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Cavitation mean expectation time in a stretched Lennard-Jones uid under connement

We investigate the nucleation of cavitation bubbles in a conned Lennard-Jones uid submitted to negative pressures in a cubic enclosure. We perform molecular dynamics (MD) simulations with tunable interatomic potentials that enable to control the wettability of the solid walls by the liquid, i.e its contact angle. For a given temperature and pressure, as the solid is taken more hydrophobic, we put in evidence an increase of the nucleation probability. A Voronoi tessellation method is used to accurately detect the bubble appearance and its nucleation rate as a function of the contact angle. We adapt the Classical Nucleation Theory (CNT) proposed for the heterogeneous case on a at surface to our situation where bubbles may appear at walls, edges or corner of the conned box. We nally calculate a theoretical mean expectation time in these three cases. The ratio of these calculated values over the homogeneous case is computed and compared successfully against MD simulations. Beyond the innite liquid case, this work explore the heterogeneous nucleation of cavitation bubble, not only in the at surface case, but for more complex conning geometries.

INTRODUCTION

Bubble nucleation from a mestastable liquid is a common phenomenon that can be observed by increasing its temperature above the boiling point, or by decreasing the liquid pressure below the vapor pressure. [START_REF] Debenedetti | Metastable Liquids: Concepts and Principles[END_REF] The rst case has strong technological relevance for heat exchangers [START_REF] Dhir | Boiling heat transfer[END_REF] and can lead to severe accidents in the chemical industry by explosive boiling. [START_REF] Martynyuk | Phase explosion of a metastable uid[END_REF] We focus here on the second case, where the pressure decrease can be transient or quasi-static, leading to the nucleation of a bubble by over-passing an energy barrier. The transient case presents several applications, ranging from acoustic cavitation for medicine [START_REF] Brujan | Cavitation in non newtonian uids[END_REF] or sonochemistry 5 and hydraulic cavitation past boat helices. [START_REF] Brennen | Cavitation and Bubble Dynamics[END_REF] For a long time it has also been known that stretched liquid in quasi-static conditions can be observed in Berthellot tubes [START_REF] Berthelot | [END_REF], , 8 mineral inclusions 9 -, 11 trees 12 -14 or fern sporangia 15 -19 and lead to cavitation nucleation. Inspired by biological applications where cavitation is a drawback such as embolism 13 -14 or a necessary triggering mechanism as for the fern catapult, microfabricated devices has been developed to study cavitation bubbles 20-. [START_REF] Scognamiglio | The detailed acoustic signature of a micro-conned cavitation bubble[END_REF] In these situations, the liquid is conned in micrometric compartments. The eects of the walls are of primary interest and constitute one of the motivations of the present study. Firstly the growth and dynamics of the bubble shall be strongly modied compare to the bulk case, but the walls will also strongly change the nucleation rate. Various theoretical and numerical studies have been devoted to understand and to predict nucleation rate. The comparison of continuous models (as the Classical Nucleation theory, CNT) to experiments leads to strong quantitative dierences. In this theory, interfaces between phases are ideal, a balance between surface and volume forces generates an energy barrier to be passed by thermal uctuations in order for a bubble to grow. Numerical simulations of the molecular dynamics of cavitation bubble nucleation in a stretched liquid have been carried out to calculate the nucleation rate, the barrier height and other thermodynamical parameters in dierent studies 24 -. [START_REF] Baidakov | Spontaneous cavitation in a lennard-jones liquid at negative pressures[END_REF] In that cases, the uid is not conned and periodic conditions are used. We focus here on applying the CNT when walls are conning the liquid volume under tension, and performing Molecular Dynamics (MD) simulations al-lows us to study the cavitation in a stretched Lennard-Jones liquid under connement. This technique has also been used to study nanobubble behavior and stability. [START_REF] Maheshwari | Stability of surface nanobubbles: A molecular dynamics study[END_REF] We present in a rst part the classical CNT for homogeneous nucleation, then the eect of the connement which modies the free energy used in CNT, from. [START_REF] Vincent | The fast dynamics of cavitation bubbles within water conned in elastic solids[END_REF] We then point out the eect of walls (classical heteregeneous nucleation) and geometry through our modeling of planes, dihedrals and corners). In a second part we detail the simulation methods, how we detect bubbles and how we measure the expectation time τ . In a a third part, we show our results: 1) on our method to modify the contact angle: how does it vary with LS ? 2) how τ does change with contact angle and depends on the nucleation location ?

