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Abstract The concept of the representative elementary volume (REV) is often as-7

sociated with the notion of hydrodynamic dispersion and Fickian transport. How-8

ever, it has been frequently observed experimentally and in numerical pore scale9

simulations that transport is non-Fickian and cannot be characterized by hydrody-10

namic dispersion. Does this mean that the concept of the REV is invalid? We investi-11

gate this question by a comparative analysis of the advective mechanisms of Fickian12

and non-Fickian dispersion and their representation in large scale transport models.13

Specifically, we focus on the microscopic foundations for the modeling of pore scale14

fluctuations of Lagrangian velocity in terms of Brownian dynamics (hydrodynamic15

dispersion) and in terms of continuous time random walks, which account for non-16

Fickian transport through broad distributions of advection times. We find that both17

approaches require the existence of an REV that, however, is defined in terms of the18

representativeness of Eulerian flow properties. This is in contrast to classical defini-19

tions in terms of medium properties such as porosity, for example.20
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E-mail: alexandre.puyguiraud@cid.csic.es

P. Gouze
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1 Introduction23

The notion of a representative elementary volume (REV) lies at the heart of macro-24

scopic (continuum) descriptions for systems that exhibit small scale structural disor-25

der (caused by the mixture of void and solid phases that forms the porous medium),26

feature which is usually referred to as material heterogeneity. In the frame of con-27

tinuum approaches, the REV is associated to a point of the continuous field where28

average properties, that are supposed to denote the effective properties of the mate-29

rial, are allocated. For instance permeability, from which the average fluid velocity30

is derived, and hydrodynamic dispersion are critical properties for modeling steady31

state flow and solute transport, respectively. The REV corresponds to the (minimum)32

volume required to evaluate the effective properties of a heterogeneous material or,33

in other words, the minimum volume above which the properties are stationary. This34

is illustrated in Figure 1 for the ratio of void to bulk volume, i.e. the porosity, where35

the REV size is determined from the constant limit value of φ`:36

φ` =
1
V`

∫
Ω`

dxI(x ∈Ω f ), (1)37

38

where Ω f and Ω` denote the fluid domain and bulk domain of volume `, V` respec-39

tively and I(·) is the indicator function, which is equal to 1 if its argument is true and40

0 otherwise. The length scale ` at which φ` stabilizes defines the REV scale.41

Accordingly, the REV is clearly definable for two extreme cases: 1) unit volume42

in a periodic microstructure, and 2) a volume containing a large set of micro-scale43

structures displaying homogeneous and ergodic properties. The existence of the REV44

relies on the existence of scale separation of spatial medium fluctuations. An REV45

cannot be defined for continuously hierarchized heterogeneous media such as frac-46

tal materials. The REV is typically determined from applying this concept to the47

material microstructure and specifically to its simplest quantitative notion, which is48

its porosity (as illustrated in Figure 1). Porosity is easily measurable at laboratory49

scale and can also be determined at pore-scale by using imaging methods such as50

computed microtomography which allows characterizing the micro-structures over51

volumes that are typically larger than the REV. Since the REV can be well-defined52

for porosity, it is generally assumed that this definition also implies the existence53

of transport relevant parameters such as the specific discharge and the hydrodynam-54

ics dispersion coefficients. The former represents the mean pore velocity, the latter55

quantifies its fluctuations. The values of these parameters are considered to be well-56

defined and constant on the REV scale. Note that assuming the specific discharge57

constant within the REV implies that the product of permeability and the pressure58

gradient is constant. This stems from the Darcy equation, which states that59

q =− k
µ

dP(x1)

dx1
, (2)60

61

where k is permeability, P(x1) is pressure and µ dynamic viscosity. The assumption62

that the REVs for the porosity and the specific discharge are the same is not evident.63

The assumption that the REVs for the porosity and for the hydrodynamics dispersion64
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Fig. 1 Porosity measured in a cube of increasing side length cube (x-axis) centered in the middle of the
Berea sandstone sample studied in Section 2. The side length of the full sample is 6`p and its porosity is
0.182 (gray dashed line). `p ≈ 1,5 ·10−4 m denotes the average pore length.

