or swimmers; the available remaining free surface has a diameter of 18 cm. Prior to each new experiment, the
subphase is renewed by fresh water.

Once deposited on water, swimmers begin to release camphor into the fluid which results in surface tension
heterogeneities in their vicinity that drive the so-called Marangoni flows [25, 26]. Despite their circular shape, a
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TABLE I: Root mean square velocity of the swimmers urms =
√

〈u2
x〉+ 〈u2

y〉 and corresponding Reynolds number here defined
as Rep = urmsR/ν, where ν is the kinematic viscosity of water, for: (a) R = 2.5mm, and different numbers of swimmers N ;
(b) N = 15, and increasing radius R. For all experiments we indicate ϕs, the percentage of surface fraction covered by the
swimmers.

R = 2.5mm

N 7 11 15 20 30 45

ϕs 0.54 0.85 1.16 1.54 2.32 3.47

urms (mm/s) 37.1 32.8 26.6 22.1 15.8 11.2

Rep 93 82 66 55 40 28

N = 15

R (mm) 1 1.5 2 2.5 3 3.5 4

ϕs 0.19 0.42 0.74 1.16 1.67 2.27 2.96

urms (mm/s) 19.4 26.6 26.7 26.6 25.1 24 22.8

Rep 19 40 53 66 75 84 91

(a) (b)

spontaneous symmetry breaking occurs immediately, resulting in their propulsion in an arbitrary direction, at a typical
velocity U ∼ 6 cm s−1 for a single swimmer of radius R = 2.5mm [24]. This swimming velocity depends not only on the
swimmers radius and physico-chemical parameters, but also on the number of swimmers as they interact altogether.

As soon as enough swimmers are present, the system starts to exhibit spatio-temporal fluctuations [22], so that

their velocity is better characterized using the root mean square urms =
(
〈u2

x〉+ 〈u2
y〉
)1/2

. Table I summarizes the
values of urms together with the corresponding Reynolds numbers, for the cases considered in our experiments; for a
sake of comparison with other works, the percentage of surface fraction covered by the swimmers ϕs = 100NπR2/At,
where At is the total available area, is also given. The Reynolds number is defined here as Rep = urmsR/ν, where ν is
the kinematic viscosity of water, and two series of experiments have been conducted. In the first case the radius is
fixed (R = 2.5mm) and the number N of Marangoni swimmers is increased, resulting in a decreasing velocity. In the
second case we consider a fixed number of swimmers N = 15, with increasing radius: here the rms-velocity does not
vary much, although the Reynolds number increases with increasing radius. Given the range of Reynolds numbers
considered here, Rep ∈ [20, 100], the flow of water remains perfectly laminar although the dynamics of the swimmers is
fluctuating in space and time as observed in our previous study [22].

At the beginning of an experiment, a patch of passive floaters constituted of glass bubbles (see properties in [27]) is
introduced in the system of interfacial swimmers near the center of the bath. The subsequent dynamics of the whole
system, backlit with a LED panel, is recorded from top using a HXC Flare camera equipped with a Nikon 24-85mm
f/2.8-4D IF AF NIKKOR objective, yielding images with resolution 2048x2048 px2 at a rate of 35Hz (see fig. 1a). A
typical image is shown in figure 1b where interfacial swimmers appear as dark disks and glass bubbles as grey shades
on the surface.

B. Concentration field

In the following, 〈Q〉 denotes the average of a given quantity Q over the whole circular surface. To access the local
surface concentration of floaters, we quantify the light absorption at location (x, y) and time t by comparing the
light intensity field I(x, y, t) in presence of floaters to the intensity field I0(x, y) of a reference image without floaters.
Assuming that such an absorption is linear with the local concentration C(x, y, t) of the floaters — a natural choice for

a single layer of individual scatterers — we define a non dimensional intensity field Ĩ(x, y, t) through the relation

Ĩ(x, y, t) =
I0(x, y)− I(x, y, t)

I0(x, y)
. (1)

In order to support that this linear approximation gives a good indication of the local concentration of floaters, i.e.

Ĩ(x, y, t) ∝ C(x, y, t) , (2)

we must check that 〈Ĩ(x, y, t)〉 estimated from Eq. (1) satisfies mass conservation and linearly follows the total number
of glass bubbles. For a given amount of poured glass bubbles onto the surface, the total number of particles must
indeed be conserved over time as the mixing process goes on (as far as the floaters do not leave the measurement
area) and hence the space averaged concentration 〈C〉 must remain time independent and proportional to the initial

amount of particles poured on the surface, hence so must 〈Ĩ〉. We verified that this property is satisfied for a series of
experiments performed at varying mass of glass bubbles poured on the surface with N = 15 swimmers, for which we

computed the spatial average 〈Ĩ〉(t) at each time step. Inset of figure 2a shows the resulting spatial average for an initial

mass m = 40mg of glass bubbles. As expected for Ĩ(x, y, t) ∝ C(x, y, t), the spatial average is indeed time-invariant.
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FIG. 2: (a) Mean measured intensity, 〈Ĩ(x, y, t)〉, averaged over space and time, as a function of the poured glass bubbles mass

m for N = 15 swimmers. (+) measurements, (−) linear fit 〈Ĩ〉 = a×m, with a = 5.51×10−4mg−1. The error bar is estimated

as σ
Ĩ
= 10−3 by computing the standard deviation of the time series 〈Ĩ〉(t). The inset is a time series of the non dimensional

instantaneous quantity 〈Ĩ〉(t)/ 〈Ĩ〉 as a function of time; the vertical dotted lines indicate our measurement window for time
averaging. (b) Instantaneous non dimensional glass bubble concentration field deduced from the image Fig. 1b.

