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Abstract We study the upscaling of advective pore-scale dispersion in terms of the
Eulerian velocity distribution and advective tortuosity, both flow attributes, and of the
average pore length, a medium attribute. The stochastic particle motion is modeled as
a time-domain random walk, in which particles move along streamlines in equidistant
spatial steps with random velocities and thus random transition times. Particle veloc-
ities describe stationary spatial Markov processes, which evolve along streamlines on
the mean pore length. The streamwise motion is projected onto the mean flow direc-
tion using tortuosity. This upscaled stochastic particle model predicts accurately the
(non-Fickian) transport dynamics obtained from direct numerical simulations of par-
ticle transport in a three-dimensional digitized Berea sandstone sample. It captures
all aspects of transport and sheds light on the dependence of the upscaled transport
behavior on the flow heterogeneity and the initial particle distribution, which are crit-
ical for the accurate modeling of dispersion from the pre-asymptotic to asymptotic
regimes.
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1 Introduction

Upscaling hydrodynamic transport is a critical step for modeling solute dispersion in
porous media. Since the pioneering works of de Josselin de Jong (1958) and Saffman
(1959), different approaches have been used for deriving dispersion coefficients and
advection-dispersion models for asymptotic spreading and mixing in heterogeneous
media (Bear, 1972; Brenner and Edwards, 1993; Salles et al., 1993; Whitaker, 1999).
However, the asymptotic regime is often not reached for space and time scales rel-
evant at the laboratory scale, for environmental or industrial applications (Levy and
Berkowitz, 2003; Le Borgne and Gouze, 2008; Moroni et al., 2007), which makes it
important to account for pre-asymptotic transport, which can in general not be char-
acterized by constant hydrodynamic dispersion, and thus may be termed non-Fickian
or anomalous. Non-Fickian pre-asymptotic dispersion is caused by incomplete mix-
ing on the support scale and thus incomplete sampling of the velocity heterogeneity
due to spatial heterogeneity, which characterizes natural systems (Dentz et al., 2000,
2004; Berkowitz et al., 2006; Nicolaides et al., 2010; Wood, 2009; Le Borgne et al.,
2011; Dentz et al., 2011). The conditions under which the behavior can asymptoti-
cally be described by hydrodynamic dispersion and the transition to such a regime
was discussed in Salles et al. (1993), Dentz et al. (2004), and Bijeljic and Blunt
(2006). For systems characterized by large or infinite Péclet numbers, non-Fickian
behavior may be related to a broad distribution of velocity values. Recent pore-scale
transport studies (De Anna et al., 2013; Kang et al., 2014; Holzner et al., 2015;
Morales et al., 2017; Carrel et al., 2018) showed that observed intermittency of tem-
poral velocity series along individual streamlines are closely related to the occurrence
of anomalous dispersion.

The quantification of pre-asymptotic dispersion and its causes in the medium and
flow properties is a critical issue for upscaling hydrodynamic transport from the pore
to the Darcy scale. Pre-asymptotic (non-Fickian) dispersion on the pore and Darcy
scales have been modeled by a variety of non-local approaches (Neuman and Tar-
takovsky, 2009), such as the multirate mass transfer (MRMT) approach (Haggerty
and Gorelick, 1995; Carrera et al., 1998), volume averaging and two-equation formu-
lations for transport (Cherblanc et al., 2007; Davit et al., 2010; Porta et al., 2013), the
continuous time and time-domain random walk approaches (Berkowitz and Scher,
1995; Dentz and Berkowitz, 2003; Berkowitz et al., 2006; Bijeljic and Blunt, 2006;
Wright et al., 2019; Sund et al., 2015, 2017; Sherman et al., 2019), see also the recent
review by Noetinger et al. (2016). A critical step for implementing these non-local
models concerns the relation between the velocity statistics that are controlled by
the pore-scale structure, and the macroscopic transport process. Porta et al. (2015)
derived a mobile-immobile model to upscale pore-scale transport accounting for in-
formation on the pore space and the pore-scale velocity distributions. Meyer and
Bijeljic (2016) used a Langevin approach to account for the impact of pore-scale
velocity heterogeneity on solute dispersion. Due to their central role for transport
upscaling from the pore to the Darcy scale, pore-scale particle velocities and their
relation to the flow velocity and porous medium structure have been the subject of re-
cent research (De Anna et al., 2013; Siena et al., 2014; Holzner et al., 2015; Morales
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et al., 2017; Jin et al., 2016; Matyka et al., 2016; De Anna et al., 2017; Dentz et al.,
2018).

A strategy to systematically upscale (advective) transport from the pore to the
Darcy scale consists in identifying the stochastic dynamics of particle velocities, for-
malizing the link between Lagrangian and Eulerian statistics, and relating the flow
statistics to statistical pore-scale properties. (Morales et al., 2017) and Puyguiraud
et al. (2019) linked observed intermittent patterns in the temporal velocity series to
the spatial persistence of pore-scale velocities. These authors showed that velocity se-
ries sampled equidistantly along streamlines do not exhibit such intermittent patterns
and can be represented by a spatial Markov process. Puyguiraud et al. (2019) showed
for the Berea sandstone sample under consideration in this paper that the spatial ve-
locity series can be represented by an ergodic and stationary Markov process at the
sample scale. This observation implies that upscaled transport can be understood and
modeled in terms of time-domain or continous time random walks.