coefficients are similar is even less evident because the later encompasses the im-65

pact of pore-scale velocity fluctuations. Yet, if this assumption holds, average solute66

transport can be described by the advection-dispersion equation (ADE) (Bear, 1972)67

φ
∂c(x1, t)

∂ t
+q

∂c(x1, t)
∂x1

−D
∂ 2c(x1, t)

∂x2
1

= 0. (3)68

69

This approach described Darcy-scale transport in terms of porosity φ , specific dis-70

charge q and the hydrodynamic dispersion coefficient D .71

Experimental (Moroni and Cushman, 2001; Cortis and Berkowitz, 2004; Holzner72

et al, 2015; Morales et al, 2017) and numerical (Bijeljic and Blunt, 2006a; Bijeljic73

et al, 2011; Liu and Kitanidis, 2012; De Anna et al, 2013; Kang et al, 2014; Meyer74

and Bijeljic, 2016; Puyguiraud et al, 2019a; Dentz et al, 2018) pore scale studies75

observed deviations from predictions based on the ADE (3). This includes tailing in76

solute breakthrough curves, non-linear growth of dispersion and non-Gaussian par-77

ticle distributions and propagators. Such behaviors are usually modeled based on78

non-local transport approaches such as multirate mass transfer and continuous time79

random walks (Berkowitz et al, 2006; Noetinger et al, 2016) as well as fractional80

dynamics (Cushman and Moroni, 2001).81

In this paper, we investigate the notion of REV for non-Fickian dispersion. We82

scrutinize the assumptions underlying modeling approaches for Fickian and non-83

Fickian dispersion and the relation with the REV concept. In Section 2.2.1 we discuss84

the bases of the ADE framework and we include a critical revision of its limitations.85

In Section 2.2.2 we discuss the framework of continuous time random walk models86
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and investigate what underlying assumptions they are relying on. This leads us to87

define, in Section 2.3 the Eulerian REV for anomalous transport and to illustrate its88

evaluation from computations performed using a digitized volume of a real rock sam-89

ple in Section 2.5. The implications of such an REV definition for continuum scale90

modeling of Fickian and non-Fickian transport are discussed in section 3.91

2 Dispersion upscaling and the representative elementary volume92

In this section, we consider the assumptions that support the description of solute93

dispersion by advection-dispersion models and continuous time random walks. From94

these considerations we propose the definition of an REV in terms of the Eulerian95

flow statistics, and discuss conditions on the Lagrangian velocity statistics.96

2.1 Pore scale flow and transport97

Pore scale flow is described here by the Stokes equation98

∇
2u(x) =−∇p(x)

µ
, (4)99

100

together with the incompressibility assumption ∇ ·u(x) = 0. The mean pressure gra-101

dient is aligned with the 1-direction of the coordinate system. We consider purely102

advective transport that is described by the kinematic equation103

dx(t,a)
dt

= v(t,a), (5)104

105

where x(t = 0,a) = a and v(t,a) = u[x(t,a)] is the Lagrangian velocity. We disregard106

diffusion and focus on the advective particle motion along the streamlines as the sole107

mechanism by which the velocity field is sampled. The impact of diffusion on the108

results presented in the following, are discussed in Section 3. Equation (5) can be109

transformed into streamline coordinates t→ s, with110

ds(t)
dt

= v(t), (6)111

112

where v(t) = |v(t)|. This gives the equivalent system of equations113

dx(s,a)
ds

=
v(s,a)
v(s,a)

,
dt(s,a)

ds
=

1
v(s,a)

. (7)114

115

2.2 Dispersion upscaling116

We consider the conditions under which pore-scale velocity fluctuations can be quan-117

tified by the concept of hydrodynamic dispersion and how this relates to the notion of118

an REV. Then, we discuss the same issues for continuous-time random walk models119

to upscale anomalous dispersion.120
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2.2.1 Fickian dispersion121