The remaining fluctuations have been quantified at large times long after any memory of the initial condition is lost
(measurement window in the inset of figure 2a). The standard deviation are of order σĨ = 10−3 (this corresponds to
relative standard deviation of around 5% for the signal in inset) which serves as an estimate of the error bar of the
measurement (smaller than the size of the symbols in figure 2a).

In the next section, we will show that the glass-bubble system reaches a statistically invariant stationary state after
an initial stage of few tens of minutes. In the following, we thus denote by Q the time average of a given quantity,
with t ∈ [55, 65]min corresponding to our measurement window within this late-stage stationary regime. Figure 2a

displays the evolution of the global average concentration 〈Ĩ〉(t): it is visible that this quantity evolves linearly with
the poured glass bubble mass, validating the assumed proportionality between luminosity and floaters concentration so
that equation (2) can be used to convert recorded images into a concentration field.

As all moments of the concentration field are expected to scale with the mass concentration, all experiments discussed
in the sequel have been performed with the same mass m = 40±2 mg of glass bubbles which was observed to be a good
compromise in having a good signal to noise ratio with no risk of forming multiple layers of bubbles on the surface.
Note finally that, because the equations of mixing are linear, the results do not depend on the mean concentration, so
that in the following we only consider non dimensional concentration fields; in order to rub out the very small time
fluctuations shown in the inset of figure 2a, the reference chosen is 〈C〉.

III. MIXING PROPERTIES

As already mentioned in the previous section, when a large scale patch containing glass bubbles is poured on the
surface, it starts to get stretched and folded by the action of the swimmers so that the concentration field C(x, y, t)
becomes strongly non homogeneous, as already observed in figure 2b. As the spatial average of the concentration field
is conserved, we characterize its heterogeneity by computing the standard deviation

Cstd(t) =
√
〈C2〉(t)− 〈C〉2(t) . (3)

Figure 3a shows the evolution of Cstd(t)/ 〈C〉 in the case of N = 15 swimmers, which is typical of all explored
parameters. Starting from a finite initial value corresponding to the initial patch, the standard deviation relaxes over a
short time scale (less than one minute) as expected for a system being mixed by the random motions of stirrers —
here the swimmers. However, while classical expectation would be to decrease down to a stationary fully homogeneous
system with Cstd = 0, the system reaches a statistically stationary state of incomplete mixing as quantified by C∞

std

being more than twice larger than the global mean 〈C〉. The mixing process then consists in three main stages, a
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FIG. 3: (a) Temporal evolution of the concentration field standard deviation: Cstd(t) =
√

〈C2〉 − 〈C〉2, normalized by the global

mean 〈C〉 in the case of N = 15 swimmers with radius R = 2.5mm. (b) Short term evolution of (Cstd(t)−Cint

std)/ 〈C〉 plotted in

semilog representation, with Cint

std/ 〈C〉 = 2.7. For those figures the points are obtained with a sliding window average over a few
seconds, so that the error is very low.

rapid phase (t ≤ 4 min) during which the standard deviation Cstd(t) decreases exponentially toward an intermediate

value Cint

std ≃ 2.7〈C〉 (figure 3b); this exponential decay, typical of chaotic or turbulent mixing [28–30], is followed by a
slower relaxation (t ∈ [4− 40] min) and finally a long phase (t ≥ 40 min) for which the statistical properties of the
concentration field only weakly evolve due to a slow loss of activity of the swimmers. All characterizations (including
calibration as discussed in the previous section) have been performed in this third phase using a 10 min recording
to ensure that the swimmers activity remains the same when comparing experiments, with stationary statistical
properties.

Surprisingly, when investigating how this final mixing degree C∞
std depends on the mixer properties (number and size

of camphor swimmers), it is found to be quite robust and independent on the conditions. Indeed, Fig. 4 (a,b) report
that except for the smallest particle sizes (R < 2.5mm) or numbers (N < 15) for which the final state is slightly closer
to homogeneous, the final standard deviation of concentration remains unaffected.

It should be noted that the standard deviation observable yields a global characterization that integrates over
concentration fluctuations at all length scales. A simple look at figures 1b or 2b however unveils a rich underlying
spatial organization of the floaters with (i) large void features around each swimmer typical of the present system
together with (ii) thin and complicated structures in between voids qualitatively reminiscent of classical mixing
processes. Indeed, in a recent study the dynamics of the camphor swimmers was shown to exhibit multi-scale features
following typical turbulent scaling laws [22]. This contribution caused by the swimmers relative velocities is responsible
for the floaters mixing that shows up in between void features. We now explore the multi-scale nature of this mixing
process and shall come back in the next section on the mechanism responsible for the void generation around each
swimmer.

