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ABSTRACT. We give a blow-up behavior for the solutions of an elliptic equation under some conditions. We

also derive a compactness criterion for this equation.
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1. INTRODUCTION AND MAIN RESULTS

Let us consider the following operator:

Lǫ := ∆ + ǫ · ǫ(x) < (x− x0)|∇ui >

We consider the following equation:

(Pǫ)

{

−∆u− ǫ · ǫ(x) < x− x0|∇u > = |x− x0|
2βV eu in Ω ⊂ R

2,

u = 0 in ∂Ω.

Here, we assume that:

We denote by C(1) and C(1/2) the unit circle and the circle of radius 1/2 respectively.

Ω = A(0, 1/2, 1) is an annulus of center 0 and radii 1/2, 1, x0 ∈ C(1/2)

and,

0 < ǫ → 0, β ∈ (0,+∞), u ∈ W 1,1
0 (Ω), |x− x0|

2βeu ∈ L1(Ω), 0 ≤ V ≤ b.

We assume that:

Ω is an annulus of exterior circle the unit circle and interior circle the circle of radius 1/2.

ǫ ≡ 1 in a neighborhood of the unit circle C(1) and ǫ ≡ −1 in a neighborhood of the circle of radius 1/2.

Important Remark: To give an example of a blow-up sequence of the previous type on the boundary. We

use the counter-exemple of Brezis and Merle, this counterexample works if we replace the unit ball centered

at y0 = (1, 0) by the annulus centered at y0 = (1, 0). After se use an inversion to have the blow-up point on

the interior circle of the annulus. (do not forget to add the term ǫ · ǫ(x) < x− x0|∇ui > in the equation).

Here we present the result of Brezis-Merle in the regular case.
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When ǫ = 0 and β = 0, the previous equation was studied by many authors with or without the boundary

condition, also for Riemann surfaces see [1-20] where one can find some existence and compactness results.

Also we have a nice formulation in the sense of the distributions of this Problem in [7].

Among other results, we can see in [6] the following important Theorem,

Theorem A (Brezis-Merle [6]) If (ui)i and (Vi)i are two sequences of functions relative to the problem

(P0) with ǫ = 0 and β = 0, and,

0 < a ≤ Vi ≤ b < +∞

then it holds, for all compact K of Ω:

sup
K

ui ≤ c,

with c depending on a, b,K and Ω.

We can find in [6] an interior estimate if we assume a = 0 but we need an assumption on the integral of

eui , namely:

Theorem B(Brezis-Merle [6]).For (ui)i and (Vi)i two sequences of functions relative to the problem (P0)
(ǫ = β = 0) with,

0 ≤ Vi ≤ b < +∞ and

∫

Ω
euidy ≤ C,

then it holds, for all compact K of Ω:

sup
K

ui ≤ c,

with c depending on b, C,K and Ω.

The condition
∫

Ω euidy ≤ C is a necessary condition in the Problem (Pǫ) as showed by the following

counterexample for ǫ = 0:

Theorem C (Brezis-Merle [6]).There are two sequences (ui)i and (Vi)i of the problem (P0) (ǫ = β = 0)

with;

0 ≤ Vi ≤ b < +∞,

∫

Ω
euidy ≤ C,

such that,

sup
Ω

ui → +∞.

To obtain the two first previous results (Theorems A and B) Brezis and Merle used an inequality (Theorem

1 of [6]) obtained by an approximation argument and they used Fatou’s lemma and applied the maximum

principle in W 1,1
0 (Ω) which arises from Kato’s inequality. Also this weak form of the maximum principle

is used to prove the local uniform boundedness result by comparing a certain function and the Newtonian

potential. We refer to [5] for a topic about the weak form of the maximum principle.

Note that for the problem (P0) (ǫ = β = 0), by using the Pohozaev identity, we can prove that
∫

Ω eui is

uniformly bounded when 0 < a ≤ Vi ≤ b < +∞ and ||∇Vi||L∞ ≤ A and Ω starshaped, when a = 0 and

∇ log Vi is uniformly bounded, we can bound uniformly
∫

Ω Vie
ui . In [17] Ma-Wei have proved that those

results stay true for all open sets not necessarily starshaped in the case a > 0.

In [8] Chen-Li have proved that if a = 0 and
∫

Ω eui is uniformly bounded and ∇ log Vi is uniformly

bounded then (ui)i is bounded near the boundary and we have directly the compactness result for the prob-

lem (P0). Ma-Wei in [17] extend this result in the case where a > 0.

