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Abstract

We investigate the nucleation of cavitation bubbles in a con�ned Lennard-Jones

�uid submitted to negative pressures in a cubic enclosure. We perform molecular dy-

namics (MD) simulations with tunable interatomic potentials that enable to control the

wettability of the solid walls by the liquid, i.e its contact angle. For a given temperature

and pressure, as the solid is taken more hydrophobic, we put in evidence an increase of

the nucleation probability. A Voronoi tessellation method is used to accurately detect

the bubble appearance and its nucleation rate as a function of the contact angle. We

adapt the Classical Nucleation Theory (CNT) proposed for the heterogeneous case on a

�at surface to our situation where bubbles may appear �at walls, edges or corner of the

con�ned box. We �nally calculate a theoretical mean expectation time in these three

cases. The ratio of these calculated values over the homogeneous case is computed and

compared successfully against MD simulations. Beyond the in�nite liquid case, this

work explore the heterogeneous nucleation of cavitation bubble, not only in the �at

surface case, but for more complex con�ning geometries.
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INTRODUCTION

Bubble nucleation from a mestastable liquid is a common phenomenon that can be observed

by increasing its temperature above the boiling point, or by decreasing the liquid pressure

below the vapor pressure.1 The �rst case has strong technological relevance for heat exchang-

ers2 and can lead to severe accidents in the chemical industry by explosive boiling.3 We focus

here on the second case, where the pressure decrease can be transient or quasi-static, leading

to the nucleation of a bubble by over-passing an energy barrier. The transient case presents

several applications, ranging from acoustic cavitation for medicine4 or sonochemistry5 and

hydraulic cavitation past boat helices.6 For a long time it has also been known that stretched

liquid in quasi-static conditions can be observed in Berthellot tubes7,,8 mineral inclusions9

−,11 trees12 − 14 or fern sporangia15 − 19 and lead to cavitation nucleation. Inspired by bio-

logical applications where cavitation is a drawback such as embolism13 − 14 or a necessary

triggering mechanism as for the fern catapult, microfabricated devices has been developed

to study cavitation bubbles20−.23 In these situations, the liquid is con�ned in micrometric

compartments. The e�ects of the walls are of primary interest and constitute one of the

motivations of the present study. Firstly the growth and dynamics of the bubble shall be

strongly modi�ed compare to the bulk case, but the walls will also strongly change the nucle-

ation rate. Various theoretical and numerical studies have been devoted to understand and

to predict nucleation rate. The comparison of continuous models (as the Classical Nucleation

theory, CNT) to experiments leads to strong quantitative di�erences. In this theory, inter-

faces between phases are ideal, a balance between surface and volume forces generates an

energy barrier to be passed by thermal �uctuations in order for a bubble to grow. Numerical

simulations of the molecular dynamics of cavitation bubble nucleation in a stretched liquid

have been carried out to calculate the nucleation rate, the barrier height and other thermo-

dynamical parameters in di�erent studies24 −.36 In that cases, the �uid is not con�ned and

periodic conditions are used. We focus here on applying the CNT when walls are con�ning

the liquid volume under tension, and performing Molecular Dynamics (MD) simulations al-
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lows us to study the cavitation in a stretched Lennard-Jones liquid under con�nement. This

technique has also been used to study nanobubble behavior and stability.37

We present in a �rst part the classical CNT for homogeneous nucleation, then the e�ect

of the con�nement which modi�es the free energy used in CNT, from.22 We then point out

the e�ect of walls (classical heteregeneous nucleation) and geometry through our modeling

of planes, dihedrals and corners). In a second part we detail the simulation methods, how

we detect bubbles and how we measure the expectation time τ . In a a third part, we show

our results: 1) on our method to modify the contact angle: how does it vary with εLS ? 2)

how τ does change with contact angle and depends on the nucleation location ?

Homogeneous nucleation and CNT

For a new phase to appear, an interface between liquid and vapor has to be created.1 This

new phase appears via the formation of localized nuclei in the bulk metastable phase. As

a result of density �uctuations due to thermal noise, these small nuclei are formed and

destroyed constantly in the metastable phase. In these conditions, we write the Free Energy

function corresponding to the creation of a bubble of radius R in a stretched liquid as:

∆Fhomo(R) =
4πR3

3
∆p0 + 4πR2γ , (1)

where γ is the surface tension at the liquid/vapor interface, ∆p0 correspond to the depres-

sion of the metastable liquid ∆p0 = (p− psat) < 0 in the case of a homogeneous nucleation.

