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COLORING GRAPHS WITH NO INDUCED SUBDIVISION OF K + 4

Let K + 4 be the 5-vertex graph obtained from K 4 , the complete graph on four vertices, by subdividing one edge precisely once (i.e. by replacing one edge by a path on three vertices). We prove that if the chromatic number of some graph G is much larger than its clique number, then G contains a subdivision of K + 4 as an induced subgraph.

Given a graph H, a subdivision of H is a graph obtained from H by replacing some edges of H (possibly none) by paths. We say that a graph G contains an induced subdivision of H if G contains a subdivision of H as an induced subgraph.

A class of graphs F is said to be χ-bounded if there is a function f such that for any graph G ∈ F , χ(G) f (ω(G)), where χ(G) and ω(G) stand for the chromatic number and the clique number of G, respectively.

Scott [START_REF] Scott | Induced trees in graphs of large chromatic number[END_REF] conjectured that for any graph H, the class of graphs without induced subdivisions of H is χ-bounded, and proved it when H is a tree. But Scott's conjecture was disproved in [START_REF] Pawlik | Triangle-free intersection graphs of line segments with large chromatic number[END_REF]. Finding which graphs H satisfy the assumption of Scott's conjecture remains a fascinating question. It was proved in [START_REF] Chalopin | Restricted frame graphs and a conjecture of Scott[END_REF] that every graph H obtained from the complete graph K 4 by subdividing at least 4 of the 6 edges once (in such a way that the non-subdivided edges, if any, are non-incident), is a counterexample to Scott's conjecture. On the other hand, Scott proved that the class of graphs with no induced subdivision of K 4 has bounded chromatic number (see [START_REF] Lévêque | On graphs with no induced subdivision of K 4[END_REF]). Le [START_REF] Le | Chromatic number of ISK4-free graphs[END_REF] proved that every graph in this class has chromatic number at most 24. If triangles are also excluded, Chudnovsky et al. [START_REF] Chudnovsky | Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable[END_REF] proved that the chromatic number is at most 3.

In this paper, we extend the list of graphs known to satisfy Scott's conjecture. Let K + 4 be the 5-vertex graph obtained from K 4 by subdividing one edge precisely once.

Theorem 1. The family of graphs with no induced subdivision of K + 4 is χ-bounded. We will need the following result of Kühn and Osthus [START_REF] Kühn | Induced subdivisions in K s,s -free graphs of large average degree[END_REF].

Theorem 2 ([3]

). For any graph H and every integer s there is an integer d = d(H, s) such that every graph of average degree at least d contains the complete bipartite graph K s,s as a subgraph, or an induced subdivision of H.

Proof of Theorem 1. Let k be an integer, let d(•, •) be the function defined in Theorem 2, and let R(s, t) be the Ramsey number of (s, t), i.e. the smallest n such that every graph on n vertices has a stable set of size s or a clique of size t.

We will prove that every graph G with no induced subdivision of K + 4 , and with clique number at most k, is d-colorable, with d = max(k, d(K + 4 , R(4, k))). The proof proceeds by induction on the number of vertices of G (the result being trivial if G has at most k vertices). Observe that all induced subgraphs of G have clique number at most k and do not contain any induced subdivision of K + 4 . Therefore, by the induction, we can assume that all induced subgraphs of G are d-colorable. In particular, we can assume that G is connected.

Assume first that G does not contain K s,s as a subgraph, where s = R(4, k). Then by Theorem 2, G has average degree less than d, and hence contains a vertex of degree at most d -1. By the induction, Gv has a d-coloring and this coloring can be extended to a d-coloring of G, as desired.

We can thus assume that G contains K s,s as a subgraph. Since G has clique number at most k, it follows from the definition of R(4, k) that G contains K 4,4 as an induced subgraph. Let M be a set of vertices of G inducing a complete multipartite graph with at least two partite sets containing at least 4 vertices. Assume that among all such sets of vertices of G, M is chosen with maximum cardinality. Let V 1 , V 2 , . . . , V t be the partite sets of M.