When ǫ = β = 0 and if we assume V more regular we can have another type of estimates called

sup+ inf type inequalities. It was proved by Shafrir see [19] that, if (ui)i, (Vi)i are two sequences of
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functions solutions of the Problem (P0) without assumption on the boundary and 0 < a ≤ Vi ≤ b < +∞
then it holds:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

We can see in [9] an explicit value of C
(a

b

)

=

√

a

b
. In his proof, Shafrir has used the blow-up function,

the Stokes formula and an isoperimetric inequality see [2]. For Chen-Lin, they have used the blow-up

analysis combined with some geometric type inequality for the integral curvature see [9].

Now, if we suppose (Vi)i uniformly Lipschitzian with A its Lipschitz constant then C(a/b) = 1 and

c = c(a, b,A,K,Ω) see Brezis-Li-Shafrir [4]. This result was extended for Hölderian sequences (Vi)i by

Chen-Lin see [9]. Also have in [15], an extension of the Brezis-Li-Shafrir result to compact Riemannian

surfaces without boundary. One can see in [16] explicit form, (8πm,m ∈ N
∗ exactly), for the numbers in

front of the Dirac masses when the solutions blow-up. Here the notion of isolated blow-up point is used.

Also one can see in [10] refined estimates near the isolated blow-up points and the bubbling behavior of the

blow-up sequences.

Here we give the behavior of the blow-up points on the boundary and a proof of a compactness result with

Lipschitz condition. Note that our problem is an extension of the Brezis-Merle Problem.

The Brezis-Merle Problem (see [6]) is:

Problem. Suppose that Vi → V in C0(Ω̄) with 0 ≤ Vi. Also, we consider a sequence of solutions (ui) of

(P0) relative to (Vi) such that,
∫

Ω
euidx ≤ C,

is it possible to have:

||ui||L∞ ≤ C = C(b, C, V,Ω)?

Here we give blow-up analysis on the boundary when V (similar to the prescribed curvature when ǫ = 0)

are nonegative and bounded, and on the other hand, if we add the assumption that these functions (similar to

the prescribed cruvature) are uniformly Lipschitzian, we have a compactness of the solutions of the problem

(Pǫ) for ǫ small enough. (In particular we can take a sequence of ǫi tending to 0):

For the behavior of the blow-up points on the boundary, the following condition is sufficient,

0 ≤ Vi ≤ b,

The condition Vi → V in C0(Ω̄) is not necessary. But for the compactness of the solutions we add the

following condition:

||∇Vi||L∞ ≤ Ai → 0.

Our main results are:

Theorem 1.1. Assume that maxΩ ui → +∞, where (ui) are solutions of the probleme (Pǫi) with:

β ∈ (0,+∞), 0 ≤ Vi ≤ b, and

∫

Ω
|x− x0|

2βeuidx ≤ C,

then, after passing to a subsequence, there is a function u, there is a number N ∈ N and N points

x1, . . . , xN ∈ ∂Ω, such that,

∂νui → ∂νu+

N
∑

j=1

αjδxj , α1 ≥ 4π andαj ≥ 4π, in the sense of measures on ∂Ω.
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ui → u in C1
loc(Ω̄− {x1, . . . , xN}),

We have the following compactness result for the problem (Pǫ):

Theorem 1.2. Assume that (ui) are solutions of (Pǫi) relative to (Vi) with β ∈ (0,+∞) and the following

conditions:

0 ≤ Vi ≤ b, ||∇Vi||L∞ ≤ Ai → 0 and

∫

Ω
|x− x0|

2βeui ≤ C.

Then we have:

||ui||L∞ ≤ c(b, β, ((A)i), x0, C,Ω),

2. PROOF OF THE THEOREMS

Proof of theorem 1.1:

First remark that:

{

−∆ui = ǫi(x1∂1ui + x2∂2ui) + |x− x0|
2βVie

ui ∈ L1(Ω) in Ω ⊂ R
2,

ui = 0 in ∂Ω.

and,

ui ∈ W 1,1
0 (Ω).

By the corollary 1 of Brezis-Merle see [6] we have eui ∈ Lk(Ω) for all k > 2 and the elliptic estimates of

Agmon and the Sobolev embedding see [1] imply that:

ui ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

Also remark that, we have for two positive constants Cq = C(q,Ω) and C1 = C1(Ω) (see [7]) :

||∇ui||Lq ≤ Cq||∆ui||L1 ≤ (C ′
q + ǫC1||∇ui||L1), ∀ i and 1 < q < 2.