Homogeneous nucleation and CNT

For a new phase to appear, an interface between liquid and vapor has to be created. [START_REF] Debenedetti | Metastable Liquids: Concepts and Principles[END_REF] This new phase appears via the formation of localized nuclei in the bulk metastable phase. As a result of density uctuations due to thermal noise, these small nuclei are formed and destroyed constantly in the metastable phase. In these conditions, we write the Free Energy function corresponding to the creation of a bubble of radius R in a stretched liquid as:

∆F homo (R) = 4πR 3 3 ∆p 0 + 4πR 2 γ , (1) 
where γ is the surface tension at the liquid/vapor interface, ∆p 0 correspond to the depression of the metastable liquid ∆p 0 = (p -p sat ) < 0 in the case of a homogeneous nucleation.

In this expression p sat is saturation pressure meaning the equilibrium pressure of coexistence of the two phases liquid and vapor, and p the negative metastable liquid pressure. When the critical bubble appears, it is in mechanical equilibrium, and we have:

∆p 0 = 2γ R c . (2) 
In equation ( 2), R c is the critical bubble radius. We write the reversible work needed for the creation of a critical bubble as :

W * homo = 16πγ 3 3∆p 2 0 . (3) 
According to CNT, the mean expectation time τ homo for a nucleation bubble is given by:

τ homo = A exp(W * homo /k b T ) , (4) 
where A is a constant that we will calculate afterwards, and k b is the Boltzmann constant.

This time τ homo depends on the liquid/vapor surface tension γ, the depression of the liquid ∆p 0 and on temperature T .

The nucleation and growth of a bubble with conning walls will be modied on two aspects: i) The solid walls will induce heterogeneous nucleation events in addition to homogeneous ones. ii) The nite volume of the system will induce a constrained, nite growth of the bubble.

In the following, to compare heterogeneous and homogeneous events, we focus on the mean expectation time τ instead of the nucleation rate. This later is adapted for the bulk case, for a given volume V , and is given by: J = 1/(τ V ). In our case with surfaces and corners, the use of the mean expectation time is more adapted.

Eect of the connement

If we only take into account a free energy function like in equation ( 1), once the vapor bubble has reached the critical radius R c , the bubble will grow innitely as its energy will only decrease. In our work, we study the eect of a nite volume for the uid domain, which is limited by impermeable walls. In that case, the size a bubble can reach will then be limited by the remaining liquid volume and the walls. Hence, the compressibility of the liquid and the wall rigidity will force the nal bubble size, as it has been described by Vincent et al. [START_REF] Vincent | Birth and Growth of Cavitation Bubbles within Water under Tension Conned in a Simple Synthetic Tree[END_REF] We write the isothermal compressibility κ l of the liquid as:

1/κ l = -V l ∂p ∂V l T .
(5)

In the case of small volume variations, i.e the bubble volume V b is small compared to the liquid volume V l , we assume that κ l is approximately constant and writes:

∆p = - 1 κ l ∆V l V l . (6) 
For a spherical cavity with constant radius R c (innitely rigid and perfectly wetting walls), we write the free energy of the conned system, following Vincent et al., [START_REF] Vincent | Birth and Growth of Cavitation Bubbles within Water under Tension Conned in a Simple Synthetic Tree[END_REF] as:

∆F c homo = 4πR 3 ∆p 0 3 1 + 1 2κ l ∆p 0 R R c 3 + 4πR 2 γ . ( 7 
)
This new expression for the free energy brings out an equilibrium radius (Figure 1).

Another eect of the connement is to slightly increase the height of the nucleation barrier. Eect of the surface walls: Heterogeneous Nucleation on a at surface In most practical circumstances, suspended impurities or imperfectly wetted surfaces act as the interface on which the growth of a new phase is initiated. We consider the formation of a nucleus at a solid/liquid interface, writing the free energy of the heterogeneous system, neglecting the connement term in Eq. 7. We assume here that the equilibrium radius is large compare to the critical radius R c in order for the change on the free energy due to the connement eect to not aect the change on the nucleation barrier height. In addition, we consider only the case of one innite wall :

Free Energy ΔF Radius R R R > R R < R < R
∆F hete (R) = πR 3 3 (1 + cos θ m ) 2 (2 -cos θ m )∆p +γS LV + γ SV S SV -γ SL S SV , (8) 
with S LV and S SV respectively the surfaces of the Liquid/Vapor and Solid/Vapor interfaces, and γ, γ SV and γ SL respectively the surface tensions of the Liquid/Vapor, Solid/Vapor and Solid/Liquid interfaces. With the Young-Dupre Law, [START_REF] Young | An Essay on the Cohesion of Fluids[END_REF] we also have cos(θ m ) = (γ SVγ SL )/γ and the free energy of the system becomes [START_REF] Debenedetti | Metastable Liquids: Concepts and Principles[END_REF][START_REF] Meloni | Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces[END_REF][START_REF] Skripov | Metastable Liquids[END_REF] :

