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Full list of author information is constraints, are frequently used in structural mechanics. In this paper, the Craig variant
available at the end of the article of the Golub-Kahan bidiagonalization algorithm is used as an iterative method to solve
the arising linear system with a saddle point structure. The condition number of the
preconditioned operator is shown to be close to unity and independent of the mesh
size. This property is proved theoretically and illustrated on a sequence of test problems
of increasing complexity, including concrete structures enforced with pretension
cables and the coupled finite element model of a reactor containment building. The
Golub-Kahan algorithm converges in only a small number of steps for all considered
test problems and discretization sizes. Furthermore, it is robust in practical cases that
are otherwise considered to be difficult for iterative solvers.

Keywords: lIterative solvers, Indefinite systems, Saddle point, Golub-Kahan
bidiagonalization, Structural mechanics, Multi-point constraints

Introduction

In structural mechanics, it is very common to impose kinematic relationships between
degrees of freedom (DOF) in a finite element model (see [1, section 35.2.2] or [2, section
2.6]). Rigid body conditions of a stiff part of a mechanical system or cyclic periodicity
conditions on a mesh representing only a section of a periodic structure are typical exam-
ples of this approach. Such conditions can also be used to glue non-conforming meshes
or meshes containing different types of finite elements. For example, we could link a
thin structure modeled by shell finite elements to a massive 3D structure modeled with
continuum finite elements. These kinematic relationships are often called multi-point
constraints (MPC) in standard finite element software and can be linear or nonlinear [2,
section 3.4]. As an industrial example, one can consider the prestressed concrete structure
of a reactor containment building that can be modeled as a problem in elasticity for which
one-, two- and three-dimensional finite elements (representing metallic cables, the inner
shell, and the concrete block) are coupled by MPC.
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Before going further, it is important to mention a particular characteristic of several
MPC. From a mathematical point of view, it has been found that the best way to introduce
the constraints may be on the continuous level, i.e. in the weak form of a partial differential
equation, as with the mortar approach [3]. This allows keeping optimal convergence rates
when the size of the mesh tends to zero. Unfortunately, in industrial software, the con-
straints are often imposed on the already discretized equations. As it is usually not possible
to make major modifications to existing legacy code, any method of mortar-type becomes
unfeasible. In this article, we will focus on the situation where the constraints are intro-
duced on the discrete level. These constraints are purely algebraic and contrary to, e.g., the
Stokes equations, where properties of the partial differential equation for the divergence
term can be exploited to construct efficient solver-preconditioner combinations [4], the
investigation here needs to be done mainly on the matrix level.

MPC can be enforced on the discretized equations by Lagrange multipliers so that the
resulting matrix is symmetric indefinite with a two by two block structure, also called a
saddle-point structure. The first diagonal block, the (1, 1)-block of size m x m, can be
denoted as the “physical block” since it involves, for instance, the displacement DOF. The
second diagonal block, the (2, 2)-block of size 7 X n, is zero. The blocks (1, 2) and (2, 1) are
the transposition one of the other and, hence, the matrix is symmetric. It can be denoted
as the “Lagrange” block since it describes the interaction between the Lagrange multipliers
DOF and the displacement DOF.

The efficient solution of this type of linear system has stimulated intensive research in a
wide range of applications fields in the past years; see [5] for a comprehensive review. We
will briefly describe the most interesting ones in the context of MPC. One of the commonly
used methods is the Schur complement reduction technique [5, section 5], which requires
an invertible physical block. It then has the conceptual advantage of manipulating two
linear systems of size m and n, rather than one system of size m + n. There is, however, the
disadvantage that the Schur complement matrix will usually be dense and thus becomes
expensive or impossible to compute, except in the case where the number # of constraints
is very small.

Krylov subspace methods can be of major interest when solving saddle point systems
[6]. In realistic finite element applications, the saddle point matrix can be very poorly
conditioned. As it is discussed in [5, section 3.5], when the mesh size parameter % tends
to zero, its condition number must be expected to increase. Krylov subspace methods
will thus perform poorly with large-sized problems and rely on good, generally problem-
specific, preconditioning techniques [5].

Another method to solve the saddle point system is based on an elimination technique
[7-9]. This strategy implies major modifications of the matrix of the linear system, whose
profile can become much denser. The underlying algorithm is often sequential, where
each constraint is treated one after the other. Consequently, this technique can not be
used easily in a parallel framework. Finally, the elimination procedure requires to sort the
constraints in two sets, namely dependent and independent. This may be simple for some
particular constraints but tends to be intractable for fully general constraints.

