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COLORING GRAPHS WITH NO INDUCED SUBDIVISION OF K+

4

LOUIS ESPERET AND NICOLAS TROTIGNON

Abstract. Let K+

4 be the 5-vertex graph obtained from K4, the complete graph on four
vertices, by subdividing one edge precisely once (i.e. by replacing one edge by a path on
three vertices). We prove that if the chromatic number of some graph G is much larger
than its clique number, then G contains a subdivision of K+

4 as an induced subgraph.

Given a graph H , a subdivision of H is a graph obtained from H by replacing some edges
of H (possibly none) by paths. We say that a graph G contains an induced subdivision of

H if G contains a subdivision of H as an induced subgraph.
A class of graphs F is said to be χ-bounded if there is a function f such that for any

graph G ∈ F , χ(G) 6 f(ω(G)), where χ(G) and ω(G) stand for the chromatic number
and the clique number of G, respectively.

Scott [7] conjectured that for any graph H , the class of graphs without induced subdi-
visions of H is χ-bounded, and proved it when H is a tree. But Scott’s conjecture was
disproved in [6]. Finding which graphs H satisfy the assumption of Scott’s conjecture
remains a fascinating question. It was proved in [1] that every graph H obtained from the
complete graph K4 by subdividing at least 4 of the 6 edges once (in such a way that the
non-subdivided edges, if any, are non-incident), is a counterexample to Scott’s conjecture.
On the other hand, Scott proved that the class of graphs with no induced subdivision of
K4 has bounded chromatic number (see [5]). Le [4] proved that every graph in this class
has chromatic number at most 24. If triangles are also excluded, Chudnovsky et al. [2]
proved that the chromatic number is at most 3.

In this paper, we extend the list of graphs known to satisfy Scott’s conjecture. Let K+

4

be the 5-vertex graph obtained from K4 by subdividing one edge precisely once.

Theorem 1. The family of graphs with no induced subdivision of K+

4 is χ-bounded.

We will need the following result of Kühn and Osthus [3].

Theorem 2 ([3]). For any graph H and every integer s there is an integer d = d(H, s)
such that every graph of average degree at least d contains the complete bipartite graph Ks,s

as a subgraph, or an induced subdivision of H.

Proof of Theorem 1. Let k be an integer, let d(·, ·) be the function defined in Theorem 2,
and let R(s, t) be the Ramsey number of (s, t), i.e. the smallest n such that every graph
on n vertices has a stable set of size s or a clique of size t.
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We will prove that every graph G with no induced subdivision of K+

4 , and with clique
number at most k, is d-colorable, with d = max(k, d(K+

4 , R(4, k))). The proof proceeds
by induction on the number of vertices of G (the result being trivial if G has at most k

vertices). Observe that all induced subgraphs of G have clique number at most k and do
not contain any induced subdivision of K+

4 . Therefore, by the induction, we can assume
that all induced subgraphs of G are d-colorable. In particular, we can assume that G is
connected.

Assume first that G does not contain Ks,s as a subgraph, where s = R(4, k). Then by
Theorem 2, G has average degree less than d, and hence contains a vertex of degree at
most d− 1. By the induction, G− v has a d-coloring and this coloring can be extended to
a d-coloring of G, as desired.

We can thus assume that G contains Ks,s as a subgraph. Since G has clique number
at most k, it follows from the definition of R(4, k) that G contains K4,4 as an induced
subgraph. Let M be a set of vertices of G inducing a complete multipartite graph with at
least two partite sets containing at least 4 vertices. Assume that among all such sets of
vertices of G, M is chosen with maximum cardinality. Let V1, V2, . . . , Vt be the partite sets
of M .

Let v be a vertex of G, and S be a set of vertices not containing v. The vertex v is
complete to S if v is adjacent to all the vertices of S, anticomplete to S if v is not adjacent
to any of the vertices of S, and mixed to S otherwise. Let R be the vertices of G not in M .
We can assume that R is non-empty, since otherwise G is clearly k-colorable and k 6 d.
We claim that:

If a vertex v of R has at least two neighbors in some set Vi, then it is
not mixed to any set Vj with j 6= i.