Thus, if ǫ > 0 is small enough and by the Holder inequality, we have the following estimate:

||∇ui||Lq ≤ C ′′
q , ∀ i and 1 < q < 2.

Step 1: interior estimate

First remark that, if we consider the following equation:

{

−∆wi = ǫi(x1∂1ui + x2∂2ui) ∈ Lq, 1 < q < 2 in Ω ⊂ R
2,

wi = 0 in ∂Ω.

If we consider vi the Newtonnian potential of ǫi(x1∂1ui + x2∂2ui), we have:

vi ∈ C0(Ω̄), ∆(wi − vi) = 0.
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By the maximum principle wi − vi ∈ C0(Ω̄) and thus wi ∈ C0(Ω̄).

Also we have by the elliptic estimates that wi ∈ W 2,1+ǫ ⊂ L∞, and we can write the equation of the

Problem as:

{

−∆(ui − wi) = Ṽie
ui−wi in Ω ⊂ R

2,

ui − wi = 0 in ∂Ω.

with,

0 ≤ Ṽi = Vie
wi ≤ b̃,

∫

Ω
|x− x0|

2βeui−wi ≤ C̃.

We apply the Brezis-Merle theorem to ui − wi to have:

ui − wi ∈ L∞
loc(Ω),

and, thus:

ui ∈ L∞
loc(Ω).

Step2: boundary estimate

Set ∂νui the inner derivative of ui. By the maximum principle ∂νui ≥ 0.

We have:

∫

∂Ω
∂νuidσ ≤ C.

We have the existence of a nonnegative Radon measure µ such that,

∫

∂Ω
∂νuiϕdσ → µ(ϕ), ∀ ϕ ∈ C0(∂Ω).

We take an x0 ∈ ∂Ω such that, µ(x0) < 4π. Set B(x0, ǫ) ∩ ∂Ω := Iǫ.

We choose a function ηǫ such that,























ηǫ ≡ 1, on Iǫ, 0 < ǫ < δ/2,

ηǫ ≡ 0, outside I2ǫ,

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I2ǫ) ≤
C0(Ω, x0)

ǫ
.

We take a η̃ǫ such that,
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{

−∆η̃ǫ = 0 in Ω ⊂ R
2,

η̃ǫ = ηǫ in ∂Ω.

Remark: We use the following steps in the construction of η̃ǫ:

We take a cutoff function η0 in B(0, 2) or B(x0, 2):

1- We set ηǫ(x) = η0(|x− x0|/ǫ) in the case of the unit disk it is sufficient.

2- Or, in the general case: we use a chart (f, Ω̃) with f(0) = x0 and we take µǫ(x) = η0(f(|x|/ǫ)) to have

connected sets Iǫ and we take ηǫ(y) = µǫ(f
−1(y)). Because f, f−1 are Lipschitz, |f(x)− x0| ≤ k2|x| ≤ 1

for |x| ≤ 1/k2 and |f(x)− x0| ≥ k1|x| ≥ 2 for |x| ≥ 2/k1 > 1/k2, the support of η is in I(2/k1)ǫ.























ηǫ ≡ 1, on f(I(1/k2)ǫ), 0 < ǫ < δ/2,

ηǫ ≡ 0, outside f(I(2/k1)ǫ),

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I(2/k1)ǫ)
≤

C0(Ω, x0)

ǫ
.

3- Also, we can take: µǫ(x) = η0(|x|/ǫ) and ηǫ(y) = µǫ(f
−1(y)), we extend it by 0 outside f(B1(0)).

We have f(B1(0)) = D1(x0), f(Bǫ(0)) = Dǫ(x0) and f(B+
ǫ ) = D+

ǫ (x0) with f and f−1 smooth diffeo-

morphism.























ηǫ ≡ 1, on a the connected set Jǫ = f(Iǫ), 0 < ǫ < δ/2,

ηǫ ≡ 0, outside J ′
ǫ = f(I2ǫ),

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(J ′
ǫ)
≤

C0(Ω, x0)

ǫ
.

And, H1(J
′
ǫ) ≤ C1H1(I2ǫ) = C14ǫ, because f is Lipschitz. Here H1 is the Hausdorff measure.