Still another approach is used in [10]. The authors introduce a projector on the orthog-
onal complement of the kernel of the constraints matrix A, the (1, 2) block, and solve
the linear system on that subspace with an iterative method. This subspace projection
technique is elegant and favorable convergence properties are shown. Unfortunately, the
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definition of the projector involves the factorization of the operator AT A which, in many
practical cases, can be quite dense, causing the factorization to be expensive in time and
space. Furthermore, one forward-backward substitution is needed at each iteration of the
iterative method.

Our approach for providing an efficient solver is based on the Golub-Kahan bidiagonal-
ization (GKB) method, which has been widely used in solving least-norm problems and
in the computation of the singular value decomposition of rectangular matrices [11,12].
We revisit a variant of the GKB algorithm for solving indefinite block matrices which was
initially proposed by Arioli in [13] and that was found to be robust and accurate. Fur-
thermore, Arioli observed computationally on a series of test problems that the number
of iterations increases only weakly with increasing discretization size when some param-
eters in the GKB algorithm were chosen appropriately. This property comes in handy
when solution methods are tested on small problems, but that are targeted for large scale
simulations.

In a previous work [14], we have described our implementation of the generalized
GKB solver into the parallel linear algebra library PETSc [15—17]. The GKB algorithm
is low in memory consumption, as the iterates of the solution are computed on the fly
and no basis needs to be stored. This is especially advantageous when it comes to the
computation of large scale problems. However, the algorithm needs to solve linear systems
of the size of the physical as well as the constraint block in each iteration, which defines
the principal bottleneck of the method. In terms of scalability, we have investigated the
parallel performance of the solver when applied to two test problems based on the Stokes
equations provided in the PETSc examples in [14]. The solver showed high scalability
(the best case scenario showed a speedup half as good as the theoretical speedup for a
large number of processes), which was favored in this case by the availability of multigrid
methods for solving the (1,1)-block corresponding to the discretization of the Laplace
equation.

In this paper, we want to show the applicability and performance of the Golub-Kahan
solver to another class of problems. We present a systematic convergence study for three
sets of linear elastic test problems augmented with MPC and increasing complexity for
which commonly used iterative solvers show poor performances. The matrices are gener-
ated by the finite element software code_aster !. Furthermore, from a theoretical point of
view, the major contribution of this paper is the proof of Arioli observation that the num-
ber of iterations can be made independent of the discretization size when some parameters
are chosen appropriately in the GKB method. Additionally, in [13] the constraints were
approximations of differential operators and using the inf-sup condition [18] it is possible
to choose the parameters in an optimal way. For the considered problems and due to the
nature of the discrete MPC, this has never been investigated.

The paper is organized as follows. In the first section, we introduce the problem settings
and review briefly the GKB algorithm for saddle point problems. Furthermore, we present
our main theorem stating that the number of required iterations is independent of the
discretization size, whenever some parameters are well chosen. In the numerical section,
we present first the convergence of the GKB solver for the test problem of a cylinder
with imposed rigid body conditions, then study a concrete block with pretension cables

'http://www.code-aster.org
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and finish with the realistic industrial application of the structural analysis of a reactor
containment building. Finally, we will investigate the parallel performance of the GKB
algorithm for the example of a prestressed concrete block with an inner sparse direct
parallel solver.

Problem settings

In this section, we first introduce the underlying continuous partial differential equations
of our test problems. Starting from here, we develop the resulting discrete saddle point
system and comment on possible cases of the definiteness of the physical block. Finally,
we introduce an augmented Lagrangian approach that transforms the system into one
with a positive definite (1,1)-block, as it is needed in the GKB method.

Governing equations
In the following, we focus on the equilibrium of an elastic body under the small displace-
ment hypothesis, for which the problem is to find the displacement field u : & — R3 such

that
—div(c(u)) =1 in Q, (1)
oc(wn =h, on I'y, 2)
u=up, on FD, (3)

Here h and up are the Neumann and the Dirichlet data and the stress and strain tensors
are defined as

o(u) = Ce(n), (4)
e(m) = (Vu+ viu)/2. (5)

In the elastic case, C is the fourth order elastic coefficient (or Hooke’s law) tensor satisfying
both symmetry and ellipticity conditions. Furthermore, the constitutive law (4) connects
linearly o to the strain tensor field €.