In order to identify the basic assumption underlying the ADE formulation of Darcy-122

scale transport, we consider the Langevin equation (Gardiner, 2010) that is equivalent123

to the ADE (3),124

dx(t)
dt

= v1 + v′1(t), (8)125

126

where we decomposed the particle velocity v1(t) into its mean v1 and fluctuation127

v′1(t). The mean pore velocity is v1 = q/φ . The velocity fluctuation v′1(t) is repre-128

sented by a stationary Gaussian random process characterized by 0 mean and the129

covariance function130

〈v′1(t)v′1(t ′)〉= 2Dδ (t− t ′), (9)131
132

where D is the hydrodynamic dispersion coefficient and δ (t) is the Dirac Delta. The133

angular brackets denote the average over the ensemble of the noise realizations. With134

these properties of the velocity fluctuations, Equation (8) describes Brownian dynam-135

ics.136

The representation of the velocity fluctuations as a δ -correlated Gaussian pro-137

cess is based on several conditions. First, the velocity process needs to be stationary138

and ergodic. This means that its mean and variance depend only on the time lag139

and not on the absolute time. Second, velocity fluctuations decay exponentially fast140

on a characteristic correlation time scale τc. Furthermore, based on the assumption141

that the velocity distribution has finite variance, the displacement distribution, which142

is the sum of random velocity increments, converges towards a Gaussian distribu-143

tion as time increases. This is a consequence of the central limit theorem (Gardiner,144

2010) and warrants the modeling of the statistics of v′1(t) as Gaussian. The correla-145

tion model (9) is valid at observation times that are much larger than the correlation146

scale τc, which can be related to the advection time over a characteristic length scale147

`c,148

τc =
`c

v1
. (10)149

150

This implies that for time t � τc, particles must have access to the full spectrum of151

velocity variability. The Langevin equation (8), which is valid at t� τc, thus implies152

that at each random walk step, particles can sample the full spectrum of random153

velocities. Particles become statistically equal on the time scale τc. This temporal154

notion can be related to a spatial REV scale through the length scale `c that is assumed155

to mark the correlation time together with the mean velocity v1. Thus, the REV scale156

is supposed to contain a representative set of flow velocities that particles can sample157

with equal probability. This is discussed further in Section 2.3.158



6 Alexandre Puyguiraud, Philippe Gouze and Marco Dentz

0

0.005

0.01

0.015

0.02

0 1000 2000 3000 4000 5000 6000 7000 8000

sp
ee
d

time/τc

10−8

10−6

10−4

10−2

0 1000 2000 3000 4000 5000 6000 7000 8000

sp
ee
d

time/τc

Fig. 2 Time series of velocity magnitudes experienced by a particle in the three-dimensional digitized
Berea sandstone sample shown in Figure 1.

2.2.2 Anomalous dispersion159

As outlined in the previous section, Brownian dynamics describes dispersion at times160

that are much larger than a typical correlation scale τc, which is equal to the transition161

time over an average pore length by the mean flow velocity. In order to scrutinize this162

condition, let us consider local transition times over the characteristic distance `c.163

According to (7), one can write164

τ =

s+`c∫
s

ds′

v(s′)
≈ `c

v
, (11)165

because v(s′) can be considered approximately constant over a distance `c which is166

of the order of the pore length (Saffman, 1959). This implies that the persistence time167

of particles with small velocities may be much larger than suggested by τc. Indeed,168

pore-scale velocity time series have been shown to display intermittent patterns. This169

means that they are characterized by long periods of small velocities and rapid fluc-170

tuations of large amplitudes (De Anna et al, 2013; Kang et al, 2014; Morales et al,171

2017; Puyguiraud et al, 2019a), see also Figure 2. These patterns are indicative of172

a broad distribution of characteristic time scales. In fact, if the variance of τ is in-173

finite, a sizeable amount of particles exhibits persistence times τ � τc. This means174

that particles do not become statistically equal over τc and thus invalidates the central175

assumption of the Brownian dynamics approach underlying Fickian dispersion. We176

will show below, that this property does not invalidate the existence of an REV.177