In this expression psat is saturation pressure meaning the equilibrium pressure of coexistence

of the two phases liquid and vapor, and p the negative metastable liquid pressure. When

the critical bubble appears, it is in mechanical equilibrium, and we have:

∆p0 =
2γ

Rc

. (2)

In equation (2), Rc is the critical bubble radius. We write the reversible work needed for
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the creation of a critical bubble as :

W ∗
homo =

16πγ3

3∆p20
. (3)

According to CNT, the mean expectation time τhomo for a nucleation bubble is given by:

τhomo = A exp(W ∗
homo/kbT ) , (4)

where A is a constant that we will calculate afterwards, and kb is the Boltzmann constant.

This time τhomo depends on the liquid/vapor surface tension γ, the depression of the liquid

∆p0 and on temperature T .

The nucleation and growth of a bubble with con�ning walls will be modi�ed on two

aspects: i) The solid walls will induce heterogeneous nucleation events in addition to homo-

geneous ones. ii) The �nite volume of the system will induce a constrained, �nite growth of

the bubble.

In the following, to compare heterogeneous and homogeneous events, we focus on the

mean expectation time τ instead of the nucleation rate. This later is adapted for the bulk

case, for a given volume V , and is given by: J = 1/(τV ). In our case with surfaces and

corners, the use of the mean expectation time is more adapted.

E�ect of the con�nement

If we only take into account a free energy function like in equation (1), once the vapor

bubble has reached the critical radius Rc, the bubble will grow in�nitely as its energy will

only decrease. In our work, we study the e�ect of a �nite volume for the �uid domain, which

is limited by impermeable walls. In that case, the size a bubble can reach will then be limited

by the remaining liquid volume and the walls. Hence, the compressibility of the liquid and

the wall rigidity will force the �nal bubble size, as it has been described by Vincent et al.21

We write the isothermal compressibility κl of the liquid as:
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1/κl = −Vl
(
∂p

∂Vl

)
T

. (5)

In the case of small volume variations, i.e the bubble volume Vb is small compared to the

liquid volume Vl, we assume that κl is approximately constant and writes:

∆p = − 1

κl

∆Vl
Vl

. (6)

For a spherical cavity with constant radius Rc (in�nitely rigid and perfectly wetting

walls), we write the free energy of the con�ned system, following Vincent et al.,21 as:

∆F c
homo =

4πR3∆p0
3

(
1 +

1

2κl∆p0

(
R

Rc

)3
)

+ 4πR2γ . (7)

This new expression for the free energy brings out an equilibrium radius (Figure 1).

Another e�ect of the con�nement is to slightly increase the height of the nucleation barrier.
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Figure 1: Schematic representation of the free energy of the system as a function of the
radius R of the bubble: in�nite liquid (dashed line), con�ned liquid (plain line).

E�ect of the surface walls: Heterogeneous Nucleation on a �at sur-

face

In most practical circumstances, suspended impurities or imperfectly wetted surfaces act as

the interface on which the growth of a new phase is initiated. We consider the formation
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of a nucleus at a solid/liquid interface, writing the free energy of the heterogeneous system,

neglecting the con�nement term in Eq. 7. We assume here that the equilibrium radius is

large compare to the critical radius Rc in order for the change on the free energy due to the

con�nement e�ect to not a�ect the change on the nucleation barrier height. In addition, we

consider only the case of one in�nite wall :

∆Fhete(R) =
πR3

3
(1 + cos θm)2(2 − cos θm)∆p

+γSLV + γSV SSV − γSLSSV , (8)

with SLV and SSV respectively the surfaces of the Liquid/Vapor and Solid/Vapor inter-

faces, and γ, γSV and γSL respectively the surface tensions of the Liquid/Vapor, Solid/Vapor

and Solid/Liquid interfaces. With the Young-Dupre Law,43 we also have cos(θm) = (γSV −

γSL)/γ and the free energy of the system becomes1, 38− 39 :