The problem is discretized with standard Lagrange finite elements. In the case of a well-
posed mechanical problem, the solution of the linearized problem can be expressed as the
following constrained minimization problem

min lWTWW — gTw, (6)
Alw=r
W e R"*™" js the tangent stiffness matrix,
A € R js the linearized full-ranked matrix of the constraints,
w € R is the vector of nodal displacement unknowns,
g € R™ is the volume force vector,
r € R” is the data vector for inhomogeneous constraints,

where m corresponds to the physical DOF, # corresponds to the number of constraints.
The constraints describe kinematic relationships between degrees of freedom. They can
arise from modeling choices: turn a stiff part of a mechanical system into a perfectly
rigid body, apply cyclic periodicity conditions on a mesh representing only a section of a
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periodic structure, connect a thin structure modeled by shell finite elements to a massive
3D structure modeled with continuum finite elements in order to correctly transfer forces
and moments from the latter to the former. A basic example consists in imposing the
equality of two degrees of freedom. In the following, the constraints are coming from the
discrete MPC, see [19] for details. With the introduction of Lagrange multipliers p, the
augmented system that gives the optimality conditions for (6) reads

kHIMEH

which is the classical shape of a saddle-point linear system. Note that this system is sym-
metric, but only indefinite as it contains positive and negative eigenvalues. To guarantee
that the general system (7) admits a unique solution, we additionally assume that

ker(W) Nker(AT) = {0} and ker A = {0}. (8)

Case of hanging parts in the model
In many cases, the stiffness matrix W is symmetric positive definite. This is the case when
all rigid body modes are suppressed by adequate boundary conditions and are integrated
into the tangent stiffness matrix. Nevertheless, there are also situations where it is not the
case. First, one may think of boundary conditions that are not integrated into the tangent
stiffness matrix but are included in the constraint matrix A. Second, as will be studied in
Example 2, one may think of a classical model of prestressed concrete. Here a block of
concrete is augmented by embedded steel cables. The concrete is modeled with 3D finite
elements and the cables with 1D finite elements, whose DOF are coupled to the concrete
DOF with the help of MPC. In such a case, the stiffness matrix W is no longer symmetric
positive definite but only symmetric positive semidefinite, caused by the rigid body modes
of the steel cables.

In our further analysis, a symmetric positive definite (1,1)-block in (7) is however
required. A common method is to apply an augmented Lagrangian approach as described
in [20]. Let therefore N € R"*” be a symmetric positive definite matrix and 0 < £ < 1.

With the transformation

M =W +cAN"1AT
u =w—-Ml(g+EAN"1r) (9)
b =r—ATM (g + £AN"1r),

(7) is transformed into the equivalent system

kHIHEH!

The (1,1)-block is now symmetric positive definite thanks to property (8). This kind of
regularization can also be applied when W is symmetric positive definite, with the goal
that for a suitably chosen N, we may find that (10) becomes easier to solve than the original
system. In the following, we will use the notation M exclusively for a symmetric positive
definite matrix and we set § = 1.
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The generalized Golub-Kahan bidiagonalization algorithm

In this section, we first recall Craig’s variant of the generalized Golub-Kahan bidiago-
nalization (referred to as GKB algorithm in the following) as stated in [13,21]. Then, we
prove a convergence property concerning the number of outer iterations of the GKB algo-
rithm. For this, a saddle point system with a symmetric positive definite (1,1)-block W
is required. We apply the augmented Lagrangian approach M = W + AN~!AT and the
transformation (9), where the matrix N is chosen, following the discussion in [20], as

The saddle point problem is then of the form described in equation (10).

The algorithm

The generalized GKB used in the following is derived from the application of the standard
GKB once to the rectangular matrix A = M~2AN~2 and once to its transposed A"
[13,21]. To formulate an iterative algorithm, several methods could, in theory, be used
for the bidiagonalization of A [11,22] and then be generalized to the saddle point system
(10). Here, we focus on the aforementioned Craig’s variant algorithm for the solution of
saddle point systems, which is presented in Algorithm 1. As stopping criterion, we use a
normalized lower bound estimate of the energy norm error e; := ||u — uX ||y described in
[13,14]. The algorithm stops once this normalized lower bound undershoots a sufficiently
small tolerance 7. Indeed, an upper bound estimate would be a more reliable stopping
criterion than the lower bound one. An approach based on the Gauss-Radau quadrature
has been presented in [13]. This estimate relies on having an accurate lower bound 4,
with 0 < a < oy, for all singular values o, of A, which is in practice very difficult or even
impossible to obtain. We will thus use in the following numerical experiments exclusively
the lower bound estimate, which is found experimentally to be sharp enough. Note that
we deliberately do not use a residual as a stopping criterion, as it is often the case in other
iterative algorithms, since Craig’s variant algorithm minimizes the error e in each step.
We thus know that the error e; reduces monotonically, whereas a residual might lead to
fluctuations.

Convergence properties of the GKB algorithm

We next state our main result on the convergence of the GKB method. The standard
GKB process applied to A is equivalent to the generalized GKB applied to the saddle point
system (10) [21]. In the following theorem, we show a bound on the condition number of
A which, hence, also gives information about the convergence of the GKB method.

Theorem 1 Let M = W + vAAT and W be symmetric positive definite matrices and
A1 < --- < Ay be the eigenvalues ofATWIA. Let furthermore A = \/EM_%A and

An—A1
0<n< o

Ifv > 77%1 — ?LTZ’ then k(A) < V14 .