(1)

Assume for the sake of contradiction that v has two neighbors a, b in Vi and a neighbor
c and a non-neighbor d in Vj , with j 6= i. Then v, a, b, c, d induce a copy of K+

4 , a
contradiction. This proves (1).

Each vertex v of R has at most one neighbor in each set Vi. (2)

Assume for the sake of contradiction that some vertex v ∈ R has two neighbors a, b in
some set Vi. Then by (1), v is complete or anticomplete to each set Vj with j 6= i. Let A
be the family of sets Vj to which v is anticomplete, and let C be the family of sets Vj to
which v is complete. If A contains at least two elements, i.e. if v is anticomplete to two
sets Vj and Vj′ then by taking u ∈ Vj and u′ ∈ Vj′, we observe that v, a, b, u, u′ induces a
copy of K+

4 , a contradiction. It follows that A contains at most one element.
Next, we prove that v is complete to Vi. Assume instead that v is mixed to Vi. If v is

complete to some set Vℓ containing at least two vertices, then we obtain a contradiction
with (1). It follows that all the elements of C are singleton. By the definition of M , this
implies that A contains exactly one set Vj, which has size at least 4. Let c be a non-
neighbor of v in Vi, and let d, d′ be two vertices in Vj . Then v, a, b, c, d, d′ is an induced
subdivision of K+

4 , a contradiction. We proved that v is complete to Vi. Hence, every set
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Vj is either in A or in C. Since A contains at most one element, the graph induced by
M ∪{v} is a complete multipartite graph, with at least two partite sets containing at least
4 elements. This contradicts the maximality of M , and concludes the proof of (2).

Each connected component of G − M has at most one neighbor in
each set Vi.

(3)

Assume for the sake of contradiction that some connected component of G−M has at
least two neighbors in some set Vi. Then there is a path P whose endpoints u, v are in
Vi, and whose internal vertices are in R. Choose P, u, v, Vi such that P contains the least
number of edges. Note that by (2), P contains at least 3 edges. Observe also that by the
minimality of P , the only edges in G between Vi and the internal vertices of P are the first
and last edge of P . Let Vj be a partite set of M with at least 4 elements, with j 6= i (this
set exists, by the definition of M). By (2) and the minimality of P , at most two vertices of
Vj are adjacent to some internal vertex of P . Since Vj contains at least four vertices, there
exist a, b ∈ Vj that are not adjacent to any internal vertex of P . If Vi has at least three
elements then it contains a vertex w distinct from u, v. As w is not adjacent to any vertex
of P , the vertices w, a, b together with P induce a subdivision of K+

4 , a contradiction. If
Vi has at most two elements, then there must be an integer ℓ distinct from i and j such
that Vℓ has at least four elements. In particular, Vℓ contains a vertex c that is not adjacent
to any internal vertex of P . As a consequence, the vertices a, c together with P induce a
subdivision of K+

4 , which is again a contradiction. This proves (3).

Recall that we can assume that R is non-empty. An immediate consequence of (3) is
that the neighborhood of each connected component of R is a clique. Since G is connected,
it follows that it contains a clique cutset K (a clique whose deletion disconnects the graph).
Let C be a connected component of G−K, let G1 = G− C, and let G2 be the subgraph
of G induced by C ∪ K. It follows from the induction that there exist d-colorings of G1

and G2. Furthermore, since K is a clique, we can assume that the colorings coincide on
K. This implies that G is d-colorable and concludes the proof of Theorem 1. �

We remark that we could have used K3,3 instead of K4,4 in the proof, at the expense
of a slightly more detailed analysis. The resulting bound on the chromatic number would
have been max(k, d(K+

4 , R(3, k))) instead of max(k, d(K+

4 , R(4, k))).
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Laboratoire G-SCOP (CNRS, Université Grenoble-Alpes), Grenoble, France
E-mail address : louis.esperet@grenoble-inp.fr

LIP (CNRS, ENS de Lyon), Lyon, France
E-mail address : nicolas.trotignon@ens-lyon.fr


	References