Particle velocities vary on spatial scales imprinted in the medium structure rather178

than on a fixed times scale (Kang et al, 2014; Puyguiraud et al, 2019a). This prop-179

erty is naturally taken into account by continuous-time random walk (CTRW) and180

time-domain random walk (TDRW) transport models (Berkowitz et al, 2006; Painter181
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and Cvetkovic, 2005). In the framework of these random walk approaches, the par-182

ticle motion along the mean flow direction is described by the following recurrence183

relations:184

xn+1 = xn +
`c

χ
, tn+1 = tn + τn, (12)185

186

where χ is the advective tortuosity (Koponen et al, 1996; Puyguiraud et al, 2019b),187

which measure the ratio of streamline length to average linear streamwise distance.188

The transition time is τn = `c/vn. The particle velocities vn are independent random189

variables. For n = 0, they are distributed according to an initial velocity distribution190

p0(v), which depends on the initial particle distribution. For n≥ 1, the vn are identi-191

cally distributed according to the flux-weighted Eulerian velocity distribution (Dentz192

et al, 2016)193

ps(v) =
vpe(v)
〈ve〉

. (13)194

195

This has two consequences. First, at each random walk step particles can sample196

the full velocity spectrum, meaning that they are statistically equal. Second, the La-197

grangian velocity statistics are stationary and ergodic. Particularly, particles evolve198

toward their stationary steady state distribution for distances larger than the length199

scale `c. For these conditions to hold, it is necessary that particles can sample a rep-200

resentative fraction of the Eulerian velocity distribution. Thus, in the following, we201

define the necessary and sufficient criteria required for the existence of a velocity202

REV in terms of the convergence of the velocity statistics with increasing support203

scale. Furthermore, we discuss the issue of ergodicity and stationarity.204

2.3 Representative elementary volume205

As discussed in the previous section, the representativeness of the velocity statistics206

sampled in the support volume and the existence of a stationary velocity distribution207

are key properties for transport upscaling for both Fickian and non-Fickian disper-208

sion. Thus, the velocity statistics need to be representative of the (stationary) Eule-209

rian velocity statistics in the medium for the support scale to be a transport REV. We210

note that a volume must first be an REV for porosity because the Eulerian velocity211

distribution may be linked to the pore size distribution (De Anna et al, 2017; Dentz212

et al, 2018) and thus, evolving porosity would cause evolving velocity statistics. If the213

sample is an REV for porosity, then the Eulerian velocity statistics may be represen-214

tative. We define an REV in terms of the Eulerian velocity PDF in a similar manner as215

the porosity REV. A sample is considered to be a Eulerian REV if it is large enough216

for the Eulerian velocity distribution to become stationary. To quantify the evolution217

of the Eulerian velocity PDF in function of the support scale, the Eulerian velocity218

PDF is sampled on growing domains starting from a small volume in the center of219

the sample to the full sample volume. The spatially sampled PDF of the magnitude220
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of the flow velocity ve(x) = |v(x)| is defined as221

p`(v) =
1

φ`V`

∫
Ω`

dxδ [v− ve(x)]I(x ∈Ω f ), (14)222

223

where Ω` is the physical domain on which the PDF is computed, and V` and φ` are its224

volume and its porosity, respectively. In order to quantify accurately the convergence225

of these distributions toward the Eulerian PDF pe(v) for the full sample, we define226

the distance between p`(v) and pe(v) based on the Kullback-Leibler (KL) divergence227

(Kullback and Leibler, 1951) as228

dKL(pe, p`) =
∞∫

0

dvp`(v) ln
[

p`(v)
pe(v)

]
. (15)229

The Kullback-Leibler divergence has been used to compare evolving PDFs to a refer-230

ence distribution, (see for example Bigi, 2003; Robert and Sommeria, 1991; Lindgren231

et al, 2004). When dKL = 0, the distributions are identical. Here we consider a thresh-232

old value of ε = 10−2 as the criterion for when the support volume can be considered233

an REV.234

2.4 Lagrangian ergodicity235

As mentioned above, the convergence of the Eulerian velocity statistics on the sup-236

port scale is not a sufficient condition for the upscaled random walk models to hold237

because these models assume by construction that particle velocities are sampled238

from the same stationary Lagrangian velocity PDF ps(v) at each except for the first239

step. In order to illustrate this, let us consider a porous media model consisting of a240

distribution of isolated straight capillaries. The support scale may be an REV for the241