The proof of the Theorem is given in Appendix . We shall now comment on the meaning
of this result.
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Algorithm 1 Generalized Golub-Kahan Bidigonalization, Craig’s variant.

Inputs: [ﬁ ‘3], [2], maxit, d, t.
Outputs: [ 5 |.

// Bidiagonalization

Br=Iblly-13qy =N"2;
w=M"Aq ;a1 = Wy vi = 25

// First Approximation

a= %;dl = %;Ih =—4dy;m = vy

k = 0; convergence=false;

while convergence is false and k < maxit :
k=k+1;
// Bidiagonalization
g=N1ATv; — oy Ngp); By1 = lell s g = %ﬂ?
w =M YAqii1 — BraMvi); axgr = [Wllps virs =
// (k + )" Approximation

_ Bk, _ Q1 Brn1dk
Ck+1 = —ﬁﬁr di1= T

Uil = Uk + Sk+1Vi+15
Pis1 = Pk — Sk+18k+15

w_.
pet1’

// Check the convergence with the lower bound
if kK > d then

£ = Zf:k—d+1 g-jz; £ = Z]I'(zl Q’z
if £/& < t then convergence = true;
end if
end while

U=U1, P = Pit1

Let us recall that if the condition number of a matrix is 1, an iterative algorithm will
converge in only one iteration. Consequently, the small condition number « (A) indicates
that an iterative solver applied to a linear system defined by A converges in only a few
iterations. We can conclude that also Algorithm 1 should converge with a small number
of iterations to a sufficiently accurate solution. Furthermore, the above result states the
optimal v such that k(A) < /T + 7. This result is however only of theoretical nature, as
the eigenvalues 1; will in practice not be available. In general, if we choose v “big enough”,
the condition number of A is bounded by /T + 7. We can thus also expect the number of
iterations to be independent of the mesh size for matrices obtained in constrained FEM
discretizations, as long as we choose v appropriately.

We have to keep in mind that linear systems with the matrices M and N have to be solved
in each iteration in Algorithm 1. While N = vI reduces to a scalar multiplication, the
condition number of M depends on v and thus on the smallest eigenvalue of ATW~1A.
The condition number of the resulting matrix M = W + vAAT could become very large
for big v. The solution of the linear systems in Algorithm 1 may thus become difficult,
and additional numerical errors may be introduced. The possibly high condition number



Kruse et al. Adv. Model. and Simul. in Eng. 5¢i.(2020)7:45 Page 8 of 20

of M is especially problematic for large scale problems when an inner direct solver is no
longer applicable and an iterative solver is applied. It is thus crucial to find an optimal
value of v to balance the number of inner and outer iterations. The numerical experiments
suggest that in practice reasonable values of v proportional to ||[W/||; reduce k(A) sensibly,
without dramatically increasing the ill-conditioning of M.

Numerical experiments

We will first present a convergence study and comment on the choice of v on two test
problems. To ensure the reproducibility of the results by the reader, we briefly describe
the undertaken manipulations of the matrices received by code_aster (version 14.2). Let
W be the either symmetric positive definite or symmetric positive semi-definite elasticity
stiffness matrix obtained by code_aster and A the constraint matrix. In code_aster, the
Lagrange blocks are multiplied by a factor y := %(min W;; + max Wj;) to equilibrate the
scaling of the matrix blocks (see [19]). We obtain the system

Ll

In our experiments, we observed that the factor y and thus the maximum absolute values
in the entries of this block matrix were large. Applying the GKB algorithm directly to it
led to perturbations in the solution. We thus modified (11) by undoing the scaling, where

we call W := %W To exploit the result of Theorem 1, we furthermore modified the
(1,1)-block to M = W + vAAT and transform (11) following (9) to obtain a system of
type (10).

Influence of v
In the following numerical examples, we choose the parameter v = ||[W||; to better
represent the energy subject to the MPC constraints, as described in the augmented

system. The recommendation of Golub and Greif in [20], who found numerically that
1wl
Al
increases the number of iterations noticeably. In the following we show numerically the

v = could be a good value, leads to too small an v for our practical examples and

pertinence of our choice.