∆Fhete(R) =
πR3

3
(1 + cos θm)2(2 − cos θm)∆p

+γ(SLV + SSV cos(θm)) . (9)

We have for a spherical cap: SLV = 2πR2(1 + cos θm), and also SSV = πR2 sin2 θm =

πR2(1 − cos2 θm). Then:

∆Fhete(R) = πR2(1 + cos θm)2(2 − cos θm)

×
(
R

3
∆p+ γ

)
. (10)

Following again,1 the work needed to nucleate a bubble on a solid plane is calculated by

maximizing this free energy with R and taking the value at the maximum :
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W ∗
hete =

16πγ3

3∆p2
(1 + cos(θm))2(2 − cos(θm))

4
. (11)

We observe that the work needed to create a new critical vapor bubble on a solid plane

is the same as in the case of a homogeneous nucleation, multiplied by a geometric correction

factor Whete = Whomoψ(θm) including the wetting angle θm between liquid and solid phases

(Figure 7). This geometric factor ψ(θm) monotonically varies from 0 to 1 as the wetting

angle θm decreases from 180 to 0 (Figure 2). This function is represented by the ratio of the

truncated spherical bubble volume to the volume of a sphere with the same radius.

E�ect of the surface walls: General case on multiple surfaces

In the case of a con�ning cavity in 3D, geometric e�ects must be added to the surface e�ect

to fully describe the heterogeneous nucleation probabilities on multiple intersecting surfaces.
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Figure 2: Variation of the three function ψ respectively from the right to the left, for a
bubble on a plane, on two planes (dihedral) and on three planes (corner)

In fact, the function ψ(θm) is changing if the bubble nucleates at di�erent locations of

the liquid/solid interface. As this function represents the ratio of the truncated spherical

bubble volume to the volume of a sphere that have the same radius, we numerically derive

the variation of the three functions ψ(θm) for respectively a bubble nucleating on a plane, on

a dihedral (intersection of 2 planes) and on a corner (intersection of 3 planes). These three
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functions are represented on the Fig.2 which shows that for a vapor bubble it is energetically

more favorable to nucleate on a corner (intersection of 3 planes), than a dihedral (intersection

of 2 planes), than on a solid plane for a given wetting angle θm.

We now compare the mean expectation time in the case of homogeneous nucleation and

heterogeneous nucleation: (By writing the following Eq.12, we neglect the trigonometric

factor in the preexponential term1) :

τhete = A exp
(
Whomo

kT
ψ(θm)

)
. (12)

This function gives a mean expectation time for a heterogeneous nucleation τhete. This

time is equal to the time in the homogeneous case τhomo when the wetting angle θm is equal

to 0, meaning a completely wetting surface. In the case of a homogeneous nucleation, we

express the prefactor A = τhomo exp(−Whomo/kT ), so we write the mean expectation time

for the heterogeneous nucleation as :

τhete = τhomo exp

(
16πγ3

3kT

(
ψ(θm)

∆p2
− 1

∆p20

))
. (13)

With the Equation (13), we write the function ψ in terms of depression ∆p and mean

expectation time τhete :

ψ(θm) =
3∆p2kbT

16πγ3
log(

τhete
τhomo

) +
∆p2

∆p20
. (14)

Even if the presence of a solid surface always lowers the free energy barrier to create a

bubble, a minimum value of the contact angle is required for the heterogeneous nucleation to

become the predominant mechanism.1 In practice, Equation (12) has a limited use because

of the very irregular nature of surfaces on which heterogeneous nucleation takes place. In our

MD simulations, as we control very precisely the geometrical surfaces between the liquid and

solid atoms, we can study this e�ect. The process of heterogeneous nucleation is therefore

limiting the extent of penetration into the metastable region, and is the reason why a negative

8



pressure is experimentally di�cult to read.

EXPERIMENTAL: Simulation methods

Molecular dynamics parameters.

To study the nucleation of vapor bubbles, we use Molecular Dynamics simulations in the

Canonical Ensemble using a Pre-compiled simulation code called LAMMPS.40 This simula-

tion method allows us to study the Classical Nucleation Theory, as this description takes into

account an isothermal process for the appearance of the bubble. In this study, our system

contains around 100000 interacting particles. The simulation box size for the liquid atoms

was 40x40x40 σ.