Eulerian velocities. However, since the flow velocities are constant along streamlines,242

particles are never able to sample the full velocity spectrum.243

The issue of Lagrangian ergodicity for pore scale flow has been studied in detail244

inPuyguiraud et al (2019a) in terms of the evolution of the s-Lagrangian velocity245

PDF, which is defined by246

p̂s(v,s) =
∫

daρ(a)δ [v− v(s,a)], (16)247

248

where ρ(a) is the initial particle distribution. We measure convergence of p̂s(v,s)249

toward the steady state ps(v) by the KL divergence dKL(p̂s, ps).250

2.5 Application to Berea sandstone sample251

In this section we study the concept of the REV defined from the Eulerian velocity252

magnitude for the Berea sandstone sample illustrated in Figure 1 (Puyguiraud et al,253

2019a), as well as ergodicity and stationarity of the Lagrangian velocity series. The254

advective tortuosity of the sample is χ = 1.64 (Puyguiraud et al, 2019b).255
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Fig. 3 (Left) The Eulerian velocity PDF computed on cubes centered in the middle of the sample of sizes
V = 4 · 10−8VT (red solid line), V = 1 · 10−6VT (dark orange solid line), V = 10−5VT (light orange solid
line), V = 1.25 ·10−1VT (light blue solid line) and VT (navy blue circles), where VT is the bulk volume of
the sample. (Right) The KL divergence between the full sample Eulerian velocity PDF and the Eulerian
velocity PDFs computed on growing volumes from V = 0 to V =VT .

First, we determine the porosity REV. Figure 1 displays the evolution of the ratio256

φ` between void and bulk volume computed on a size increasing domain that starts257

from a single point in the center of the sample to the total sample volume. The poros-258

ity starts from a value of one since the initial volume is situated in the void space.259

It then converges towards the porosity value of φ = 0.182 after about 4.5`p, which260

means that the sample is an REV for porosity.261

Second, we investigate the convergence of the Eulerian velocity statistics with in-262

creasing support scale. Figure 3a displays the Eulerian velocity PDFs respectively263

computed on cubes of volumes V = 4 · 10−8VT , V = 10−6VT , V = 10−5VT , V =264

1.25 ·10−1VT , and VT , where VT is the bulk volume of the sample. We observe that the265

distribution evolves toward the full sample distribution as the volume of the cube in-266

creases. For V = 4 ·10−8VT we measure a small range of velocities. For V = 10−6VT267

the distribution looks like the velocity distribution sampled in a single pore. The268

distribution sampled in a volume V = 10−5VT corresponds to the average of sev-269

eral pore velocity distributions. Finally, the same statistics are observed for volumes270

V = 1.25 ·10−1VT and VT , despite the former being 8 times smaller than the latter. To271

quantify accurately the convergence toward the Eulerian PDF, we use the aforemen-272

tioned KL divergence between the successive p`(v) and pe(v). The distance between273

the full sample velocity PDF and the subsequent growing cubes velocity PDFs is dis-274

played in Figure 3b. For small volumes V the KL divergence to the velocity PDF of275

the full sample is large since the volume only contains a restricted range of the veloc-276

ity spectrum. Then, the KL divergence decreases quickly as the evolving distribution277

approaches the reference distribution. A distance dKL < 10−2 is reached for a volume278

V ≈ 0.125VT . In other words, the limit distribution is attained. This indicates that the279

sample volume is noticeably larger than the Eulerian velocity REV.280

We have seen that an REV for the Eulerian velocity magnitude exists. Now we281

investigate the stationarity of the velocity process by considering the evolution of282

ps(v,s) for a given initial velocity distribution p0(v) toward the steady state ps(v).283