To characterize the multi-scale mixing, we compute one dimensional power spectra of the concentration field along
the x axis

|Ĉ|2(kx, y, t) = |DFTx[C(x, y, t)]|2, (4)

where DFT stands for Discrete Fourier Transform. It is computed in a square box of size 1310x1310 pix2 centered
in the middle of the surface, and is a function of the wave number kx, y, and t, so that we average it over space
and time in the stationary regime to get a better statistics. Figures 4 (c,d) display the corresponding power spectra,

〈|DFTx[C(x, y, t)]|2〉y(kx), obtained when increasing the number of swimmers at fixed radius R = 2.5mm, or for
different radii at fixed N = 15. It is visible in these two figures that the concentration field exhibits fluctuations at all
spatial scales whatever the number of swimmers or their radii. When increasing the number of swimmers at fixed
R, the power spectra are attenuated in the low wave numbers range kx ≤ 0.05 mm−1 while exhibiting higher and
higher fluctuations in the high wave number range kx ≥ 0.05 mm−1. This is inline with the fact that the global mixing
efficiency does not vary much when increasing N as (C∞

std)
2 is proportional to the area under each curve. When N is

large enough so that the turbulent-like behavior of the swimmers develops [22], the concentration field is efficiently
stretched and folded, which results in small spatial structures. In that regime (N ≥ 15), we observe that concentration
spectra tend to follow a power law behavior with an exponent close −5/3 in the intermediate spatial frequency range
as observed in hydrodynamic turbulence [31]. It is remarkable that a second regime emerges in the very high frequency
range where scalar spectra exhibit a second power law behavior with an exponent close to −1. This Batchelor type
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FIG. 4: Top: Evolution of the standard deviation of the concentration in glass bubbles C∞

std/〈C〉 as a function of (a) the number
of swimmers N ∈ [7, 45] with radius R = 2.5 mm; (b) the radius R ∈ [1, 4] with N = 15 swimmers. In both figures, the fit
(dashed dotted line) results from a model explained in section IVB, and the error bars were calculated using a logarithmic
differentiation. (c) Power spectrum density of the glass bubble concentration as a function of the wavenumber kx for increasing
number of swimmers with R = 2.5 mm. (◦) N = 7 swimmers, (⋄) N = 15 swimmers, (⊲) N = 30 swimmers, (�) N = 45
swimmers. Dashed lines correspond to power law spectra with exponent −5/3 and −1. (d) Power spectrum density of the glass
bubble concentration as a function of the wavenumber kx for N = 15 swimmers and different radii R. (◦) R = 1 mm, (⋄) R = 3
mm, (⊲) R = 3 mm, (�) R = 4 mm. Dashed lines correspond to power law spectra with exponent −5/3 and −1.

spectra [32] indicates that the flow is smooth at these spatial scales so that small scales are created via random
advection as observed in experiments and numerical simulations [33–35]. Figure 4 (d) shows that all the aforementioned
results appear to be modulated by the radius of the swimmers: (i) increasing the radius R of the particles, which
results in an increase of the swimmer Reynolds numbers, reinforces the power law behavior at intermediate scale,
which extends over more than one decade when R = 4 mm; (ii) the exponent in the high frequency range gets closer to
−1 when increasing the radii of the swimmers although such regime was not very well developed with R = 2.5 mm.

Because the system reaches an out-of-equilibrium steady state, a competing mechanism must balance with the
aforementioned mixing processes. Indeed, as already pointed each swimmer trails an area devoid of floaters, suggesting
the existence of an unmixing mechanism that constantly rejuvenates large-scale heterogeneities. Those empty wakes
eventually feed the mixing process to smaller scales, leading to the non-trivial spectra shown in fig.4. The evolution of
the wake of individual swimmers is therefore a key ingredient to understand the overall process that we now investigate.
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FIG. 5: Averaged glass bubbles concentration field around a swimmer (in white), going from the left to the right, obtained by a
coherent mean over 10 000 concentration fields. The configuration considered here is N = 15 and R =2.5mm.

IV. AROUND A SWIMMER

A. Averaged concentration field

As already pointed out, a striking feature of the present system is the wake of washed up surface free from floaters,
that follows each swimmer (see figures 1b or 2b). To get a more quantitative insight into this phenomenon, we now
define and consider the mean concentration field around a single swimmer. To this aim, we perform a coherent
mean whereby we average the concentration field in the neighborhood of a single swimmer after a set of geometrical
transformations to ensure spatial registration (translation of the swimmer’s position) and orientational registration
(rotation to provide identical swimming direction). In addition, in order to take into account only isolated camphor
disks we discard those whose center lies within 2.5 cm from the cell edges, and those from which at least one other
swimmer lies in an exclusion rectangular zone. The size of the exclusion zone (9mm in front of a swimmer, 32mm
behind it and 14mm in directions perpendicular to its trajectory) was chosen according to typical extent of depleted
zone as seen in figure 1b and 2b. Note that extending it further did not change significantly the outcome except for a
drastic reduction of the statistics. Overall, a typical set of 10 000 images of swimmers’ neighborhood was used for
computing the averaged concentration field of floaters. Figure 5 shows such an averaged field around a swimmer, going
from left to right on the figure, here in a configuration with N = 15 camphor swimmers of radius R = 2.5mm. Two
remarkable features are noticeable: (i) as expected from figure 2b, a depleted wake trailing behind the swimmer where
all floaters have been swept away, and (ii) an accumulation front immediately ahead of the swimmer, that was far less
visible. This type of pattern is typical of all conditions, see figures 9 and 10 in the appendix, for different numbers of
swimmers N and radii R.