Computational details

The delay parameter in the stopping criterion is fixed for all the following examples as
d = 5 as suggested in [13] and the tolerance as v = 107>, In all of the following examples,
we have used Algorithm 1, that we have implemented amongst fieldsplit preconditioning
methods for block matrices in PETSc and that is available in the library since version 3.11.
We invoke the algorithm by using the following options:

-ksp_type preonly -pc_type fieldsplit -pc_fieldsplit_type gkb
The delay parameter, the tolerance and v are set as follows

-pc_fieldsplit_gkb_delay 5
-pc_fieldsplit_gkb_tol le-5
-pc_fieldsplit_gkb_nu nu

The inversion of M is done using a direct solver:
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Rigid ring

Fig. 1 Cylinder with rigid ring and Dirichlet boundary conditions

-fieldsplit_0_ksp_type preonly -fieldsplit_0_pc_type lu

The reference solutions are obtained by solving the original augmented system (11) for
the corresponding right-hand side received from code_aster, using the LU decomposition
from the MUItifrontal Massively Parallel Solvers (MUMPS). In the convergence plot cap-
tions, we display the corresponding backward error estimates. However, due to the bad
conditioning of the matrix, the backward error estimate can deteriorate. The workaround
implemented in code aster is the double Lagrangian approach described in [23]. The
number of Lagrangian DOF doubles and increases the computational cost dramatically.
To avoid this approach, as will be detailed in the sequel, we will encapsulate the direct LU
decomposition in a Flexible GMRES (FGMRES) solver with a sufficiently small tolerance.

Example 1: Cylinder with rigid inner ring

For our first set of test cases, the domain €2 is chosen as a thick-walled cylinder as illustrated
in Fig. 1. The model is a classical linear elasticity system, as described above, with m
DOF approximated by a linear finite element method. Dirichlet boundary conditions
are imposed on the left end and are shown in green. The others boundaries are with
homogeneous Neumann. Furthermore, MPCs are applied to obtain a rigid inner ring,
which is illustrated in Fig. 1 by the gray elements. The rest of the boundaries are free. For
the derivation of the constraint equations, we refer to [19]. These kinematic relationships
ensure that the inner ring resists any kind of outer forces. The stiffness matrix W is
symmetric positive definite and the structure of the saddle point problem is shown in
Fig. 2. To illustrate it, we apply a permutation to sort the matrix entries in the (1,1)-
block with respect to the size of the diagonal elements of W, starting from the smallest
to the largest. Second, we apply a column permutation to the constraint block A (and the
respective row permutation for A7) to obtain the diagonal part in the upper # x # block.

Test cases and convergence results
We define four test problems, Prob. 1 to Prob. 4, with increasing resolution in Table 1,
where nnz stands for the non-zero entries of the respective sparse matrices. The trans-
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0 Augmented system, cylinder
100 | 18
41.6
200
14
300
11.2
400
41
500 r 10.8
600 406
700 | i ] 04
800 r I“ 02
!
0 200 400 600 800
nz = 29566
Fig.2 Saddle point system for cylinder, Problem 1
Table 1 Definition of the cylinder test problems Prob. 1 to Prob. 4
m n nnz (Mm) nnz (A) nnz (W)
Prob. 1 648 210 30080 1259 28,296
Prob. 2 2520 714 1,47,800 4985 139,636
Prob. 3 6384 1674 4,009,246 10,045 3,92,816
Prob. 4 46,620 8814 33,67,462 26,436 32,62,086

Table 2 Norms and 2-norm condition numbers of matrices for Problems 1-3, and 1-norm
condition number of Problem 4 of Cylinder examples

v=||Wl Kk (M) K (W) [1All1
Prob. 1 9.13 2.2.10° 1.9.103 6.27
Prob. 2 8.95 1.9.100 56.10° 5.79
Prob. 3 8.85 7.9.10° 1.1.10% 574
Prob. 4 8.96 5.0.108 1.2.10° 534

formation of M according to (9) increases the number of nonzero entries, but the ratios
still stay reasonably small. In Table 2, the condition numbers and norms of the matrices
corresponding to Prob. 1 to Prob. 4 are presented. As predicted, the condition number of
M does increase in v.

The convergence plots with lower bound estimates of the GKB method are presented
in Figs. 3 and 4. We normalize the stopping criterion, the error and lower bound estimate
differently, which explains the gap observed in the plots. While we use the energy norm
of the approximated solution of (10), i.e. £ = [uf||m, for the stopping criterion in Algo-
rithm 1, we divide the error and the lower bound estimate for presentation in the Figures
by the energy norm of the reference solution w of (7) which is in general smaller.

The stopping criterion of the GKB algorithm reaches the required tolerance of 10~°
already after 7 iterations for the smallest problem and after 7, 9 and 10 for Problems 2—4
(see Figs. 3 and 4), respectively. The lower bound for the error at iteration k is however
computed only when iteration k 4+ d has been reached. Consequently, the GKB stops only
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backward error estimate: 2.96 - 10~ 1%

Fig.3 Convergence of generalized GKB method for Cylinder problems 1 and 2

after 12 to 15 iterations. This, combined with the normalization above, explains why the
final errors are remarkably smaller than the sought precision. We observe that although
the number of DOF increases from Prob. 1 to 4, the number of iterations increases only
marginally for each finer discretization and the algorithm stops after 15 iterations at the
most. To obtain complete independence of the mesh size as it is shown in Theorem 1, v
would need to be chosen bigger, as it will be discussed next.