We solve the Dirichlet Problem:

{

−∆η̄ǫ = −∆ηǫ in Ω ⊂ R
2,

η̄ǫ = 0 in ∂Ω.

and finaly we set η̃ǫ = −η̄ǫ + ηǫ. Also, by the maximum principle and the elliptic estimates we have :

||∇η̃ǫ||L∞ ≤ C(||ηǫ||L∞ + ||∇ηǫ||L∞ + ||∆ηǫ||L∞) ≤
C1

ǫ2
,

with C1 depends on Ω.

As we said in the beguening, see also [3, 7, 13, 20], we have:

||∇ui||Lq ≤ Cq, ∀ i and 1 < q < 2.
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We deduce from the last estimate that, (ui) converge weakly in W 1,q
0 (Ω), almost everywhere to a function

u ≥ 0 and
∫

Ω |x − x0|
2βeu < +∞ (by Fatou lemma). Also, Vi weakly converge to a nonnegative function

V in L∞. The function u is in W 1,q
0 (Ω) solution of :

{

−∆u = |x− x0|
2βV eu ∈ L1(Ω) in Ω ⊂ R

2,

u = 0 in ∂Ω.

According to the corollary 1 of Brezis-Merle result, see [6], we have eku ∈ L1(Ω), k > 1. By the elliptic

estimates, we have, u ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄).

We denote by f · g the inner product of any two vectors f and g of R2.

We can write,

−∆((ui − u)η̃ǫ) = |x− x0|
2β(Vie

ui − V eu)η̃ǫ − 2∇(ui − u) · ∇η̃ǫ + ǫi(∇ui · (x− x0))η̃ǫ. (1)

We use the interior esimate of Brezis-Merle, see [6],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between η̃ǫ and u, we obtain,

∫

Ω
|x− x0|

2βV euη̃ǫdx =

∫

∂Ω
∂νuηǫ ≤ Cǫ = O(ǫ) (2)

We have,

{

−∆ui − ǫi∇ui · (x− x0) = |x− x0|
2βVie

ui in Ω ⊂ R
2,

u = 0 in ∂Ω.

We use the Green formula between ui and η̃ǫ to have:

∫

Ω
|x− x0|

2βVie
ui η̃ǫdx =

∫

∂Ω
∂νuiηǫdσ − ǫi

∫

Ω
(∇ui · (x− x0))η̃ǫ =

=

∫

∂Ω
∂νuiηǫdσ + o(1) → µ(ηǫ) ≤ µ(J ′

ǫ) ≤ 4π − ǫ0, ǫ0 > 0 (3)

From (2) and (3) we have for all ǫ > 0 there is i0 such that, for i ≥ i0,

∫

Ω
||x− x0|

2β(Vie
ui − V eu)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (4)

Step 2.1: Estimate of integral of the second term of the right hand side of (1).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ3} and Ωǫ3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ3}, ǫ > 0. Then, for ǫ small enough,

Σǫ is an hypersurface.

The measure of Ω− Ωǫ3 is k2ǫ
3 ≤ meas(Ω− Ωǫ3) = µL(Ω− Ωǫ3) ≤ k1ǫ

3.
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Remark: for the unit ball B̄(0, 1), our new manifold is B̄(0, 1 − ǫ3).

(Proof of this fact; let’s consider d(x, ∂Ω) = d(x, z0), z0 ∈ ∂Ω, this imply that (d(x, z0))
2 ≤ (d(x, z))2

for all z ∈ ∂Ω which it is equivalent to (z − z0) · (2x − z − z0) ≤ 0 for all z ∈ ∂Ω, let’s consider a chart

around z0 and γ(t) a curve in ∂Ω, we have;

(γ(t)− γ(t0) · (2x− γ(t)− γ(t0)) ≤ 0 if we divide by (t− t0) (with the sign and tend t to t0), we have

γ′(t0) · (x− γ(t0)) = 0, this imply that x = z0 − sν0 where ν0 is the outward normal of ∂Ω at z0))

With this fact, we can say that S = {x, d(x, ∂Ω) ≤ ǫ} = {x = z0 − sνz0 , z0 ∈ ∂Ω, −ǫ ≤ s ≤ ǫ}. It is

sufficient to work on ∂Ω. Let’s consider a charts (z,D = B(z, 4ǫz), γz) with z ∈ ∂Ω such that ∪zB(z, ǫz)
is cover of ∂Ω . One can extract a finite cover (B(zk, ǫk)), k = 1, ...,m, by the area formula the measure

of S ∩ B(zk, ǫk) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one

chart around one point of the boundary).