From the averaged concentration fields obtained for all configurations (Fig. 5 and appendix figures 9 and 10), we
extract the total wake area by fitting with an ellipsoidal shape. Note that additional information on the depleted
surface can be found in appendix C. This measured depleted area Ad is shown in figure 6 as a function of the number
of swimmers N (Fig. 6 a with R = 2.5mm), and as a function of the radius R of the swimmer (Fig. 6b with N = 15
swimmers in the bath). As clearly seen in figure 6a, the depleted area around each swimmer decreases with the number
N of swimmers. This decrease exhibits a well defined power-law behavior (see figure inset for the log-log scale) that

yields a fitted exponent close to −3/4, i.e. Ad(N,R = 2.5mm) = A
(1)
d N−0.76, with A

(1)
d = 24 cm2 the fitted wake area

of a single isolated swimmer. On the contrary, the depleted area is found to increase with the radius of the swimmers
R at fixed density (N = 15). In practice, the increase might be viewed as close to linear at the smallest sizes, before to
saturate at larger radii. For practical purposes, a fit by an hyperbolic tangent function reasonably approximates the
overall behavior (figure 6b).

B. A first order model for the standard deviation of concentration

Besides the excluded area, another striking feature from figure 5 is the fact that the concentration relaxes rapidly
towards 〈C〉 when moving away from the camphor swimmer. This is another evidence that mixing by the moving
particles is efficient, inline with the spectra shown in figure 4. Therefore one can wonder whether at first order, the
large-scale inhomogeneity measured through Cstd, of the order of 1.5–3 〈C〉 in figure 4, could primarily reflect the
patchiness of the superposition of the wakes and accumulation fronts of each swimmer, and therefore be related to
their respective areas. According to this proposition a simple estimate for Cstd can be developed as follows.

Let us consider N identical swimmers of radius R carrying each a depleted wake of area Ad, an accumulation front
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FIG. 6: (a) +: Measured depletion area Ad as a function of the number of swimmers N (fixed radius R=2.5mm). Inset: same
in log-log scale; the point ∗ for N = 1 is measured in different conditions, see later in figure 7b. Solid line: fit by a power-law

decay Ad(N,R = 2.5mm) = A
(1)
d N−0.76, with A

(1)
d = 24 cm2. (b) •: Measured depleted area Ad as a function of the radius

R of the swimmer, for N = 15 swimmers in the bath. Solid line: linear behavior at small radii; dashed line: guide-line fit by
hyperbolic tangent function yielding Ad = 3.52 tanh (0.47R) in cm2.

ahead of the swimmer of area αAd, and let AT be the total area of the system. As before, we neglect the area of the
swimmers. Let us assume for the sake of simplicity that the wakes and accumulation fronts have identical respective
extents for each swimmer and that they do not overlap. We therefore model the surface and concentration distributions
as follows:

− N depleted area of total surface NAd, having a zero concentration;
− N accumulation fronts ahead of the swimmers of total area NαAd, in which the over concentration comes from

glass bubbles that are not in the wakes, that is a concentration (1 + α)Ad/(αAd)〈C〉;
− a uniform concentration equal to 〈C〉 everywhere else, on an area equal to At −N(1 + α)Ad.

We have:

(C∞
std

)
2

= 〈C2〉 − 〈C〉2 (5)

=
1

At

[
0 +NαAd

(
1 + α

α

)2

〈C〉2 +
(
At −N(1 + α)Ad

)
〈C〉2

]
− 〈C〉2 (6)

=
NAd

At

[
(1 + α)2

α
− (1 + α)

]
〈C〉2 (7)

=
NAd

At

1 + α

α
〈C〉2 (8)

and finally

C∞
std

=

√
NAd

At

1 + α

α
〈C〉 . (9)

We now confront this first order model against previous experimental measurements. To do so, let us note that
measured standard deviations are obtained from instantaneous images, and then averaged over time. Because the tails
of depleted wakes are often curved in a random direction, the procedure for calculating the averaged concentration field
around a swimmer thus rubs out wakes and eventually leads to an underestimation of their extent. Compared with
instantaneous images, this underestimation amounts to about 50% depending on the swimmer considered and the given
time. This requires a correcting factor in Eq. (9) for direct comparison with data. Alike, the concentration averaging
smooths the maximum concentration ahead of the swimmer: from about 6 〈C〉 on raw images depending on the instant
t chosen (Fig. 2b), down to 2.5 〈C〉 (Fig. 5) in averaged concentration fields. Accordingly, the parameter α setting the
size of the accumulated area in the model is chosen to be α = 0.2 to yield the proper maximum concentration value
(6〈C〉). Such an extent of 20 % of the depleted area is consistent with direct observations (Fig. 2b).
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Qualitatively, using the N -dependency of the averaged concentration field found in Fig. 6, our simple model Eq. 9
predicts a measured standard deviation for the glass bubbles behaving as Cstd ∝ N0.12. This very weak power-law
prediction is consistent with the very slow evolution reported in Fig. 4a, for N ≥ 7. As for the R-dependency, the
initially linear evolution of the single swimmer averaged depleted area (Fig. 6b) followed by a saturation should lead

to Cstd ∝
√
R before reaching a plateau. Again, this is fairly consistent with the observed trend in figure 4b.