∆F hete (R) = πR 3 3 (1 + cos θ m ) 2 (2 -cos θ m )∆p +γ(S LV + S SV cos(θ m )) . (9) 
We have for a spherical cap: S LV = 2πR 2 (1 + cos θ m ), and also

S SV = πR 2 sin 2 θ m = πR 2 (1 -cos 2 θ m ).
Then:

∆F hete (R) = πR 2 (1 + cos θ m ) 2 (2 -cos θ m ) × R 3 ∆p + γ . ( 10 
)
Following again, 1 the work needed to nucleate a bubble on a solid plane is calculated by maximizing this free energy with R and taking the value at the maximum :

W * hete = 16πγ 3 3∆p 2 (1 + cos(θ m )) 2 (2 -cos(θ m )) 4 .
(11)

We observe that the work needed to create a new critical vapor bubble on a solid plane is the same as in the case of a homogeneous nucleation, multiplied by a geometric correction factor W hete = W homo ψ(θ m ) including the wetting angle θ m between liquid and solid phases (Figure 7). This geometric factor ψ(θ m ) monotonically varies from 0 to 1 as the wetting angle θ m decreases from 180 to 0 (Figure 2). This function is represented by the ratio of the truncated spherical bubble volume to the volume of a sphere with the same radius.

Eect of the surface walls: General case on multiple surfaces

In the case of a conning cavity in 3D, geometric eects must be added to the surface eect to fully describe the heterogeneous nucleation probabilities on multiple intersecting surfaces. In fact, the function ψ(θ m ) is changing if the bubble nucleates at dierent locations of the liquid/solid interface. As this function represents the ratio of the truncated spherical bubble volume to the volume of a sphere that have the same radius, we numerically derive the variation of the three functions ψ(θ m ) for respectively a bubble nucleating on a plane, on a dihedral (intersection of 2 planes) and on a corner (intersection of 3 planes). These three functions are represented on the Fig. 2 which shows that for a vapor bubble it is energetically more favorable to nucleate on a corner (intersection of 3 planes), than a dihedral (intersection of 2 planes), than on a solid plane for a given wetting angle θ m .

We now compare the mean expectation time in the case of homogeneous nucleation and heterogeneous nucleation: (By writing the following Eq.12, we neglect the trigonometric factor in the preexponential term 1 ) :

τ hete = A exp W homo kT ψ(θ m ) . (12) 
This function gives a mean expectation time for a heterogeneous nucleation τ h ete. This time is equal to the time in the homogeneous case τ h omo when the wetting angle θ m is equal to 0, meaning a completely wetting surface. In the case of a homogeneous nucleation, we express the prefactor A = τ homo exp(-W homo /kT ), so we write the mean expectation time for the heterogeneous nucleation as :

τ hete = τ homo exp 16πγ 3 3kT ψ(θ m ) ∆p 2 - 1 ∆p 2 0 . ( 13 
)
With the Equation ( 13), we write the function ψ in terms of depression ∆p and mean expectation time τ hete :

ψ(θ m ) = 3∆p 2 k b T 16πγ 3 log( τ hete τ homo ) + ∆p 2 ∆p 2 0 . (14) 
Even if the presence of a solid surface always lowers the free energy barrier to create a bubble, a minimum value of the contact angle is required for the heterogeneous nucleation to become the predominant mechanism. [START_REF] Debenedetti | Metastable Liquids: Concepts and Principles[END_REF] In practice, Equation ( 12) has a limited use because of the very irregular nature of surfaces on which heterogeneous nucleation takes place. In our MD simulations, as we control very precisely the geometrical surfaces between the liquid and solid atoms, we can study this eect. The process of heterogeneous nucleation is therefore limiting the extent of penetration into the metastable region, and is the reason why a negative pressure is experimentally dicult to read.

EXPERIMENTAL: Simulation methods

Molecular dynamics parameters.

To study the nucleation of vapor bubbles, we use Molecular Dynamics simulations in the Canonical Ensemble using a Pre-compiled simulation code called LAMMPS. [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF] This simulation method allows us to study the Classical Nucleation Theory, as this description takes into account an isothermal process for the appearance of the bubble. In this study, our system contains around 100000 interacting particles. The simulation box size for the liquid atoms was 40x40x40 σ.

We use the Shifted-Force truncated Lennard-Jones (LJ) pair potential :

u SF (r ≤ r c ) = u LJ (r) -u c -(r -r c ) dv dr r=rc u SF (r > r c ) = 0 , (15) 
with :

u LJ (r) = 4 σ r 12 - σ r 6 , (16) 
where is the energetic depth of the potential, σ is the length at which the potential is equal to 0, and r is the distance between particles. The cut-o radius of the potential is taken equal to r c = 2.5σ.