We write,

∫

Ω
|∇(ui − u) · ∇η̃ǫ|dx =

∫

Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx+

∫

Ω−Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx. (5)

Step 2.1.1: Estimate of
∫

Ω−Ωǫ3
|∇(ui − u) · ∇η̃ǫ|dx.

First, we know from the elliptic estimates that ||∇η̃ǫ||L∞ ≤ C1/ǫ
2, C1 depends on Ω

We know that (|∇ui|)i is bounded in Lq, 1 < q < 2, we can extract from this sequence a subsequence

which converge weakly to h ∈ Lq. But, we know that we have locally the uniform convergence to |∇u| (by

the Brezis-Merle’s theorem), then, h = |∇u| a.e. Let q′ be the conjugate of q.

We have, ∀f ∈ Lq′(Ω)

∫

Ω
|∇ui|fdx →

∫

Ω
|∇u|fdx

If we take f = 1Ω−Ωǫ3
, we have:

for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1,

∫

Ω−Ωǫ3

|∇ui| ≤

∫

Ω−Ωǫ3

|∇u|+ ǫ3.

Then, for i ≥ i1(ǫ),

∫

Ω−Ωǫ3

|∇ui| ≤ meas(Ω− Ωǫ3)||∇u||L∞ + ǫ3 = ǫ3(k1||∇u||L∞ + 1) = O(ǫ3).

Thus, we obtain,

∫

Ω−Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx ≤ ǫC1(2k1||∇u||L∞ + 1) = O(ǫ) (6)

The constant C1 does not depend on ǫ but on Ω.

Step 2.1.2: Estimate of
∫

Ωǫ3
|∇(ui − u) · ∇η̃ǫ|dx.
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We know that, Ωǫ ⊂⊂ Ω, and ( because of Brezis-Merle’s interior estimates) ui → u in C1(Ωǫ3). We

have,

||∇(ui − u)||L∞(Ωǫ3 )
≤ ǫ3, for i ≥ i3.

We write,

∫

Ωǫ3

|∇(ui − u) · ∇η̃ǫ|dx ≤ ||∇(ui − u)||L∞(Ωǫ3 )
||∇η̃ǫ||L∞ = C1ǫ = O(ǫ) for i ≥ i3,

For ǫ > 0, we have for i ∈ N, i ≥ i′,

∫

Ω
|∇(ui − u) · ∇η̃ǫ|dx ≤ ǫC1(2k1||∇u||L∞ + 2) = O(ǫ) (7)

From (4) and (7), we have, for ǫ > 0, there is i′′ such that, i ≥ i′′,

∫

Ω
|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) = 4π − ǫ0 +O(ǫ) (8)

We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

{

−∆[(ui − u)η̃ǫ] = gi,ǫ in Ω ⊂ R
2,

(ui − u)η̃ǫ = 0 in ∂Ω.

with ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0/2.

We can use Theorem 1 of [6] to conclude that there are q ≥ q̃ > 1 such that:

∫

Vǫ(x0)
eq̃|ui−u|dx ≤

∫

Ω
eq|ui−u|η̃ǫdx ≤ C(ǫ,Ω).

where, Vǫ(x0) is a neighberhooh of x0 in Ω̄. Here we have used that in a neighborhood of x0 by the

elliptic estimates, 1− Cǫ ≤ η̃ǫ ≤ 1.

Thus, for each x0 ∈ ∂Ω− {x̄1, . . . , x̄m} there is ǫ0 > 0, q0 > 1 such that:

∫

B(x0,ǫ0)
eq0uidx ≤ C, ∀ i.

By the elliptic estimate see [14] we have:

||ui||C1,θ [B(x0,ǫ)] ≤ c3 ∀ i.