Let v be a vertex of G, and S be a set of vertices not containing v. The vertex v is complete to S if v is adjacent to all the vertices of S, anticomplete to S if v is not adjacent to any of the vertices of S, and mixed to S otherwise. Let R be the vertices of G not in M. We can assume that R is non-empty, since otherwise G is clearly k-colorable and k d. We claim that:

If a vertex v of R has at least two neighbors in some set V i , then it is not mixed to any set V j with j = i.

(

Assume for the sake of contradiction that v has two neighbors a, b in V i and a neighbor c and a non-neighbor d in V j , with j = i. Then v, a, b, c, d induce a copy of K + 4 , a contradiction. This proves [START_REF] Chalopin | Restricted frame graphs and a conjecture of Scott[END_REF].

Each vertex v of R has at most one neighbor in each set V i .

(

Assume for the sake of contradiction that some vertex v ∈ R has two neighbors a, b in some set V i . Then by [START_REF] Chalopin | Restricted frame graphs and a conjecture of Scott[END_REF], v is complete or anticomplete to each set V j with j = i. Let A be the family of sets V j to which v is anticomplete, and let C be the family of sets V j to which v is complete. If A contains at least two elements, i.e. if v is anticomplete to two sets V j and V j ′ then by taking u ∈ V j and u ′ ∈ V j ′ , we observe that v, a, b, u, u ′ induces a copy of K + 4 , a contradiction. It follows that A contains at most one element. Next, we prove that v is complete to V i . Assume instead that v is mixed to V i . If v is complete to some set V ℓ containing at least two vertices, then we obtain a contradiction with [START_REF] Chalopin | Restricted frame graphs and a conjecture of Scott[END_REF]. It follows that all the elements of C are singleton. By the definition of M, this implies that A contains exactly one set V j , which has size at least 4. Let c be a nonneighbor of v in V i , and let d, d ′ be two vertices in V j . Then v, a, b, c, d, d ′ is an induced subdivision of K + 4 , a contradiction. We proved that v is complete to V i . Hence, every set
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V j is either in A or in C. Since A contains at most one element, the graph induced by M ∪ {v} is a complete multipartite graph, with at least two partite sets containing at least 4 elements. This contradicts the maximality of M, and concludes the proof of (2).

Each connected component of G -M has at most one neighbor in each set V i .

(

Assume for the sake of contradiction that some connected component of G -M has at least two neighbors in some set V i . Then there is a path P whose endpoints u, v are in V i , and whose internal vertices are in R. Choose P, u, v, V i such that P contains the least number of edges. Note that by [START_REF] Chudnovsky | Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable[END_REF], P contains at least 3 edges. Observe also that by the minimality of P , the only edges in G between V i and the internal vertices of P are the first and last edge of P . Let V j be a partite set of M with at least 4 elements, with j = i (this set exists, by the definition of M). By (2) and the minimality P , at most two vertices of V j are adjacent to some internal vertex of P . Since V j contains at least four vertices, there exist a, b ∈ V j that are not adjacent to any internal vertex of P . If V i has at least three elements then it contains a vertex w distinct from u, v. As w is not adjacent to any vertex of P , the vertices w, a, b together with P induce a subdivision of K + 4 , a contradiction. If V i has at most two elements, then there must be an integer ℓ distinct from i and j such that V ℓ has at least four elements. In particular, V ℓ contains a vertex c that is not adjacent to any internal vertex of P . As a consequence, the vertices a, c together with P induce a subdivision of K + 4 , which is again a contradiction. This proves [START_REF] Kühn | Induced subdivisions in K s,s -free graphs of large average degree[END_REF]. Recall that we can assume that R is non-empty. An immediate consequence of ( 3) is that the neighborhood of each connected component of R is a clique. Since G is connected, it follows that it contains a clique cutset K (a clique whose deletion disconnects the graph). Let C be a connected component of G -K, let G 1 = G -C, and let G 2 be the subgraph of G induced by C ∪ K. It follows from the induction that there exist d-colorings of G 1 and G 2 . Furthermore, since K is a clique, we can assume that the colorings coincide on K. This implies that G is d-colorable and concludes the proof of Theorem 1.

We remark that we could have used K 3,3 instead of K 4,4 in the proof, at the expense of a slightly more detailed analysis. The resulting bound on the chromatic number would have been max(k, d(K + 4 , R(3, k))) instead of max(k, d(K + 4 , R(4, k))).