In a more quantitative way, we can fit the measured data figures 4a,b by our model expression including the
previously mentioned correcting factors

C∞
std

/〈C〉 = β

√
N Aeff.

d

At

1 + α

α
, (10)

with β a free scaling parameter, α = 0.2 and Aeff.
d = 1.5Ad, where Ad(N,R) is the averaged depleted area around a

single swimmer. We used this expression, combined with the equations given in figure 6 for the behavior of Ad versus
N or R, in order to plot the fits shown in dotted lines in figures 4a and b. As can be seen, it captures in both cases
the overall experimental behavior with a scaling factor β = 1.95. This is a very reasonable order of magnitude for
such a simple model, where only three regions (each with a given value of concentration) are considered. Because
the evolution of Cstd with R and N reflects that of the wakes of individual swimmers, Cstd is phenomenologically
dominated by demixing at large scale; it is thus reasonable to associate the demixing properties of this flow to the
strongly inhomogeneous concentration field around the swimmers.

V. DISCUSSION: MARANGONI EFFECTS

Up to now we have mainly focused on the mixing/demixing properties of the flow, associated with the depleted
areas around the swimmers, regardless of the associated physical process that produces them. We now discuss the
different possible origin for this phenomenon, and show how the description of Marangoni effects accounts consistently
for the observed behaviors.

A. Origin of the depleted area

Physically, it is tempting to link the existence of the depleted area to the chemical cloud released by a single swimmer
and to the associated Marangoni flows driving the self-propulsion. This, however, requires that we discard other
plausible origins among which the possible wake around a disk moving at finite Reynolds number along the interface.

To discriminate between these scenarios, we performed two complementary experiments: in a first configuration, an
agarose gel disk without camphor loading is moved along the air-water interface at a constant velocity imposed by a
motorized translation stage. At a velocity typical of the swimmers velocity U = 6 cm s−1, the simple motion of the
disk at an interface filled with glass bubbles floaters does not generate any significant pattern around the moving disk
(Fig. 7a). In particular, no signature of a swept wake is observed, the only feature being a thin concentrated filament
released at the rear, due to floaters trapped at the disk edge by capillary effects. Note also that no accumulation front
is visible ahead of the moving disk in this configuration. In the second configuration, we cancel the disk motion by
nailing it at a fixed position at the interface but restore the camphor loading of the disk so that chemical release
and associated Marangoni flows do occur: a clear pattern develops around the disk where all floaters in its vicinity
are swept away and leave a depleted area reminiscent of the one observed with swimmers. Such an observation is
consistent with closely related experiments with Marangoni driven flows by surfactant spreading [26, 36] where a
similar cleaned-up surface-area is observed. The area obtained here (around 26 cm2), although of larger extent than in
Fig. 5, is in very good agreement with the value given by the fit in figure 6a for N = 1 (24 cm2).

Overall, the camphor spreading from each disk triggers two different effects which act oppositely on the mixing
of floaters: first, it generates the net motion of each disk, all the disks operating as an assembly of stirrers moving
randomly in the system. Second, the complex Marangoni flow pattern attached to each swimmer induces a local
unmixing mechanism that constantly rejuvenates gradients by sweeping of floaters from a finite area, so as to form a
concentrated rim ahead of the swimmer, together with an empty wake.

In the next two subsections, we examine how the description of Marangoni effects can indeed rationalize some of the
observations reported earlier.
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(a) (b)

FIG. 7: (a) An agarose disk of radius 2.5mm is pulled at 6 cm s−1 by an engine. No depleted area is observed, proving that
mechanical effects can not explain what we observe in Fig. 5. Scale bar is 1 cm. (b) An interfacial swimmer is fixed in the bath.
Glass bubbles are poured on it. In less than a second, a large depleted area is observed, leading us to think of a chemical effect.
Scale bar is 1 cm.

B. Single Swimmer

We first discuss how the generation of the depletion area around each swimmer can be captured based on Marangoni
flow description. As a first step, we begin with an estimate of the camphor concentration field generated by a single
swimmer of radius R and typical velocity U . The viscous friction is Fv = πR2ηU/δv [37], where

δv = R/
√
Re (11)

is the viscous boundary layer thickness underneath the swimmer, with Re = UR/ν the Reynolds number. Balancing
Fv with the driving capillary force contribution Fc = πR∆γ, where ∆γ is the fore-aft surface tension difference, we
obtain

∆γ ∼ η U
√
Re . (12)

For our typical situation with R = 2.5mm and U ≈ 6 cm s−1 for N = 1 swimmer [24], corresponding to a Reynolds
number Re = 150, this leads to a typical surface tension imbalance of ∆γ ≃ 0.7mNm−1 in good agreement with
previous experimental estimates on camphor boats [38]. To proceed we now assume, in agreement with the literature, a
linear relationship ∆γ = −αC between surface tension and local camphor concentration, with α = 3× 10−3 Nm2 mol−1

[39]. We obtain a characteristic concentration behind the swimmer C∗ ≃ 0.2molm−3, far below the solubility limit
Csat. = 8molm−3.