We use the Shifted-Force truncated Lennard-Jones (LJ) pair potential :

uSF (r ≤ rc) = uLJ(r) − uc − (r − rc)
(
dv
dr

)
r=rc

uSF (r > rc) = 0 ,
(15)

with :

uLJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
, (16)

where ε is the energetic depth of the potential, σ is the length at which the potential is

equal to 0, and r is the distance between particles. The cut-o� radius of the potential is

taken equal to rc = 2.5σ.

From now on we will use dimensionless units. The reduced units are the potential param-

eters σ and ε, and the particle mass m. We write the reduced distance r∗ = r/σ, pressure

p∗ = pσ3/ε, density ρ∗ = ρσ3, temperature T ∗ = kbT/ε, surface tension γ
∗ = γσ2/ε, and time

t∗ = t(ε/m)1/2/σ. To integrate motion equations of the particle, we use the Verlet velocity

algorithm. The time step is 0.05t∗. The thermalisation of the system is carried out by the
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Nose-Hoover Thermostat method.41

a) b)

Figure 3: a) Picture of a slice of the 3D MD simulation. We see the "solid" atoms in blue,
and the "liquid" atoms in white. b) Picture of only the "liquid" atoms with a corner from
the center of the bubble removed, we see a cavitation bubble in the middle.

For the "solid" atoms we chose εss = 100.0 and for the "liquid" atoms we chose εll = 1.0,

for both σ = 1.0. In this case, for a given temperature, a "solid" atom will need a higher

energy to move than a "liquid" one. εls will be varied.

The walls of the simulation box are simulated by 9-3 Lennard-Jones potential. This

potential is obtained by integrating the potential energy between a L-J particle at the z

position and a semi-in�nite continuum below the plane z = 0, of uniformly distributed L-J

particles.42

In order to have an energetically well equilibrated system, we �rst thermalise the "solid"

atoms in the NVT ensemble for a characteristic time of 104 simulation steps. In a second

time, we thermalise the "liquid" atoms at equilibrium density also in the NVT ensemble for

104 simulation steps. Then, we let the system "liquid + solid" (Figure 3) be equilibrated

using a conjugate gradient algorithm, and thermalise for another 104 steps. This de�nes an

initial thermalised con�guration. We shall generate di�erent starting (uncorrelated) states

by performing a few extra 104 NVT simulation steps. Starting from one of these reference

con�guration, we devised the following algorithm in order to mimic an evaporation and reach

a metastable state (that we call �nal state): (i) a random fraction (0.22%) of the liquid is

removed (ii) the energy of the remaining liquid is minimized and (iii) a new thermalization

with 104 simulation steps, during which we monitor that no cavitation takes place. Then
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this is repeated for another fraction of the liquid atoms to go down to the expected pressure.

Then we carry out at most 2 105 simulation steps of this stretched liquid, and go back to (i)

if no bubble is detected meanwhile.

a) b)

Figure 4: Temporal evolution of a cavitation bubble from the nucleation to its equilibrium
radius for: a) a homogeneous nucleation and b) for an heterogeneous nucleation with the
visualization of the corners of the cell.

Fig. 4 shows the evolution of a bubble from the nucleation to its �nal form. For the

homogeneous case (Fig.4 a)), we see that at the beginning the bubble has a highly non-

spherical shape. With time, more atoms come from the liquid bulk into the vapor bubble,

and its shape become more and more spherical. For the heterogeneous case (Fig.4 b)), the

bubble nucleates on a corner (upper-right) of the cell. The process is almost identical to the

homogeneous case but the shape of the bubble follows the borders of the cell.

To limit the simulation time, the negative pressure used was varied as function of the

contact angle. The highest one was used for the case θm = 0o: -0.25 and the lowest one was

-0.6. Even in that case, we are not at the spinodal since from30 its value is around -0.75 for

T ∗ = 0.8.