In this paper we use the representation of equidistant particle velocities as a sta-
tionary Markov process to upscale particle motion and solute transport in the frame-
work of time-domain random walks in terms of the pore-scale velocity distribution
and characteristic length scale. We employ two velocity Markov models of different
complexity. The first is based on a Bernoulli process for the prediction of the ve-
locity series, the second on an Ornstein-Uhlenbeck velocity process for the normal
scores of velocity (Morales et al., 2017; Puyguiraud et al., 2019). The resulting time-
domain random walk models are used to predict breakthrough curves, displacement
mean and variance as well as the full spatial particle distributions or propagators from
full three-dimensional flow and particle tracking simulations for a Berea sandstone
sample.

The paper is organized as follows. The methodology we use is detailed in Section
2. We specify the flow equation and the transport equation that are solved, and sum-
marize the details about the image acquisition, the flow simulation and the particle
tracking simulations. Then, we present the stochastic particle model and describe the
parameterization of the velocity process. In Section 3, we compare the transport data
of the three-dimensional direct particle tracking simulations to the predictions of the
upscaled models for uniform and flux weighted injection modes. The conclusions are
presented in Section 4.

2 Methodology

In this section, we first present the basic equations for the three-dimensional direct
numerical simulation (DNS) of flow and particle motion (particle tracking simula-
tions) at pore scale. Then, we detail the upscaling methodology in the framework of
a stochastic model and finally, we provide a summary of the numerical methodology.

2.1 Flow and Particle Motion

The Navier-Stokes momentum balance equation is classically used to model pore-
scale flow v(x) of an incompressible fluid. At low values of the Reynolds number, the
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inertial forces are negligible in comparison to the viscous forces and the momentum
equation reduce to, Leal (2007):

∇
2v(x) =

1
ν

∇p(x), (1)

where p(x) and ν denote the pressure and the kinematic viscosity of the fluid, respec-
tively. The associated mass conservation equation is ∇ ·v(x) = 0. The position vector
is denoted by x = (x1,x2,x3)

>. The problem is solved by fixing constant pressure at
both the inlet and outlet boundaries of the sample and no-slip condition at the void-
solid interfaces and at the other physical boundaries of the sample. Details concerning
the computations and sample characteristics are given in section 2.3. The magnitude
of the Eulerian velocity v(x) in the following is denoted by ve(x) = ‖v(x)‖. The
probability density function (PDF) of ve(x) is denoted by pe(v). It can be obtained
by spatial sampling over a sampling volume that is representative of flow variability.

We consider purely advective transport. Thus, the trajectory of a particle origi-
nally located at x(t = 0,a) = a is described by

dx(t,a)
dt

= v[x(t,a)], (2)

where v[x(t,a)] is the Lagrangian velocity. Its magnitude is vt(t,a) = ‖v[x(t,a)]‖.
The travel distance s(t,a) along a particle trajectory until time t and the travel time
t(s,a) up to a streamwise distance t(s,a) are given by

ds(t,a)
dt

= vt(t,a),
dt(s,a)

ds
=

1
vs(s,a)

, (3a)

where we defined vs(s,a) = vt [t(s),a]. We perform a variable change from time to
streamwise distance, which renders time as t(s,a) a dependent variable. The trans-
form from t→ s implies setting dt = ds/vs(s,a) in Eq. (2). This gives for the particle
position as a function of distance s the evolution equation

dx̂(s,a)
ds

= ω(s,a), ω(s,a) =
v[x̂(s,a)]
vs(s,a)

, (3b)

where ω(s,a) denotes the unit vector in the flow direction, v[x̂(s,a)] is denoted the
s(pace)-Lagrangian velocity (Dentz et al., 2016; Puyguiraud et al., 2019) because it is
the particle velocity at a given spatial distance s along the particle trajectory, and its
magnitude ‖v[x(s,a)]‖ is equal to vs(s,a). We will refer in the following to vs(s) sim-
ply as particle velocity. Equation (3) describes the motion of a particle along a given
streamline as a time-domain random walk (Painter and Cvetkovic, 2005; Noetinger
et al., 2016) in that particles perform transitions over a fixed streamwise distance in
variable time, which depends on the local velocity. Particle motion can be solved al-
ternatively by integrating Eq. (2) in time or by integrating the system of equations (3)
in streamwise distance. The numerical simulations performed in this paper use the
former, the upscaling methodology presented in the next section uses the latter.

The distribution of initial particle positions is denoted by ρ(a). We consider here
two different initial particle distributions, uniform and flux-weighted, in order to
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probe the impact of the initial condition on average particle transport. The uniform
and flux-weighted initial distribution read as

ρ(a) =
1

V0
I(a ∈Ω0), ρ(a) =

ve(a)∫
Ω0

dxve(x)
I(a ∈Ω0), (4)

where Ω0 is the injection domain, V0 its volume; I(·) is the indicator function which
is 1 if its argument is true and 0 otherwise.