Qualitatively, this camphor release in the vicinity of the swimmer induces, on top of the capillary force, a Marangoni
stress at the free surface, from low to high surface tension region, that drives fluid outward, away from the swimmer.
This flow sweeps away surface floaters, generating a clean depleted area around each swimmer (see Fig. 7b). To make
this argument more quantitative, it is natural to identify the depleted area to the camphor-contaminated area over
which Marangoni stress occurs. We also simplify the problem by considering a fixed camphor particle (as in figure
7b), yielding to a depleted disc (rather than an ellipse) of area Ad and radius Rd. In that case the typical velocity
of Marangoni flows produced matches with the freely moving swimmers velocity U in agreement with experimental
measurements [40]; therefore, except for the simplified geometry, all physical scalings remain identical.

On the one hand the swimmer releases camphor at a rate proportional to its area; this production term writes
Qp = βR2, with β = 3.1× 10−4 mol s−1 m−2 as measured for this system [24]. On the other hand camphor is removed
from the surface by dissolution [45], at a rate

Qd = D
C∗

δD
Ad, (13)
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with δD the thickness of the diffusion boundary layer δD = (Rd/R)1/2 δv/
√
Sc [41], Sc = ν/D the Schmidt number,

and D = 7× 10−10 m2 s−1 the camphor diffusivity [24]. In line with recent treatments of other Marangoni spreading
problems [36, 42], we suppose that production is balanced by dissolution according to

Qp = Qd . (14)

This yields to an extension of the depleted area

Rd =

[
αβ

πρD Sc1/2

]2/3
R

U4/3
. (15)

With the typical values given above, this predicts a contaminated area of extent Rd ≃ 3R, to be compared with the
measured extent Rd ≃ 10R (Fig 7b). Considering the rough scaling approach used, this shows a very fair agreement
although it underestimates the size of the depleted area.

Finally, noticing that the swimming velocity of individual swimmers was shown to follow a scaling law of the form
U ∝ R1/3 [24], it is possible to gather all radius-dependencies in Eq. (15) to reach a theoretical expectation that
Rd ∝ R5/9, that is, a depleted area Ad ∝ R10/9. While this result has been derived for a –fixed– isolated swimmer,
experimental measurements always involve multiple swimmers. For a single swimmer, it is indeed not possible to
properly define a wake as the camphor disk gets trapped at tank edges where it moves along the outer perimeter. This
implies that measured wakes for multiple swimmers are expected to follow the above scaling only in the limit of small
interaction and overlap among wakes. For a fixed number of swimmers N = 15, this is best achieved for small wakes
corresponding to small size swimmers. Indeed figure 6b shows an almost linear trend for small R, consistent with the
previous scaling law, before the depleted area eventually saturates at larger radii for which wakes overlap.

Overall, simple estimates considering Marangoni effects can successfully account for the dependence of the depletion
area with the radius of the swimmer and predict with a rather good order of magnitude its size.

C. Multi Swimmers

While previous arguments were developed for isolated swimmers, we now focus on the wake behavior with multiple
swimmers. In crowded environment when the mean distance d between two swimmers, scaling as d ∼

√
At/N , starts

to compare with the isolated wake extension, one naturally expects that the typical radius of the depleted area should
be limited by d and thus decrease with increasing N . The inset in figure 6a however suggests that the wake area is a
strictly decaying function of N , even for small values of N for which this naive crowding effect should not contribute.
Indeed, in the case of 7 swimmers of radius R = 2.5mm, the area of one wake amounts to 5.4 cm2. This is significantly
smaller than the anticipated isolated swimmer wake (26 cm2 for N = 1) despite consisting on a hardly crowded
configuration: the total accessible area At = 254 cm2 should allow to host 7 swimmers with wakes area equal to 26 cm2

as for isolated swimmers.
In order to test whether this decay could be attributed to Marangoni effects, we propose a very simple 1D analytic

model that mimics this situation. Let us consider a 1D system of fixed equidistant chemical sources that correspond
to our swimmers. For a finite size system of width W , the inter-source distance d thus goes like d ≈ W/N . In the
following, we will neglect edge effects by considering an infinite system, keeping in mind that 1/d reads for the number
N of swimmers.