To investigate accurately this evolution, we inject at the inlet particles in a given284

velocity range v ∈ [vl ,vu] and allocate the same weight to the whole range (see blue285
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Fig. 4 (Left panel) The Lagrangian PDF ps(v,s) along an ensemble of streamlines measured at distance
s = `p/15 (light blue circles), s = 4`p/3 (light orange circles), s = 20`p/3 (dark orange circles) and s =
32`p/3 (red circles. The blue solid line denotes the initial velocity PDF at s = 0 and the red solid line
indicates the steady-state Lagrangian s-velocity PDF. (Right panel) The KL divergence (orange curve)
between the steady-state Lagrangian velocity PDF and the successive Lagrangian velocity PDFs computed
at increasing distances from s = 0 to s = 10`p.

solid curve in the right panel of Figure 4). The resulting distribution is far from the286

steady-state distribution. We display the evolution of this distribution with distance287

in Figure 4a. The distribution converges toward the steady-state ps(v) after a distance288

of s = 20`p/3.289

As above we quantify convergence by computing the KL distance between the290

steady-state velocity PDF ps(v) and the distributions ps(v,s) computed after different291

distances s along the particle streamlines (see, also Puyguiraud et al, 2019a). The292

right panel of Figure 4 displays the evolution of the KL divergence with distance293

s along the streamline. At small distances the KL-divergence between ps(v,s) and294

the steady state ps(v) is large because the initial distribution is very different from295

the steady state distribution. The KL-divergence then decreases with increasing s,296

and reaches the threshold ε = 5 · 10−2 after s = 20`p/3, which corresponds to an297

average linear distance of 4`p. Despite the fluctuations that we observe in ps(v,s) at298

distances s≥ 20`p/3, we consider the convergence to be satisfactory because the KL299

divergence remains below ε . The small fluctuations are due to the complexity of the300

geometry that particles encounter. In conclusion the sample fulfills the stationarity301

conditions required for the upscaling.302

3 Implications for Darcy Scale Transport303

We have seen in the previous section that both Fickian transport descriptions in terms304

of Brownian dynamics as well as anomalous transport theories based on continuous305

time random walks require the existence of an REV in terms of the Eulerian velocity306

distribution. This is a necessary condition for the particle velocity series to be station-307

ary and ergodic. Furthermore, we have seen that transport descriptions in terms of308

Brownian dynamics are valid at time scales that are much larger than the characteris-309

tic velocity correlation time. Thus, such approaches are only of limited applicability310

for situations characterized by broad distributions of the velocity persistence times311
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which are typical of natural porous media that display intermittent velocity time se-312

ries. These features can be captured naturally by the CTRW approach. In this section313

we illustrate the CTRW approach to upscale pore-scale particle motion and discuss314

the implications for modeling hydrodynamic dispersion.315

First, it is worth recalling that the previous sections focused on purely advective316

transport. This means, advective sampling of velocity contrast along streamlines is317

the only mechanism by which particles can experience the velocity heterogeneity318

and eventually become statistically equal, or in other words, for Lagrangian velocity319

statistics to become stationary and ergodic. In this sense, the purely advective case320

represents a worst case scenario because molecular diffusion is an additional sam-321

pling mechanism that makes particles experience the velocity contrast across stream-322

lines, as in the problem of Taylor dispersion in a pipe (Taylor, 1953). In fact, diffu-323

sion impacts on pore scale transport in various various ways. Diffusive smoothing324

reduces the velocity contrast between particles, sets a maximum transition time over325

the length of a pore, and can lead to trapping in cavities and dead end pores (Saffman,326

1959; Bijeljic and Blunt, 2006b; Dentz et al, 2018).327

Thus, regarding the velocity sampling and the convergence toward stationarity,328

diffusion is favorable because it sets a maximum sampling time. Nevertheless, sim-329

ilarly to the purely advective case, a representative part of the velocity distribution330

needs to be available on the support scale. Thus, the presence of diffusion does not331

change the main conclusion regarding the existence and definition of the REV. Yet,332

it affects the stochastic particle dynamics because it introduces a temporal sampling333

mechanism in addition to the spatial sampling along streamlines. These aspects can334

be taken into account in the CTRW framework (Bijeljic and Blunt, 2006b; Dentz335

et al, 2018).336

In the following, we briefly recall some basic relations of the CTRW. As described337

in Section 2.2.2, the CTRW models particle motion through the coupled space-time338

transitions (12). For purely advective particle motion, the transition time distribution339