In the following, we study the transport behavior in terms of breakthrough curves
and spatial particle distributions and subsequently quantify dispersion by analyzing
the first and second displacement moments. The breakthrough curve at a control plane
located at position x1 in the mean flow direction, is defined in terms of the first passage
time

τ(x1,a) = min[t|x1(t,a)≥ x1]. (5)

where x1(t,a) denotes the position of particle a after time t in mean flow direction.
The breakthrough curve is equal to the PDF of the first passage times,

f (t,x1) =
∫

Ω0

daρ(a)δ [t− τ(x1,a)] . (6)

The breakthrough curves contain information on the residence times within the rock
sample or the volume between the inlet and control plane, and the concentration in the
effluent fluid. This information is useful for modeling reactive transport, for instance
for applications to design aquifer decontamination or model laboratory dissolution-
precipitation experiments. Furthermore, we consider the spatial particle distribution,
also called propagator, which is defined by

g(x1, t) =
∫

Ω0

daρ(a)δ [x1− x1(t,a)] . (7)

This quantity gives information on the dispersion of a solute or particle cloud. Like-
wise this information can be used in the modeling of reactive transport and deploy-
ment of a reactant species, as well as for assessment of propagators in NMR imaging
of flow and transport in porous media. The mean displacement and displacement
variance are defined by

m1(t) =
∫

Ω0

daρ(a)x1(t,a), (8)

σ
2(t) =

∫
Ω0

daρ(a) [x1(t,a)−m1(t)]
2 . (9)

They measure the center of mass position and spatial variance of the particle distri-
bution g(x1, t). The spatial variance is a measure for hydrodynamic dispersion. If its
asymptotic evolution is linear, its growth rate is equal to the hydrodynamic dispersion
coefficient.
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2.2 Stochastic Model

We formulate a stochastic model for particle motion in the mean flow direction x1 of
the coordinate system based on the stochastic representation of the s-Lagrangian ve-
locity magnitude vs(s,a) as a stationary and ergodic Markov process vs(s) (Puyguiraud
et al., 2019). The Markov process for vs(s) is characterized by the PDF r(v,s− s′|v′)
to make a transition from v′ = vs(s′) at distance s′ to v = vs(s) at s > s′ and the steady
state distribution ps(v). Both the velocity PDF p(v,s) and the transition PDF r(v,s|v′)
satisfy the Chapman-Kolmogorov equation (Risken, 1996)

p(v,s) =
∞∫

0

r(v,s− s′|v′)p(v′,s′)dv′. (10)

The transition probability converges to the steady-state distribution in the limit of
s� `c with `c a characteristic velocity correlation scale,

lim
s→∞

r(v,s|v′) = ps(v). (11)

The characteristic correlation scale `c ≈ 2.5`p where `p is the characteristic pore
length. Eq. (11) implies that the distribution converges to the steady-state PDF P(v)
independently of the initial condition p0(v). The steady state distribution ps(v) is
related to the Eulerian velocity PDF pe(v) through flux weighting (Dentz et al., 2016;
Puyguiraud et al., 2019)

ps(v) =
vpe(v)
〈ve〉

, (12)

where 〈ve〉 is the mean Eulerian velocity.
In this framework, the irregular particle motion described by (3) is represented by

the stochastic evolution equations

dx̂1(s)
ds

= χ
−1,

dt(s)
ds

=
1

vs(s)
, (13a)

where x̂1(s) indicates the position of the particle in the mean flow direction (denoted
by the subscript 1 similarly to Section 2.1). Note that the displacement rate ω1(s) in
1-direction in general fluctuates with s. We represent it here by its average 〈ω1(s)〉=
χ−1, where χ is the advective tortuosity given by (Koponen et al., 1996; Ghanbarian
et al., 2013)

χ =
〈ve(x)〉
〈v1(x)〉

. (13b)

The advective tortuosity compares the distance s along the streamline with the aver-
age linear distance in the mean flow direction 〈x1(s)〉, see Appendix A for details. It is
an indicator fort the complexity of the pore space and gives information on advective
excursions transverse to the mean flow direction.

The stochastic model (13) belongs to the continuous time random walk or time-
domain random walk class of models because the time increment varies between
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random walk steps (Noetinger et al., 2016). Different initial particle distributions
ρ(a) are in this framework quantified in terms of the corresponding initial velocity
distribution p0(v), this means in terms of the PDF of velocities ve(x) in the injection
domain Ω0,

p0(v) =
1

V0

∫
Ω0

daρ(a)δ [v− ve(a)] . (14)

The breakthrough curve f (t,x1) is in this framework given by

f (t,x1) = 〈δ [t− t(x1χ)]〉 , (15)

where the angular brackets denote the ensemble average over all particles and t(x1χ)
denotes the travel time over the streamlines distance s = x1χ . The mean displacement
and its variance are

m1(t) = 〈x̂1[s(t)]〉 , (16)

σ
2(t) =

〈
[x̂1[s(t)]−m1(t)]

2
〉
, (17)

where s(t) = max [s|t(s)≤ t]. The spatial particle distribution is accordingly given by

g(x1, t) = 〈δ (x1− x̂1[s(t)])〉 . (18)

In the following, we briefly review two Markov processes, which model the evo-
lution of p(v,s) from arbitrary initial conditions, a Bernoulli velocity process (Dentz
et al., 2016) and an Ornstein-Uhlenbeck process (Morales et al., 2017) for the evolu-
tion of the normal scores of velocity.