We now assume that each single source –i.e. camphor particle– generates a camphor distribution around its
location x0 that is an even function of x− x0, with standard deviation σ, and decreasing with distance to the origin
x0. This is due to camphor being spread and eventually lost from the surface by several effects (Marangoni effect,
dissolution, sublimation, diffusion) The precise shape is not crucial; for simplicity we choose a Gaussian profile
C(x) = C0 exp(−x2/2σ2). We further assume that when placing camphor particles on a line, the total camphor
concentration Ct is a linear superposition of the effects from all sources. One then has:

Ct(x) =
∑

n∈Z

C(x− nd) . (16)

Once the camphor concentration is known, we take care of the distribution of glass bubbles on the surface, and denote
by Gb(x) the corresponding concentration. Glass bubbles are repulsed by the camphor due to the Marangoni flow
through a compressible velocity of the type

v = −α∂xCt. (17)
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This repulsive contribution is balanced by a diffusive transport term with coefficient Db that tends to homogenize
glass bubbles so that the conservation equation for the distribution Gb satisfies:

∂x
(
v Gb −Db ∂xGb

)
= 0 , (18)

with v solution of equation (17). One then gets

v(x)Gb(x)−Db ∂xGb(x) = B . (19)

The value of the constant can be obtained by a symmetry argument: indeed, the solution is periodical with period d so
that one can take a local average of the previous equation. Defining the average as

〈f〉d(x) =
1

d

∫ x+d/2

x−d/2

f(x′)dx′ , (20)

one gets 〈v Gb〉d = B. In the case a single swimmer (d −→ +∞), C(x) is an even function, so that for reasons of
symmetry, Gb(x) is also an even function; because v is an odd function (equation 17), one gets 〈v Gb〉d(x = 0) = 0 = B.
Note that this corresponds to a solution with zero mean flux of particles transported by the flow. Actually, this term
has to vanish whatever the symmetries of C(x) if glass bubble are confined in a box as they can not leave the domain,
so that the total flux vanishes at the boundaries.

Equation 19 now writes:

Db ∂x logGb(x) = −α∂xCt(x) (21)

with general solution

Gb(x) = G0 exp(−αCt(x)/Db), (22)

a result that was checked numerically using Monte-Carlo simulations.
Figures 8a, b, c display Ct and Gb/max(Gb) as a function of x/d for a d-periodic distribution of Gaussian profiles

and different ratios of d/σ. On those profiles the ratio αC0/Db is set to 10, and the size of the depleted zone ℓd
is defined as the region where the glass bubble concentration, Gb(x), is smaller than a threshold set to 2.5% of its
maximal value [46]. The depleted region corresponds to the black symbols in figures 8a, b, c, and is represented in
figure 8d as a function of σ/d for 3 ≤ d/σ ≤ 20.

For large enough values of d, the camphor clouds of two neighbouring particles should not interact much; this is
illustrated in figure 8a for d = 7σ (corresponding to σ/d ≃ 0.14), where the total concentration of camphor nearly
goes to zero at x = d/2. For larger values of d we therefore expect the size ℓd of the depletion region to be essentially
unchanged: this is exactly what is observed in figure 8d with the plateau for σ/d < 0.14. For smaller gaps between
swimmers, the wakes interact, the camphor distribution is less steep with an increasing minimum of Ct (figures 8b and
c), and the size of the depleted zone decreases (to eventually vanish for very small values of d) [47]. This is also visible
in figure 8d for σ/d > 0.15. Because σ/d ∝ N , this shows that, as in our experiments, the size of the depleted region is
decreasing with the number of swimmers.

As a very naive application of this model, let us calculate what would be the minimum experimental tank diameter
that would allow to host two camphor disks of radius R = 2.5mm with wakes having the same extent as for isolated
swimmers. From the previous 1D model, non-interacting camphor clouds require d ≥ 7σ in which condition the depleted
zone extends over ℓd ≈ 2.8σ (figure 8d). Overall, the inter-swimmer distance should thus exceed d ≥ 2.5 ℓd, which
requires that the tank diameter verifies D ≥ d+ 2ℓd/2 ≥ 3.5 ℓd. For R = 2.5mm, the isolated depleted zone extension

is ℓd ∼ 5.75 cm from figure 7b or from A
(1)
d in figure 6. Therefore the minimum diameter for having non-interacting

wakes for only two swimmers is D ∼ 20 cm, that is, larger than what we actually have. This naive application of the
model predicts that even for N = 2, the wakes of each individual swimmer would be smaller than that for a single
camphor disk; therefore we would always be in the decaying region, away from the plateau for a tank of the size of our
experiment: this is indeed what we observe in figure 6a.

Finally, from this model, the physical reason why the depleted region decreases when increasing the number
of swimmers should be attributed to the fact that the Marangoni flow v = −α∂zCt is less compressible; such an
explanation should also hold in our experiment, although the scalings would be different in the 2D case.

VI. SUMMARY AND CONCLUSION

In this article, we have proposed an original experiment of mixing at the free surface of a water tank, with multiple
stirrers. The stirrers are self-propelled camphor disks that move at the interface of the fluid; the particles to be mixed
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FIG. 8: a, b, c : Camphor concentration Ct(x) (dashed line), glass bubbles concentration Gb(x)/max(Gb) (solid line) as a
function of x/d for d/σ = 7, 5, 3. Gb(x)/max(Gb) is given by Eq. 22 with αC0/Db = 10. The depleted zone, represented by
black symbols, corresponds to Gb < 0.025max(Gb). d: Evolution of the dimensionless depletion length ℓ/σ as a function of
σ/d ∝ N .

consist in a patch of passive floaters (glass bubbles) initially released at the center of the tank. Mixing is achieved
thanks to the random motions of N camphor disks, with various N or radii: in a first stage, the decrease of the
standard deviation of concentration of glass bubbles is exponential, as for chaotic or turbulent mixing, inline with the
power spectra of concentration that exhibit a power law behavior with an exponent close to −5/3 in the intermediate
spatial frequency range, followed by a second power law with an exponent close to −1 at higher frequencies. However,
the system reaches a stationary state of incomplete mixing, with a final standard deviation of concentration more than
twice the mean concentration.