ψ(t) is given in terms of the stationary velocity distribution ps(v) as340

ψ(t) =
`c

t2 ps(`c/t). (17)341

342

The impact of diffusion on velocity sampling, the introduction of a maximum transi-343

tion time and trapping in cavities and low velocities zones can be modeled in terms344

of a coupled distribution ψ(x, t) of transition lengths and times (Dentz et al, 2018,0).345

The evolution of the particle distribution p(x, t) is given by the generalized master346

equation (Berkowitz et al, 2006)347

∂ p(x, t)
∂ t

=

t∫
0

dt ′K (x− x′, t− t ′)
[
p(x′, t ′)− p(x, t ′)

]
, (18)348

349

where the memory kernel K (x, t) is defined through its Laplace transform by350

ˆK (x,λ ) =
λψ̂(x,λ )
1− ψ̂(λ )

, (19)351

352
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Note that this formulation implicitly assumes that the transition lengths and times353

are stationary, this means the joint distribution of transition lengths and times for the354

first step is equal to ψ(x, t), which in general may not be case, depending on the355

injection condition (Dentz et al, 2016). We notice that p(x, t) is the particle density in356

a unit bulk volume. Thus, it is related to the concentration c(x, t) in the fluid phase as357

p(x, t) = φc(x, t). We assume that ψ(x, t) is sharply peaked around the characteristic358

length scale `c. Thus one can expand the integrand on the right side of (18) up to359

second order in the displacement increment to obtain (Berkowitz et al, 2006)360

φ
∂c(x, t)

∂ t
=−

t∫
0

dt ′
[
Kv(t− t ′)φ

∂c(x, t ′)
∂x

−KD(t− t ′)φ
∂ 2c(x, t ′)

∂x2

]
, (20)361

362

where we defined the advection and dispersion kernels in terms of their Laplace trans-363

forms as364

ˆKv =
∫

dxx ˆK (x,λ ), ˆKD =
∫

dxx2 ˆK (x,λ ). (21)365

366

Equations (18) and (20) describe in general non-Fickian transport (Berkowitz et al,367

2006). In the absence of trapping and for times larger than the characteristic diffusion368

time scale `2
c/D (with D the molecular diffusion coefficient), the non-local advection-369

dispersion equation localizes and gives the advection-dispersion model (3) (Dentz370

et al, 2004).371

Note that, since the REV is defined in terms of the Eulerian statistics inside the372

domain, the diffusion process has no impact on the REV definition and therefore373

does not affect its size. However, it will affect the times scales to reach ergodic con-374

ditions. Indeed, in a purely advective case particles sample velocities as they move375

along streamlines. In the presence of diffusion, particles can sample velocities addi-376

tionally by changing streamlines, which may accelerate the convergence to a steady377

state distribution. Thus, defining the REV for purely advective transport guaranties378

its validity for any finite value of the Péclet number.379

4 Conclusions380

In this paper we aimed at answering the following question: Is there an REV for381

anomalous dispersion? We showed that an REV not only exists, but that its existence382

is also a necessary condition for CTRW approaches to non-Fickian hydrodynamic383

dispersion to be valid. The REV definition is set in terms of the Eulerian velocity384

statistics. Precisely, the REV scale is defined as the length scale of the sampling vol-385

ume beyond which the spatially sample velocity distribution remains invariant. This386

definition requires the sample to be also a porosity REV since an evolving porosity387

would prevent the convergence of the Eulerian velocity distribution. The existence388

of an REV is a necessary conditions for the upscaling of anomalous dispersion us-389

ing the CTRW approach. It requires the Lagrangian velocity series to form stationary390

stochastic processes that relaxes toward the stationary velocity distribution within a391

characteristic length scale. In other words, for a given sample a steady-state velocity392
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distribution needs to exist. In conclusion, if a sample fulfills these criteria, anoma-393

lous and as well as Fickian hydrodynamic dispersion can be upscaled by the CTRW394

approach.395
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