2.2.1 Bernoulli Process

This Markov process for the prediction of the fluid particle velocities is modeled as
a Bernoulli process where the velocity changes after a distance ∆s according to a
Bernoulli trial. This means that the particle velocity vs(s) does not change with prob-
ability pB(∆s) = exp(−∆s/`c) and changes randomly with probability 1− pB(∆s) to
a velocity which is sampled from the steady state PDF ps(v). The transition proba-
bility r(v,∆s|v′) is then expressed by (Dentz et al., 2016)

r(v,∆s|v′) = exp(−∆s/`c)δ (v− v′)+ [1− exp(−∆s/`c)]P(v). (19)

The Bernoulli process reproduces qualitatively the evolution of the Lagrangian veloc-
ity statistics, but underestimates the convergence rate of p(v,s) toward its steady state
at low velocities (Puyguiraud et al., 2019). The Bernoulli process does not account
for any velocity dependence of the decorrelation rate and is therefore not capable
of capturing the faster decorrelation of low velocities. Nevertheless, we consider the
Bernoulli process as a possible evolution model for the particle velocities due to its
simplicity. In the following, we refer to this model as Bernoulli model.
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2.2.2 Ornstein-Uhlenbeck Process

This velocity Markov process considers the evolution of the normal scores

w(s) = Φ
−1 (Π [vs(s)])≡ F [vs(s)], (20)

where Φ(w) is the cumulative Gaussian distribution and Π(v) the cumulative steady
state velocity distribution,

Φ(w) =
1+ erf(w/

√
2)

2
, Π(v) =

v∫
0

ps(v′)dv′, (21)

where ps(v) is the steady state velocity distribution. The normal scores w(s) follow
the Ornstein-Uhlenbeck process (Gardiner, 2010; Morales et al., 2017)

dw(s)
ds

=−`−1
c w(s)+

√
2`−1

c ξ (s), (22)

where ξ (s) is a Gaussian white noise characterized by zero mean 〈ξ (t)〉= 0 and co-
variance 〈ξ (s)ξ (s′)〉= δ (s−s′). The Ornstein-Uhlenbeck process is a mean reverting
process. In the absence of the noise terms, w(s) relaxes exponentially fast towards 0.
In the presence of noise, there is a steady state for s� `c, at which w(s)∼ ξ (s). The
transition PDF for the Ornstein-Uhlenbeck process is given by (Gardiner, 2010)

rw(w,s|w′) =
exp
(
− [w−w′ exp(−s/`c)]

2

2[1−exp(−2s/`c)]

)
√

2π [1− exp(−2s/`c)]
. (23)

The velocity values vs(s) are obtained from w(s) at any distance s through the Smirnov
transform (Devroye, 1986)

v(s) = Π
−1(Φ [w(s)])≡ F−1[w(s)]. (24)

The velocity transition PDF r(v,s|v′) is thus given by

r(v,s|v′) = rw[F(v),F(v′)]
dF(v)

dv
. (25)

In the following, we refer to this model as the OU model.
The process (22) is implemented numerically via an Euler scheme as,

wn+1 = wn− `−1
c wn∆s+

√
2`−1

s ∆sξn, (26)

where wn = w(n∆s) and ξn is a Gaussian random variable with 0 mean and unit
variance. Accurate results are obtained using a discretization ∆s≤ `c/10.
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Fig. 1 Illustration of the subdomain of the Berea sandstone sample under consideration and sample stream-
lines.

2.3 Rock Sample, Flow Field and Velocity Statistics

Here we provide a brief summary of the rock sample, numerical methodology and
velocity statistics. Details on the image acquisition and segmentation as well as the
flow field computation can be found in Gjetvaj et al. (2015). Details regarding the
particle tracking computation can be found in Puyguiraud et al. (2019).