Bubbles detection

To study and detect the nucleation of bubbles, we use a method based on Voronoi polyhedra

analysis.35 With this method, we quickly �nd out if a particle is in a liquid or vapor state

(Figure 5). By de�ning a critical volume Vc when a particle is in vapor state and a critical

number of particles Nc in vapor state to de�ne a bubble, we directly detect the evolution

11



of the bubble volume as a function of time (Figure 6). In our simulations, we have chosen

Vc = 4.0σ3. With the distribution of the Voronoi volume of each atom in the liquid state, we

observe that the probability of one atom in the liquid state to have a Voronoi volume higher

than 4σ3 is almost 0 (for a stretched liquid in our con�guration, it is estimated to 10−8).

This method has also a great use in measuring the bubble size, as we directly obtain, by

summing the volume of every particle, the bubble volume, and its variations with time.

0 5 10 15

BUBBLE RADIUS R*

0

10

20

30

40

50

60

70

PE
R
 A

TO
M

 V
O

R
O

N
O

I 
V
O

LU
M

E

Average bubble radius

Vapor particles Liquid particles

Figure 5: Radial distribution of the Voronoi volume of each atom centered at the center of
the bubble. The horizontal line corresponds to the limit Vc = 4σ3

The Figure 5 shows the radial distribution of the Voronoi Volume of each atom. When

the system is at the liquid state (for the R∗ > 12), every atom has a volume below 4.0σ3.

When the bubble has its �nal size, we observe atoms inside the bubble having a Voronoi

Volume going from 4.0σ3 (for atoms on the bubble surface) to 80.0σ3 (for atoms at the center

of the bubble). We understand on this picture that this method is a straightforward way to

guess in which state one atom is, and to compute the bubble size by a simple addition.

Mean expectation time

Figure 6 shows the bubble volume pro�les for four events of cavitation in a LJ liquid. The

time reading begins just after the system transfer to its �nal state. Every value of bubble

volume on this plot has been averaged over 100 simulation steps. The cavitation time is
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Figure 6: Top. Time dependence of the bubble volume for four molecular dynamics simula-
tions of cavitation of a LJ liquid at T ∗ = 0.8 and ρ∗ = 0.6038 in a system of N = 60702 atoms
in the liquid state. In insert, is represented the liquid pressure as a function of time dur-
ing the bubble nucleation. The liquid pressure reaches quickly equilibrium, but the volume
reaches its equilibrium value in a longer time. Bottom: full length curve showing the evolu-
tion of the bubble volume. Due to reorganisation at the walls, the liquid volume decreases,
consequently increasing the volume of the bubble.
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de�ned when the bubble volume reaches 30% of the �nal bubble volume,as it corresponds

to the fast growing period of the bubble. In the case presented on Figure 6, it corresponds

to Rb = 1000σ3, represented by the dashed line. A su�ciently large threshold ensure to

avoid noise due to thermal movement and its value does not change the relative di�erence

between the mean expectation time measured. We see on Figure 6 that the cavitation time

τ is varying on di�erent simulations. This variation arises from the probabilistic character

of the nucleation. As the nucleation of a vapor bubble is considered as a rare event, the

distribution of the cavitation time for di�erent simulations with the same parameters follows

a classical Poisson Law. We determine the mean expectation time of nucleation by taking

average values over several simulations with the same conditions. It is valid when only one

single critical nucleus is su�cient for the entire system to transform into the equilibrium

fraction of liquid/vapor. This is the case in our MD simulations of a highly stretched liquid.

The second thing we learn from Figure 6, is that the volume of the bubble increases

very quickly from almost 0 to a volume Vbubble ≈ 2000σ3. But we also notice that the bubble

volume is still growing with a lower velocity. Meanwhile, we see the liquid pressure remaining,

on average, constant over this longer timescale. The liquid pressure is represented in the

insert in Figure 6. This slower volume growth is observed only in the case of liquid con�ned

in a solid cell, and not for a fully periodic liquid. By sketching the spacial distribution of

atoms in our simulations, we remark that once the liquid pressure comes back to a positive

value, a few atoms tend to form a semi-organised layer next to, and due to the interaction

with the solid part. The liquid pressure is represented on the insert in Figure 6 does not take

into account these atoms. This observation leads to a decrease of the liquid atom number,

so the bubble volume increase to deal with the equilibrium pressure to be constant. As this

e�ect due to liquid and solid interaction is observed on longer timescales, it does not a�ect

the bubble nucleation, but explains the shape of the curves on Figure 6.
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RESULTS

In�uence of the solid/liquid potential on the wetting angle in our

system

The geometry of liquid particles placed in solid cell, allows us to control the liquid/solid

wetting angle θm by varying only one parameter, namely the value of the potential parameter

ε between the liquid particles and the solid ones. The in�uence of ε on the contact angle is

de�ned on Figure 7. This set of measures were performed on a N ≈ 100000 liquid particles,

at the Temperature T ∗ = 0.8 as described in part . For a given interaction parameter ε,

we measure the wetting angle on di�erent cases, meaning di�erent locations of the bubbles.