Discussion on v

Theorem 1 provides the optimal choice of v to make the number of iterations in Algo-
rithm 1 independent of the mesh size of the finite element discretization. In general, we
are not able to compute A; and A, in Theorem 1 which would allow us to obtain a more
precise estimate of v for a given 7. For the smallest three test problems above, we are
however able to do so using MATLAB. Hence, we can compare our recommendation to
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Fig.4 Convergence of generalized GKB method for Cylinder problems 3 and 4

the optimal value v, say, for some . Letususe n = 1, i.e. k(A) < +/2. Table 3 shows that
the choice of v = ||[W/||; leads to smaller values than would be necessary for Theorem 1
and n = 1. Indeed, with the optimal v,—; a constant iteration number of 8 is attained for
Prob. 2 and 3 instead of 12 and 14 respectively for the chosen v. In Table 4, we present a
short study of possible choices for v and Prob. 4. It shows that the number of iterations
decreases with increasing v and it confirms that the modification of the (1,1)-block plays
a major role for the speed of convergence of the GKB method. Note that this behavior
agrees with Theorem 1. As a conclusion, v = |[W||; is not the choice leading to the
lowest number of iterations. It can, however, be easily and cheaply computed and we see
numerically, that it is an acceptable compromise for our following practical cases.

Page 12 of 20
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Table 3 Optimal parameter v, of Theorem 1, with 7 = 1 and condition numbers of
matrices for the cylinder problems

M An vy K (A)? iter K (M)
Prob. 1 0.06 1144 16.7 2.00 il 3.9.10°
Prob. 2 7.6.1073 450.2 1324 1.99 9 2.8.107
Prob. 3 281073 1.0.10° 356.2 1.99 8 3.1.108

Table4 Different choices for v for cylinder problem 4, egxg=1e—5andd = 5

" #iter (=: k) "ull_u’ﬁﬂlM ||PIE’Ii'|1;||2

n=00v=1(M=W) 336 7.881077 6.37.107°
1 30 4311078 3751078
17 13 4601071 502.10~"
133 10 3.08.10710 44410710
357 9 887.10710 6.53.10710

&

00—

Q
D

"
"

IR vy

Q

Fig.5 Simple model of prestressed concrete

Example 2: Prestressed concrete

As our second set of examples, we consider a simple model of a concrete block with
embedded pretension cables. The block is clamped on its lateral faces and submitted to
a constant pressure on its top face. All materials are elastic. Figure 5 presents a projected
view to the 2D surface: the orange points are the concrete nodes and the gray points
are the cable nodes. The cable nodes are only constrained by linear relationships with
the concrete nodes, so that the displacement of the cables included in a given concrete
element is a linear combination of the displacement of the concrete nodes, u ,pjes =
Z?:o aiug o orete b"u}éoncrete‘ The vectors a and b are the barycentric coordinates of
the cable node with respect to the concrete element [19]. The stiffness matrix for this
model problem is only symmetric positive semi-definite caused by the rigid body motions
of the steel cables. We illustrate the particular structure of the saddle point problem in
Fig. 6. The (1,1)-block contains rows and columns with only zero entries. However, the
non-singularity of the full system (7) is ensured, since (8) is satisfied.

Numerical experiments

We consider three test problems, called Prob. 1 to 3, with increasing discretization size (see
Table 5 for their definition). Owing to the singular (1,1)-block, we rely on the augmented
Lagrangian approach (9-10) and choose v = ||W/||;. The right-hand sides are provided
by code_aster. The algorithm converges in only 9 iterations for each of the three test
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Augrgented system of example prestressed concrete
: . : ‘ ‘ ; 1
100 09
40.8
200
10.7
300 10.6
400 | 105
40.4
500
40.3
600 0.2
700 | 01
0 100 200 300 400 500 600 700
nz = 20276
Fig. 6 Saddle point system for prestressed block example

Table5 Example prestressed concrete: GKB convergence for egxg = 107> andd = 5

: . lu—uyllm lze—ug |2 llp—pill2
m n #iter (=:k) el Tull2 Mol
Prob. 1 498 258 9 1121071 813107 1121071
Prob. 2 3207 1590 9 3.49.10712 34710712 47810712
Prob. 3 23043 11382 9 2.30.107 2.30.107" 2.83.107 "

problems (see Table 5). Although the result of Theorem 1 does not apply to this case,
the number of iterations stays constant and is bounded with increasing problem size.
Furthermore, the energy error is already smaller than the tolerance after only 4 iterations,
but we recall that the lower bound estimate for the iterate uy is only computed at iteration
4 4d. The convergence of the energy error and the lower bound estimate are presented in
Figs.7 and 8. We observe that due to the degradation of the quality of the direct resolution,
the convergence curves cannot reach machine precision when increasing the size of the
problems.