We use a three-dimensional digitized image (9003 voxels) of a sample of a Berea
sandstone (Upper Berea Sandstone unit, Ohio, USA). Berea sandstone is a sedi-
mentary rock characterized by medium porosity and permeability values as well as
medium pore-scale structural heterogeneity compared to common reservoir rocks.
Because of these average properties, its simple composition (quasi pure silica) and
its remarkable macroscopic homogeneity that allows easy comparisons, Berea sand-
stones are often used as a reservoir rock standard for experimental/ laboratory works.
The image is reconstructed from X-ray microtomography (Paganin et al., 2002; Sanchez
et al., 2012). The material density is recorded in a raw grey level image, which is is
segmented (Smal et al., 2018) in order to obtain a binary image mapping the solid
and the conne porosity. The porosity of the sample is 0.18. The voxel length is 10−6

m. The average pore length is 1.5 ·10−4 m.
The steady-state Navier-Stokes equations are solved using the SIMPLE method

implemented in OpenFOAM (simpleFoam) (Weller et al., 1998) in order to obtain the
velocity components at the center of the voxel surface for the full domain. The mean
flow velocity is aligned with the 1-direction of the coordinate system and given by
〈v1〉= 4.9 ·10−4 m/s. The characteristic time scale is given by τc = `p/〈v1〉= 3 ·10−1

s. The streamlines starting at any location in Ω0 are built from the interpolated ve-
locity using quadratic interpolation at the voxel in contact with the solid and linear
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Fig. 2 Probability distribution function of the s-Lagrangian velocity, ps(v) (black empty circles), the initial
velocities for uniform (blue) and flux-weighted (red) injections, p0(v), and the Eulerian velocity magnitude
pe(v) (black full circles).

interpolation elsewhere (Pollock, 1988; Mostaghimi et al., 2012). The injection do-
main Ω0 is a box of an extension of 50 voxels in mean flow direction and 900 voxels
in the directions perpendicular. Figure 1 illustrates a subdomain of the segmented
Berea sandstone image and some example trajectories through the pore-space.

The stochastic models for particle motion described in the previous section re-
quire the knowledge of the velocity correlation length `c, the steady state velocity
PDF ps(v) and the initial velocity PDF p0(v). Puyguiraud et al. (2019) performed a
full statistical analysis of the velocity statistics of the rock sample under considera-
tion. There, the velocity correlation length `c is found to be 2.5 times the character-
istic pore length `p. The mean Eulerian velocity magnitude is 〈ve〉= 8.05 ·10−4 m/s,
which give the advective tortuosity χ = 〈ve〉/〈v1〉 = 1.64. The mean s-Lagrangian
velocity magnitude is 〈vs〉 = 3.4 · 10−3. The steady state velocity distribution ps(v),
the Eulerian velocity distribution pe(v) and the initial velocity distributions for uni-
form and flux-weighted injections are shown in Figure 2. All velocity distributions
show a strong tailing toward low velocities. For the flux-weighted injection, the ini-
tial velocity PDF p0(v) is close to the steady state PDF ps(v), while for the uniform
injection, p0(v) is close to the Eulerian velocity PDF pe(v) (Puyguiraud et al., 2019).
The next section studies particle transport through the sample using direct numerical
simulations of purely advective particle motion, and its upscaling in terms of the ve-
locity correlation length `c and velocity PDF ps(v) in the framework of the velocity
Markov models discussed in the previous section.

3 Results

We study here the upscaling of the purely advective particle motion in the Berea
sandstone sample discussed in the previous section. Hydrodynamic transport in Berea
sandstones is known to be non-Fickian at the scale of centimeter sized samples (Gjet-
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vaj et al., 2015; Bijeljic et al., 2011). The direct numerical flow and particle track-
ing simulations represent the reference data. The large scale behavior is measured in
terms of particle breakthrough curves at different control planes, the particle displace-
ment variance or dispersion, and the spatial particle distribution or propagators. These
behaviors are then compared to the ones predicted by the stochastic particle models
presented in the previous section, which quantify the upscaled particle motion.

3.1 Breakthrough Curves

The breakthrough curve denotes the residence time distribution of the solute in the
domain. It may be used to infer the likeliness of chemical reactions to occur, and
to assess the retention or storage potential of the subdomain, for example. Under
uniform and homogeneous flow conditions, the BTC at control plane has an inverse
Gaussian shape and decays sharply at long times. Under heterogeneous flow condi-
tions breakthrough curves are characterized by early and late particle arrivals. In the
following, we consider BTCs for flux-weighted and uniform injection conditions and
compare them to the predictions of the upscaled transport models.

3.1.1 Flux-Weighted Injection

In this section we use a flux-weighted injection at the inlet for the computation of the
breakthrough curves. The velocity PDF p0(v) at the inlet is close to the stationary
PDF ps(v), see Figure 2. This implies that the particle velocities are approximately
stationary. We compare the breakthrough curves of the direct simulation described
in Section 2.3 to the two CTRW models described in Section 2.2. We perform the
simulations using 107 particles in the DNS case, while we used 109 for the upscaled
models. We compute arrival times at distances x1 = 6`p which corresponds to the
end of the sample, x1 = 36`p, and x1 = 200`p. To compute the breakthrough curves
at distances larger than the sample size, a particle exiting the sample at the outlet
is reinjected at the inlet while conserving the velocity continuity (Puyguiraud et al.,
2019).