We have proved that, there is a finite number of points x̄1, . . . , x̄m such that the squence (ui)i is locally

uniformly bounded in C1,θ, (θ > 0) on Ω̄− {x̄1, . . . , x̄m}.
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Proof of theorem 1.2:

We have:

ui ∈ C2,ǫ(Ω̄),

Thus, we can use integration by parts. The Pohozaev identity gives locally around each blow-up :

a) When x is in the neighborhood of the unit circle, the Pohozaev identity gives

∫

∂Ω
(∂νui)

2dx ≤ c0(b,A,C,Ω). (9)

Thus we can use the weak convergence in L2(∂Ω) to have a subsequence ∂νui, such that:

∫

∂Ω
∂νuiϕdx →

∫

∂Ω
∂νuϕdx, ∀ ϕ ∈ L2(∂Ω),

Thus, αj = 0, j = 1, . . . , N and (ui) is uniformly bounded.

b) When x is in the neighborhood of x0 or y0 ∈ C(1/2), and the circle of radius 1/2, we use again the

Pohozaev identity, by multplying by < x− x0|∇ui >. Here we use ∇Vi → 0 (becasue we do not multiply

by < x|∇ui > but by < x − x0|∇ui >) and the radius ǫ of the neighborhood, ǫ → 0 in the Pohozaev

identity.

Indeed, we have,

−∆ui − ǫ · ǫ(x) < x− x0|∇ui >= |x− x0|
2βV eui (10)

Let Ω1
ǫ be a neighborhood of C(1) or C(1/2); first, we have ǫ ≡ 1 in a neighborhood of C(1), we multiply

by < x− x0|∇ui > the previous equation and we integrate by parts, we obtain around the blow-up y0, and,

also, we consider blow-up from C(1/2), in the neighborhood of C(1/2), ǫ ≡ −1, we multiply the

equation of ui, (10), by < x− x0|∇ui > and we integrate by parts,

Thus,

∫

−∆ui(< x− x0|∇ui >)−

∫

ǫ · ǫ(x)(< x− x0|∇ui >)2 =

∫

|x− x0|
2βVi(x) < x− x0|∇(eui) >

We have:

∫

Ω1
ǫ

∆ui(< x− x0|∇ui >) =

∫

∂+Ω1
ǫ

< x− x0|∇ui >< ν|∇ui > −
< x− x0|ν >

2
|∇ui|

2+

+

∫

∂Ω

1

2
< x− x0|ν > (∂νui)

2dσ,

10



and,

−

∫

|x− x0|
2βVi(x) < x− x0|∇(eui) >= 2(1 + β)

∫

|x− x0|
2βVi(x)e

ui+

+

∫

|x− x0|
2β < x− x0|∇Vi > eui −

∫

∂Ω1
ǫ

|x− x0|
2βVi(x) < x− x0|ν > eui .

We have:

∫

C(1)∩Bǫ(y0)

1

2
(||x||2− < x0|x >)(∂νui)

2dσ +

∫

C(1)∩Bǫ(y0)
(||x||2− < x0|x >)|x− x0|

2βVi+

+

∫

Ω1
ǫ

(< x− x0|∇ui >)2dx = O(ǫ) +O(1),

but, on C(1), ν = x, and, ||x0|| = 1/2 and ||x|| = 1, thus ||x||2− < x0|x >≥ 1/2, and thus:

∫

C(1)
(∂νui)

2 ≤ C

Now, we consider blow-up from C(1/2), in the neighborhood of C(1/2), ǫ ≡ −1, we multiply the

equation of ui, (10), by < x− x0|∇ui > and we integrate by parts, we obtain (here ν = −2x on C(1/2)):

2(1 + β)

∫

Ω1
ǫ

|x− x0|
2βVie

ui +

∫

C(1/2)∩Bǫ(y0)
−(−||x||2+ < x0|x >)(∂νui)

2dσ+

+

∫

C(1/2)∩Bǫ(y0)
−2(−||x||2+ < x0|x >)|x− x0|

2βVi +

∫

Ω1
ǫ

(< x− x0|∇ui >)2dx =

=

∣

∣

∣

∣

∣

∫

Ω1
ǫ

< x− x0|∇Vi > |x− x0|
2βeui

∣

∣

∣

∣

∣

+O(ǫ).

The previous left hand side is non-negative because ||x0|| = 1/2 and ||x|| = 1/2 and | < x0|x > | ≤
||x0|| × ||x|| = ||x||2.

We tend i → +∞ and then ǫ → 0, ∇Vi → 0, to obtain:

lim
ǫ→0

lim
i→+∞

∫

Ω1
ǫ

|x− x0|
2βVie

ui = 0,

however:

∫

Ω1
ǫ

|x− x0|
2βVie

uidx =

∫

∂Ω1
ǫ

∂νuidσ +O(ǫ) + o(1) → α1 > 0,

it is a contradiction.
11
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