Application to industrial example and parallel implementation

As a final example, we study a critical industrial application: the structural analysis of the
reactor containment building of a nuclear power plant. This structure is designed to resist
external aggression as well as internal accidents and we are concerned in the present study
in the behavior of the building submitted to high pressure applied on the internal face
of the building. To enhance the concrete’s strength, plenty of reinforcement cables are
embedded within and a metallic shell is attached to its inner face. The model thus requires
the coupling of three-dimensional elements (the concrete), two-dimensional elements (the
inner shell), and one-dimensional elements (the metallic prestressing cables), Fig. 9.

Numerical experiments
The matrix and right-hand side are generated by code_aster. The discretization is illus-
trated in Fig. 9 and the blocks are of size m = 283797 and n = 158928. The number of



Kruse et al. Adv. Model. and Simul. in Eng. 5¢i.(2020)7:45 Page 15 of 20

T I I
s - Lower Bound
1071 = A« Error in Energy norm ||
=4+ Stopping Criterion
. 107% .
<
]
<
.
5 1078 . .
3 ‘A
4 ..
OA.
1071 - N .
*
.0
A.. 4,
1014 & | | | | N
2 4 6 8
Iteration

a Prestressed block, problem 1 (m = 498, n = 258),
MUMPS backward error estimate: 5.69 - 1014

T T T T
) - Lower Bound
107 = A« Error in Energy norm ||
«4ll=: Stopping Criterion
1074 R
s
] 6| |
., 106
2
- *
] .
€ 1078} ‘A, :
’0
A
10—10 [ 0. .
ﬁ o
1 ‘A A
107 ! ! ! !
2 4 6 8
Iteration

b Prestressed block, problem 2 (m = 3207, n = 1590),
MUMPS backward error estimate: 1.81 - 1072

Fig. 7 GKB convergence for Problems 1 and 2 for prestressed block example

constraints is thus more than 50% of the number of physical DOF. We apply the permu-
tations as explained above in Example 1 and obtain the matrix presented in Fig. 10. The
stiffness matrix is symmetric positive semi-definite and contains rows and columns with
only zero entries in the (1,1)-block. The nonsingularity of (7) is ensured by the property
(8).

As in the previous examples, we scale the saddle point system (11) with the factor y =
%(min W;+max W;;) and apply the augmented Lagrangian approach with v = ||[W|;. We
apply the algorithm to the unpermuted system as it is obtained from code_aster. Since
the resolution of (11) by MUMPS returns a quite large backward estimate (10~°), the
reference solution lacks precision. To overcome this issue, we encapsulate the MUMPS
direct solver in a FGMRES solver sets with a relative tolerance of 171°,

Also for this realistic industrial application, the algorithm stops after 9 (4 + d) itera-
tions and the relative errors of the final iterates ug and py in the energy and 2-norm are
summarized in Table 6. The lower bound estimates are presented in Fig. 11.
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Fig.8 Convergence of GKB method for Problem 3 for prestressed block example, (m = 23043, n = 11382).
MUMPS backward error estimate: 3.36~ 10

Fig.9 Modeling of a containment building

i «10° Containment building Ny
0.5 0.9
1 0.8
10.7
1.5
10.6
2
10.5
2,5
10.4
< 0.3
3/5 0.2
4 0.1
0 1 2 3 4
nz = 8653686 x10°

Fig. 10 Saddle point system after permutation and scaling
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Table6 GKB convergence for the containment building example

H —. la—uillm llze—ayll2 llp—psll2
m n #iter (=: k) Toell ot Toella el
283797 158928 9 7.93.107 1 1.27.10710 8.83.107""
T I T
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Fig. 11 GKB convergence for the containement building problem. Since MUMPS backward error estimate is
1.1779, we used the LU decomposition as preconditionner for a FGMRES solver with a precision of 17'° to
compute the reference solution

We notice again that the final errors are remarkably small and that they are by several
orders of magnitude better than the required stopping tolerance.

Strong scaling

In this section we provide an example of practical use of the GKB algorithm. We consider
a prestressed concrete block as in Example 2 of sizes m = 1538103 and n = 750000 for a
system with total size of 2288103 DOF.

The experiments were run on a Lenovo cluster made of bi-socket Intel Skylake (Xeon
Gold 6140) computational nodes with 18 cores per socket at 2.3 GHz et with 96 GO of
memory per socket. PETSc is compiled with the INTEL compiler (version 18.0.1.163) and
the solver is run on a maximum of 10 cores per socket and up to 10 nodes.