Figure 3 displays the breakthrough curves from the DNS and the two stochastic
models. We observe a strong anomalous behavior characterized by early peak arrivals
and long tailing at late times. The late time tails display the power-law t−2 at all
distances. The exponent can be predicted from CTRW theory because it is directly
linked to the behavior of the low velocity part of the steady Lagrangian velocity PDF,
see Appendix B. The velocity distribution scales as ps(v) ∝ vβ−1 with β = 1 for the
small values of v. This implies that f (t,x1) ∝ t−2.

The Bernoulli and OU models perform equally well. The early, intermediate, and
late times are well captured even if at the closest control plane the two models do not
reproduce the first arrivals perfectly. The two models give similar results because the
injection velocity PDF is close to the steady-state PDF and therefore the models only
need to be able to preserve this distribution over time, which they are both capable of
doing (Puyguiraud et al., 2019).
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Fig. 3 Breakthrough curves for a flux weighted injection obtained from the DNS (circles), the Bernoulli
CTRW (dashed line) and OU CTRW (solid line) at planes located at 6`p, 36`p, and 200`p (from dark blue
to red).

3.1.2 Uniform Injection

The results are however different when using a uniform injection as initial condition.
Under this condition, the particle velocities are non-stationary. Figure 4 displays the
breakthrough curves computed at the same distances as in the previous section. The
late time slope is very different from the one obtained for the flux-weighted injection.
Here, the late time tailing is governed by the initial velocity distribution p0(v), which
at small v scales as p0(v) ∝ v−0.8, see Figure 2. The initial velocities persist within
a distance of about `c from the inlet. The long time behavior is dominated by strong
particle retention in the vicinity of the inlet and dominated by the transition time over
the distance `c,

ψ0(t) =
`c

t2 p0(`c/t) ∝ t−1.2, (27)

see also Appendix B.
Both, the Bernoulli and OU models provide good predictions of the breakthrough

curves obtained from the DNS. The peak position and width are well captured. Also
the behaviors at intermediate and long times are accurately predicted. Both models
give the correct long time tailing, while the Bernoulli model slightly overestimates
the tail compared to the DNS. This can be traced back to the observation that the
Bernoulli model overestimates the persistence of low velocities (Puyguiraud et al.,
2019).
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red). Inset: Comparison between the uniform and the flux weighted BTCs for the direct simulation at the
plane at 36`p.

3.2 Particle Distribution

In this section we study the evolution of the spatial particle distributions, or propaga-
tors g(x1, t) with focus on the differences in the evolution due to the initial particle
distribution. The propagator at a given time maps the spatial heterogeneity of the ve-
locity field which controls the spatial distribution of the mass in the system and, for
instance, gives information on the localization of reaction with the solid phase. Thus,
together with the breakthrough curve it allows for a spatio-temporal characterization
of the solute distribution.

Figure 5 shows g(x1, t) for uniform and flux-weighted injection conditions at three
different times. In both cases, the particle distributions are asymmetric and charac-
terized by a leading edge and long spatial tail. These behaviors are caused by the
broad distribution of particle velocities. For the uniform injection, the proportion of
particles in low velocity regions is larger than for the flux-weighted injection. Thus,
the tailing at short and intermediate times is stronger in the uniform than in the flux-
weighted case. With increasing time, the spatial distributions lose the memory of the
initial condition and assume the same shape. Note that this is different from the break-
through curves, whose long time behavior is dominated by the injection condition.

The OU and Bernoulli models predict the spatial profiles under both injection
conditions for times t > τc. For times t < τc, the stochastic models do not capture the
trailing tail in the case of the flux-weighted injection. At times t < τc, the tail of the
spatial distribution in the direct numerical simulation is determined by the velocity
components v1(x) < `c/t in the mean flow direction, this means by particles that
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persist in their initial velocity. Thus, if

p1(v) =
∫

Ω0

daρ(a)δ [v− v1(a)] , (28)

is the PDF of the 1-component of the particle velocities in the injection domain, the
particle distribution at early times is obtained through the variable transform x1 = v1t
as

g(x1, t) = t−1 p1(x1/t). (29)
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In the upscaled stochastic particle model, likewise, the tail of the spatial distribution is
due to the particle velocities that persist in their initial velocity. The distance traveled
at the initial velocity here, however, is x1 = χv0t because v0 is the initial velocity
magnitude. Thus, the upscaled particle model predicts for the early time distribution

g(x1, t) = χt−1 p0(χx1/t), (30)

where p0(v) is the PDF of the velocity magnitude in the injection domain. The PDFs
of the 1-component and magnitude are in general different, which explains the differ-
ence in the tailing behaviors for small times in the case of flux-weighted injection. For
the uniform injection, the distributions of the 1-component and the absolute value of
velocity are similar in shape, which explains the good match between the stochastic
models and the DNS data. While the stochastic models correctly capture the memory
of the injection condition on the evolution of the spatial distribution, we do not expect
them to be valid at short times and distances, for which the behaviors depend on the
local details of the velocity fluctuations.