The wetting angle is not dependent on the location.
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0.5

0

1
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Figure 7: Dependence of the liquid/solid contact angle θm with the parameter ε between
liquid and solid for a vapor bubble on a solid interface (bottom, black) and for a droplets on
a solid surface (top, gray).

To acquire the value of the wetting angle, we approximate the surface of the droplet

with a sphere as described on the Fig. 7. We �nd out that when we increase the potential
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parameter ε between the liquid and solid particles, cos(θm) increases linearly, meaning that

the wetting angle θm decreases.

We performed other dedicated simulations to measure the contact angle for a droplets

sitting on a solid surface. This is shown as the points in gray in Figure 7. We see that

both curves are linear as function of εls, the contact angles being larger in the bubble case

compare to the droplet case.

For a Lennard-Jones potential, the surface tension between solid and liquid γSL is pro-

portional to −ε/σ2. With this hint, it is clear that the variation of cos(θm) linearly depends

on the interaction between the liquid and solid particles.

In�uence of the liquid/solid wetting on τ

In�uence of the contact angle on τ

With our system, an interesting thing to study is the in�uence of the wetting angle θm on

the mean expectation time for a cavitation bubble. As we saw in Eq.12, if we increase the

wetting angle θm, it is easier for the system to nucleate a bubble. In fact, the measurement

of a mean expectation time τhete by increasing the wetting angle for a given depression

∆p becomes very di�cult. To measure a τhete di�erent than 0 (meaning that the bubble

nucleates instantaneously), we also have to decrease the depression of the system. The

Table 1 represents some interesting values to picture the e�ect of the wetting angle on the

nucleation time τhete. The values are averages on sets of simulations. It clearly shows that

for a given metastable state it is easier to nucleate a bubble by increasing the wetting angle,

represented by a lower expectation time.

Table 1: Simulations values of mean expectation time τ for equivalent depression of the
liquid before nucleation.

Interaction εliquid/solid Wetting angle θm Expectation time τ
1.0 0 570
0.8 26 393
0.6 80 51
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Determination of the function Ψ(θm)

As we see on Eq.14, we have normalized our measurement by the depression ∆p of the system

with the depression ∆p0 in the homogeneous case. In our computation, we have to evaluate

τhomo, ∆p0, τhete and ∆p. By putting these values in Eq.14, we shall obtain the value of the

function Ψ. Here we use the value of the surface tension γ = 0.396 as an average surface

tension given on multiple references, represented in Table 2. The values to calculate Ψ are

summarized in table 3.

Table 2: Values of the surface tension given in litterature

T ∗ Method Surface tension γ Reference
0.80 MC 0.405 ± 0.003 Trokhymchuk et al.28

0.80 MD 0.408 ± 0.018 Trokhymchuk et al.28

0.80 MD 0.39 ± 0.01 Nijmeijer et al.24

0.80 MD 0.388 ± 0.004 Haye and Bruin27

0.80 MD 0.39 ± 0.02 Adams and Henderson26

Normalization from the spatial position of nucleation: e�ect of the geometry

Figure 8: Location of a hundred of nucleations inside a solid cell. We clearly see that in a
majority of case, the location of the nucleation is a corner (intersection of 3 plans)

If we plot directly the values of Ψ on Figure 2, we see that they are between these three

curves. The explanation of this, is that the location of the bubble nucleation cannot be

de�ned with these parameters. For a given ∆p and θm the bubble has a certain probability
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to nucleate on a plane, on a dihedral and on a corner. In di�erent conditions, we can measure

the proportion of bubbles nucleating in di�erent parts of the cell. Our measurements clearly

shows that the proportion of bubbles nucleating on di�erent parts of the cell is independent

of the wetting angle. for example, for two contact angles (80° and 25 °), the proportions in

di�erent locations are respectively for corners: 68.9 % / 69.5 %, dihedral: 25.7 % / 26.1 %,

planes: 5.4 % / 4.4 %. Bulk: 0.0 % / 0.0 %.