By averaging the concentration field around a swimmer, we have shown that, in addition to the depleted wake
around the swimmer, there is an accumulation front immediately ahead. We thus have proposed a very simple model
of concentration distribution, with three different values of concentration (an empty wake and an over-concentrated
accumulation front around each swimmer, surrounded by a perfectly mixed fluid), that reproduces the levels of
unmixing observed through the standard deviation, proving that Cstd is dominated by demixing at large scale.

In the last section, we have proved experimentally that the depleted area is related to Marangoni effects; then, using
rough calculations considering those effects, we have found a good order of magnitude of the size of the depleted area,
with a correct scaling for the dependency on the radius of the swimmer. Finally, we have proposed a 1D model on
Marangoni effects that explains the tendency of the depleted area to decrease when increasing the number of swimmers,
even when no crowding effect comes into play.

Overall, the system reaches a stationary state (although out of equilibrium) of mixing/demixing, where demixing
is linked to Marangoni flows, related with compressible effects. A striking feature of this study is that, besides
demixing, the system develops a "turbulent-like" concentration spectra, with a large-scale region, an inertial regime at
intermediate scale, and a Batchelor regime at small scales: while this is in accordance with the idea that the stirrers
are characterized by a "turbulent-like" motion for large enough number of swimmers [22], this may seem intriguing
since the glass-bubbles do not develop such a dynamics; this raises the open question of a possible relationship between
the spectrum of concentration of a scalar mixed by N moving stirrers and the spatial correlation of the dynamics of
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those stirrers.
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Appendix A: Camphor Sublimation

One of the camphor characteristics, which has been long invoked to explain its ability to generate long-lived swimmers,
is the possibility of constant surface self-cleaning through camphor sublimation into the air. The associated flux can
be modeled as a first order reaction Jsub. = −kCs with k the sublimation rate and Cs the camphor concentration at
the surface [43]; in our system the constant has been measured yielding to a rate k = 6× 10−7 ms−1 [24]. Assuming
sublimation is the dominant mechanism, we assume a rate of sublimation rather than dissolution, and the dissipation
term (13) changes to

Qs = kC∗Ad . (A1)

Assuming production is balanced by sublimation, equation 14 now writes

Qp = Qs , (A2)

which yields to:

Rd =

[
αβ

πk
√
ηρ

]1/2 (
R

U

)3/4

. (A3)

Making a numerical estimate using the same typical values as in (15), we predict that Rd ≃ 30R, therefore now
overestimating the experimental observation Rd ≃ 10R (Fig. 7b). This suggests that unlike mostly assumed, sublimation
is not the dominant mechanism for surface cleaning as dissolution is more efficient to remove camphor from the
interface.

Finally, let us note that despite its difference in the orders of magnitude for the depleted zone Rd, the scaling
obtained with the swimmer size is not significantly affected by the transport mode as (A3) yields Rd ∝ R1/2 to be
compared with Rd ∝ R5/9 for dissolution-dominated surface cleaning.

Appendix B: Averaged glass bubbles concentration field around a swimmer for all parameters (N,R).
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FIG. 9: Averaged glass bubbles concentration field for different number of swimmers N (fixed radius R = 2.5mm).



17

−60 −40 −20 0 20

−20

0

20

X [mm]

Y
[m

m
]

N=15, R=1mm

0

1

2

C
/
〈C

〉

−60 −40 −20 0 20

−20

0

20

X [mm]

Y
[m

m
]

N=15, R=2mm

0

1

2

C
/
〈C

〉

−60 −40 −20 0 20

−20

0

20

X [mm]

Y
[m

m
]

N=15, R=3mm

0

1

2

C
/
〈C

〉
−60 −40 −20 0 20

−20

0

20

X [mm]

Y
[m

m
]

N=15, R=4mm

0

1

2

C
/
〈C

〉

FIG. 10: Averaged glass bubbles concentration field for different swimmer radii R (fixed number of swimmers N = 15).

Appendix C: Depleted wake shape

As explained in the main text, depletion wakes shown in figures 9 and 10 have been fitted by ellipsoids. This provides
the overall area already reported, but also the wake shapes – as defined by their extents respectively perpendicular
(width L⊥) and along (length L) the swimming direction –. The figure 11 presents these shape parameters (L⊥) and
(L) for the various configurations. While the widths L⊥ do not depend much on the number of particles N nor on
their radii R, the lengths L are reasonably proportional to the velocity of the particle (table I).

ayer

FIG. 11: Width L⊥ and length L of the ellipse that best fits the depleted area. (a) for different number of swimmers with equal
radius 2.5mm; (b) for N = 15 swimmers with different radii.
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