We show, respectively, the runtime and the speed-up of the solver in Table 7 and Fig. 12.
Moreover, the LU decomposition of the augmented (1,1)-block and its resolution takes
consistently 99% of the computational efforts. Thus the scalability of the GKB algorithm
relies entirely on the scalability of the resolution of the (1,1) block. We observe that the
speed-up reaches half of the ideal speed-up. Such a result is consistent to what we observed
in [14].

Conclusions

In this work, we presented an algorithm based on the Golub-Kahan bidiagonalization
(GKB) method and applied it to problems in structural mechanics. These problems exhibit
the difficulty that multi-point constraints (MPC) are imposed on the discretized finite ele-
ment formulation. We showed that the GKB algorithm converges in only a few iterations
for each of the two classes of problems. In particular, we confirmed our main result of The-
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Table 7 Summary of the run times of the strong scalability of the GKB algorithm for a
prestressed concrete block of sizes m = 1538103 and n = 750000

#Cores Total solver (s) GKB time (s)
1 16,713.2 11.8
10 2071.8 8.58
20 1244.73 5.73
40 655.38 2.7
80 340.81 1.63
160 194.26 1.2
200 169.05 113

T L L T !

| =@=  Total A‘A e

= A= Theoretical .
102

T T T TTTT]

10!

Speed Up

T T T
Lol

100

TTTT
11l

| Ll Ll

100 10t 102

Number of cores

Fig. 12 Speed Up of the Golub-Kahan bidiagonalization algorithm for a prestressed concrete block of sizes
m = 1538103 and n = 750000. The (1,1) block is solved using MUMPS

orem 1: The number of GKB iterations is independent of the discretization size for a given
problem, whenever we choose the stabilization parameter u appropriately. This has also
been true for the example of a block of prestressed concrete, although the leading block is
singular and does not satisfy the requirements of Theorem 1. The errors obtained for the
final iterates are remarkably small and since the lower bound of the error at iteration k
can only be computed at k + d, they undershoot the required tolerance by several orders
of magnitude. Summarizing, the proposed algorithm presents an alternative to the more
commonly used standard iterative solvers and, in particular, the ones provided currently
in code_aster.

The final example of the reactor containment building is a realistic application showing
the applicability of the method. However, the dimensions of the matrices are still relatively
small. We built a larger problem to conduct a speedup study on the GKB algorithm. It
results that the quality of the inner sub-solver drive the quality of the global speedup. For
other applications, the number of degrees of freedom (DOF) might be in the order of tens
of millions, and the inner direct solver MUItifrontal Massively Parallel Solvers (MUMPS)
will no longer perform satisfactorily. It is thus indispensable to solve the inner linear
system defined by M with an iterative scheme, which results in an inner-outer iterative
method. The study of such algorithms will be the subject of future work. Additionally,
with the GKB algorithm used as presented here and when the condition number worsens,
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we observe a plateau in the convergence. Usually, this is not an issue since the precision of
the solver is much smaller than the discretization error. However, to overcome this issue,
the practitioner might encapsulate the inner LU with an iterative method as well as the
GKB solver.

Acknowledgements
None.

Authors’ contributions

The methodology was initially suggested by MA. The implementation, numerical studies, and the writing of the draft of
the manuscript have been mainly carried out by CK.and VD. NT provided mechanical knowledge and examples. UR
supervised the study. All authors participated in the writing and approved the final manuscript.

Funding
CKand NT were partly funded by the PIA Pamsim grant no. P113165-2621644/D050022362/D0S0022360 of Bpifrance.

Availability of data and material
The experiments can be reproduced by using code_aster.

Competing interests
The authors declare that they have no competing interests.

Author details

!Cerfacs, 29 Avenue Gaspard Coriolis, 31100 Toulouse, France, 2IMSIA, UMR 9219 EDF-CNRS-CEA-ENSTA, Université Paris
Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau, France, >Libera Universita Mediterranea, Casamassima, Bari, Italy,
“4Friedrich-Alexander-Universitat Erlangen-Nirnberg, Cauerstr. 11, 91058 Erlangen, Germany.

Appendix
Proof of Theorem 1
Proof Leto; < --- < 0y, be the elliptic singular values defined by

Api = G,'MX,’, xiTMx,- = Sij
ATx; =oilp, %PiTP; =4
o], = xl.TAp,-,

It follows

vATM_lApi = aizpi.
Thus u; = ol? are the eigenvalues of

vAT(W +vAAT) A,
With the Sherman-Morrison formula, we obtain

vAT (W 4+ vAAT) A = v ATW AT+ AT W 1A) ™
Let A; < --- < A, be the eigenvalues of ATW~1A. Then

l)}xl'

M= Tvm

. 1
We obtain for the condition number of A = /U M™2A = V(W +vAAT)2A

KZ(A) _ Mmax _ Vi, 1+4+vig
Mmin 1+vh, v
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It follows that if v > n_}»l — ;JFTZ’ then xk(A) < 1+ 1. O
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