3.3 Dispersion

In this section, we consider the displacement mean and variance. The evolution of the
displacement mean is an indicator of t-Lagrangian stationarity, while the displace-
ment variance gives information on particle dispersion. We have seen in the previous
section that the Bernoulli and OU models perform equally well in the prediction of
the spatial profiles. Thus, here, we compare the DNS data for the displacement mean
and variance with the prediction of the stochastic particle model based on the OU
model only.

Figure 6 shows the evolution of the mean displacement for uniform and flux-
weighted injection conditions. The early time behavior is in both cases linear and
given by 〈v1〉t, where

〈v1〉=
∞∫
−∞

dvvp1(v) (31)

is the average over the 1-component of the particle velocities in the injection domain.
Thus, the slope for the flux-weighted injection is larger than for the uniform injection.
At t > τc, the initial linear behavior crosses over to the long time behavior, which is
independent from the injection conditions. For the steady state velocity distribution
ps(v) illustrated in Figure 2, for which ps(v) ≈ constant at low velocities, CTRW
theory predicts m1(t) ∝ t/ ln(t) (Comolli and Dentz, 2017). This is confirmed by
the DNS data. Both the OU model and the Bernoulli model (not shown) predict the
evolution of the mean velocity, with a slight mismatch at short times for the reasons
discussed above.

Figure 6 shows the evolution of the displacement variance σ2(t) for uniform and
flux-weighted initial conditions. At early times, the behaviors are ballistic, this means

σ
2(t) = σ

2
v1

t2, (32)
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for both uniform (blue) and flux-weighted (red) injections. The DNS and OU models results are respec-
tively displayed with open circles and solid lines. The black lines indicate the t/ ln(t) and t2/ ln(t)3 late
time scalings.

where σ2
v1

is the variance of p1(v). As, for the mean, the displacement variance is
larger for the flux-weighted than for the uniform injection. At t > τc, the variance
crosses over from the ballistic toward the asymptotic regime. For t� τc, CTRW the-
ory predicts σ2(t) ∝ t2/ ln(t)3 (Comolli and Dentz, 2017). The behavior is superdif-
fusive. Both the OU and Bernoulli (not shown) models predict the evolution of the
displacement variance with a mismatch in the ballistic early time behaviors because
the stochastic models are determined by the statistics of the velocity magnitude.
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4 Conclusions

Using direct three-dimensional pore-scale simulations of flow and transport in a sam-
ple of Berea sandstone as a reference case, we have shown that the upscaling of pore-
scale dispersion can be accurately performed using a stochastic approach based on
velocity Markov models for equidistantly sampled particle velocities. The upscaled
model is implemented in the framework of a time-domain or continuous time ran-
dom walk approach, which describes particle motion in equidistant spatial steps with
random transition times. The presented modeling approach is predictive in the sense
that it depends on the Eulerian velocity distribution and advective tortuosity, both
flow attributes, and the average pore length which is a medium attribute. It is worth
noticing that this dependence allows, in turn, inferring information on the velocity
statistics and pore length from (experimental) observations of breakthrough curves,
spatial particle distributions and/or displacement moments.

Our analysis has shown that the observed transport behaviors are sensitive to the
initial distribution of the tracer particles. Breakthrough curve tailing, for example, can
depend on the initial velocity distribution. Under this condition, the breakthrough
curve tail gives information on the steady-state velocity distribution in the sample
only if the injection domain is already representative (large enough) for the initial
velocity distribution to be equal to the stationary PDF, otherwise, the breakthrough
curve gives information on the local velocities in the injection domain. Similarly, the
spatial particle distribution depends at short and intermediate times on the injection
condition. At late times, however, the memory of the initial condition diminishes and
the shape becomes independent from the injection condition. This is also reflected in
the displacement mean and variance. The early time behaviors of the displacement
mean and variance give information on the velocity mean and variance in the injec-
tion domain. At late times, the displacement mean shows slightly sublinear behavior,
the variance being superlinear, which is due to the tail of the steady state velocity
distribution toward low velocity values. In this sense, the evolution of the moments
can be seen as a scan through the velocity PDF. At short times, it is dominated by
the high and intermediate velocity values, which determine the velocity mean and
variance, at long times by the low velocities. The upscaled stochastic particle mod-
els can be conditioned on the injection condition through the distribution of initial
particle velocities and is able to predict the dependence on the initial condition and
full evolution of particle dispersion. We consider two velocity Markov models, the
Bernoulli and Ornstein-Uhlenbeck models, which both are parameterized by the ve-
locity correlation length and steady s-Lagrangian velocity PDF. While both models
predict the evolution from an initial velocity PDF toward the steady state, they differ
in the convergence rates as discussed in (Puyguiraud et al., 2019). Both processes
predict the transport behavior and dependence on the initial distribution, which in-
dicates that here the details of the evolution are secondary compared to the fact that
there is an evolution.