On average, the proportion of bubbles nucleating on a corner, is the largest, is 69.2%, the

proportion of bubbles nucleating on a dihedral is 25.9%, the proportion of bubbles nucleating

on a plane is 4.9%. Figure 8 shows a representation of the nucleation sites for a set of a

hundred simulations. We clearly see that a majority of bubbles nucleates on the corner of

the solid cell.

As we now know, the probability for a bubble to appear in the three di�erent locations of

the solid cell, we estimate the mean value of the function Ψ, normalized by the mean location

of the nucleation of the bubble Ψ′. This function is given by Ψ′ = 0.692Ψ3p + 0.259Ψ2p +

0.049Ψ1p.

Table 3: Simulations values to calculate Ψ(θm).

τhomo ∆p0 Ψ
131.7447 0.5808 1.0000
τhete ∆p Ψ

123.2211 0.6004 1.0459 ± 0.0736
327.2889 0.5103 0.9953 ± 0.0279
465.8154 0.4694 0.9159 ± 0.0561
613.7895 0.4155 0.7621 ± 0.0542
699.0540 0.3561 0.5754 ± 0.0601
602.7879 0.2936 0.3791 ± 0.0877
477.5800 0.2547 0.2711 ± 0.0464

Fig.9 shows the evolution of the function Ψ′ controlling the e�ect of the wetting angle

on the mean expectation time of a nucleation. The values of the dots are calculated from

the measured values of τhete using Eq.13. We clearly get a very good agreement between the

measured values and the theoretical values of the function Ψ′ without any free parameter in
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Figure 9: Evolution of the function Ψ′ as a function of the wetting angle θm. The disks
are the simulated measurements and the lines are the theoretical function. The full line
corresponds to the function Ψ′.

the model.

After nucleation, the bubbles presents an oscillating regime before reaching their equilib-

rium radius due to the con�nement, this is observed on the Figure 6. It shows oscillations of

the bubble volume and as a consequence, in the liquid pressure. This observation has been

studied experimentally by O. Vincent.21 We will present later our results on these oscillations

and their possible consequences for the multi cavities case.

CONCLUSION

In this paper, our goal is to understand the e�ect of a solid con�nement on the nucleation of

vapor bubble in a highly stretched liquid. We use MD simulations to compute this system

in the Canonical ensemble. All these simulations were carried out with a �xed temperature

T ∗ = 0.8. By changing the interaction between the liquid atoms and the solid atoms, we

control the wetting angle very precisely.

We �rst study the in�uence of the interaction parameter ε on a vapor bubble on planes

in di�erent geometries. The measurement of the wetting angle θm is performed by approx-

imating the surface of the vapor bubble with a portion of sphere and its angle with the
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solid plane. We have shown that cos(θm) increases linearly with the potential parameter ε

between the liquid and the solid phases. We compare these angles to other simulations done

on simple droplets on plane system. Both values evolve linearly with εls, but with a slightly

di�erent coe�cient.

Then the main goal of this work is to understand the e�ect of the wetting angle on

the nucleation of vapor bubbles. The MD simulations are very convenient for this study to

make this statistical measurements, as the nucleation is a probabilistic phenomenon. We

use a method based on the Voronoi volumes to detect the nucleation of the bubble and to

have very easily access to its size, position and shape. By measuring the cavitation mean

expectation time for di�erent wetting angles, we could compare to the CNT adapted to the

heteregeneous case on planes, dihedrals and corners. We found a very good agreement for

the ratio between heterogeneous and homogeneous mean expectation times with the CNT,

providing that the in-situ contact angles measured are used. We can then predict very

precisely, even though the probabilistic character of the nucleation, how the wetting angle

in�uence the appearance of a bubble, knowing that small-scale or geometrical e�ects are

quantitatively expressed in the value of an e�ective contact angle, di�erent from the one

obtained for droplets on a plane.
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