The presented analysis and the derived stochastic particle models consider purely
advective transport. Thus, they are directly relevant for transport scenarios character-
ized by high Péclet numbers, such as solute transport at high flow rates and passive
particles characterized by low diffusion coefficients. The stochastic model is based
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on a Markov model for the streamwise particle velocity, this means that velocities
are sampled advectively at a constant frequency in space. The breakthrough curve
tailing, for example, is due to the persistence of low velocities over a constant length
scale, the pore length. For finite Péclet numbers, particle velocities may be decorre-
lated due to diffusion across streamlines and low advective transition times may be
cut off at the characteristic diffusion time. Thus, we expect anomalous behavior to
persist in an intermediate regime depending on the Péclet number and to transition
towards normal behavior at times larger than the characteristic pore-scale diffusion
time.

Hydrodynamic dispersion and other pore-scale phenomena have their origins in
pore-scale velocity fluctuations. Thus, the presented upscaled stochastic model and
the associated parameterization can serve as a basis for the systematic quantification
of the impact of pore-scale velocity fluctuations on Darcy scale transport phenomena.

A Tortuosity

We derive here the average of the ω1(s,a) along a streamline under ergodic conditions. To this end, we
first note that the position x1(s,a) can be written by integration of (3) as

x1(s,a) = s
[

1
s

∫ s

0
ω1(s′,a)ds′

]
. (33)

The expression in the square brackets denotes the average of ω1(s,a) along a particle trajectory. At the
same time, it denotes the ratio of linear to streamwise distance,

〈ω1(s,a)〉s = lim
s→∞

1
s

∫ s

0
ω1(s′,a)ds′ =

x1(s,a)
s

, (34)

where the angular brackets with subscript s denote the streamwise average along a trajectory. The average
of ω1(s,a) over an ensemble of particles is defined by

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω0

v1[x(s,a)]
ve[x(s,a)]

ρ(a)da. (35)

We consider a flux-weighted initial condition, see (4). Under ergodic conditions, this initial condition
corresponds to the steady state velocity PDF ps(v), which is equal to the flux-weighted Eulerian velocity
PDF. This can be seen by using

ρ(a) =
1

V0

ve(a)
〈ve(x)〉

I(a ∈Ω0), (36)

in the limit V0→ ∞. Also, Koponen et al. (1996) pointed out that it is natural for porous media to consider
a flux-weighted average, see also Ghanbarian et al. (2013). Furthermore, under ergodic conditions, the
average over a single particle trajectory is equal to the average over the initial ensemble of particles and so

〈ω1(s,a)〉s = 〈ω1(s,a)〉=
〈x1(s,a)〉

s
= χ

−1. (37)

Using expression (36) in (35), we obtain

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω0

v1[x(s,a)]
ve[x(s,a)]

ve(a)
〈ve(x)〉

da. (38)

In order to evaluate this expression, we perform the variable change a→ x(s,a),

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω(s)

v1[x(s,a)]
ve[x(s,a)]

ve(a)
〈ve(x)〉

J(a,s)−1dx, (39)



Upscaling of anomalous pore-scale dispersion? 19

where J(a,s) is the Jacobian of the transformation. It can be determined by noting that (Batchelor, 2000,
p. 75)

dJ(a,s)
ds

= J(a,s)∇ · v[x(s,a)]
ve[x(s,a)]

. (40)

This differential equation can be integrated by noting that ∇ ·v(x) = 0 and

dve[x(s,a)]
ds

= ∇ve[x(s,a)] ·v[x(s,a)], (41)

which follows by using the chain rule and (3). Thus, we obtain for the initial condition J(a,s = 0) = 1 that

J(a,s) =
ve(a)

ve[x(s,a)]
. (42)

Inserting this expression into (38) gives

〈ω1(s,a)〉= lim
V0→∞

1
V0

∫
Ω(s)

v1(x)
〈ve(a)〉

dx =
〈v1〉
〈ve〉

. (43)

This result is consistent with Koponen et al. (1996). This implies that at s� `p, we can set

〈ω1(s,a)〉= χ
−1 =

〈v1〉
〈ve〉

. (44)

B Continuous Time Random Walk

For transition length of the order of the correlation length `c, subsequent particle velocities can be consid-
ered independent and thus, the space-time particle motion (13a) may be approximated by

xn+1 = xn +
`c

χ
, tn+1 = tn + τn, (45)

where xn = x(sn) with sn = n`c. The random transition time τn is given by

τn =
`c

vs(sn)
. (46)

The time increments for n > 0 is distributed as

ψ(t) =
`c

t2 ps(`c/t). (47)

For n = 0, the transition time PDF is distributed according to

ψ0(t) =
`c

t2 p0(`c/t). (48)

Under steady state conditions, this means for p0(v)= ps(v) and thus ψ0(v)=ψ(v), Equations (45) describe
a continuous time random walk as discussed in Berkowitz et al. (2006). Thus, the asymptotic behavior of
the breakthrough curves and displacement moments can be predicted based on the scalings of the transition
time distribution. For ψ(t) ∝ t−1−β at large times, the breakthrough curves scales as f (t,x1) ∝ t−1−β , the
mean displacement scales as m1(t) ∝ t and the displacement variance as σ2(t) ∝ t3−β . Note that this
scaling for ψ(t) implies that the velocity distribution ps(v) ∝ vβ−1 at small velocities.
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