From now on we will use dimensionless units. The reduced units are the potential parameters σ and , and the particle mass m. We write the reduced distance r * = r/σ, pressure p * = pσ 3 / , density ρ * = ρσ 3 , temperature T * = k b T / , surface tension γ * = γσ 2 / , and time

t * = t( /m) 1/2 /σ.
To integrate motion equations of the particle, we use the Verlet velocity algorithm. The time step is 0.05t * . The thermalisation of the system is carried out by the a) b)

Figure 3: a) Picture of a slice of the 3D MD simulation. We see the "solid" atoms in blue, and the "liquid" atoms in white. b) Picture of only the "liquid" atoms with a corner from the center of the bubble removed, we see a cavitation bubble in the middle.

For the "solid" atoms we chose ss = 100.0 and for the "liquid" atoms we chose ll = 1.0,

for both σ = 1.0. In this case, for a given temperature, a "solid" atom will need a higher energy to move than a "liquid" one. ls will be varied.

The walls of the simulation box are simulated by 9-3 Lennard-Jones potential. This potential is obtained by integrating the potential energy between a L-J particle at the z position and a semi-innite continuum below the plane z = 0, of uniformly distributed L-J particles. [START_REF] Israelachvili | Intermolecular and surface forces[END_REF] In order to have an energetically well equilibrated system, we rst thermalise the "solid" atoms in the NVT ensemble for a characteristic time of 10 4 simulation steps. In a second time, we thermalise the "liquid" atoms at equilibrium density also in the NVT ensemble for 10 4 simulation steps. Then, we let the system "liquid + solid" (Figure 3) be equilibrated using a conjugate gradient algorithm, and thermalise for another 10 4 steps. This denes an initial thermalised conguration. We shall generate dierent starting (uncorrelated) states by performing a few extra 10 4 NVT simulation steps. Starting from one of these reference conguration, we devised the following algorithm in order to mimic an evaporation and reach a metastable state (that we call nal state): (i) a random fraction (0.22%) of the liquid is removed (ii) the energy of the remaining liquid is minimized and (iii) a new thermalization with 10 4 simulation steps, during which we monitor that no cavitation takes place. Then this is repeated for another fraction of the liquid atoms to go down to the expected pressure.

Then we carry out at most 2 10 5 simulation steps of this stretched liquid, and go back to (i) if no bubble is detected meanwhile.

a) b)

Figure 4: Temporal evolution of a cavitation bubble from the nucleation to its equilibrium radius for: a) a homogeneous nucleation and b) for an heterogeneous nucleation with the visualization of the corners of the cell.

Fig. 4 shows the evolution of a bubble from the nucleation to its nal form. For the homogeneous case (Fig. 4 a)), we see that at the beginning the bubble has a highly nonspherical shape. With time, more atoms come from the liquid bulk into the vapor bubble, and its shape become more and more spherical. For the heterogeneous case (Fig. 4 b)), the bubble nucleates on a corner (upper-right) of the cell. The process is almost identical to the homogeneous case but the shape of the bubble follows the borders of the cell.

To limit the simulation time, the negative pressure used was varied as function of the contact angle. The highest one was used for the case θ m = 0 o : -0.25 and the lowest one was -0.6. Even in that case, we are not at the spinodal since from 30 its value is around -0.75 for

T * = 0.8.

Bubbles detection

To study and detect the nucleation of bubbles, we use a method based on Voronoi polyhedra analysis. [START_REF] Jose Lf Abascal | Homogeneous bubble nucleation in water at negative pressure : A Voronoi polyhedra analysis[END_REF] With this method, we quickly nd out if a particle is in a liquid or vapor state (Figure 5). By dening a critical volume V c when a particle is in vapor state and a critical number of particles N c in vapor state to dene a bubble, we directly detect the evolution of the bubble volume as a function of time (Figure 6). In our simulations, we have chosen

V c = 4.0σ 3 .
With the distribution of the Voronoi volume of each atom in the liquid state, we observe that the probability of one atom in the liquid state to have a Voronoi volume higher than 4σ 3 is almost 0 (for a stretched liquid in our conguration, it is estimated to 10 -8 ).

This method has also a great use in measuring the bubble size, as we directly obtain, by summing the volume of every particle, the bubble volume, and its variations with time. The Figure 5 shows the radial distribution of the Voronoi Volume of each atom. When the system is at the liquid state (for the R * > 12), every atom has a volume below 4.0σ 3 .

When the bubble has its nal size, we observe atoms inside the bubble having a Voronoi Volume going from 4.0σ 3 (for atoms on the bubble surface) to 80.0σ 3 (for atoms at the center of the bubble). We understand on this picture that this method is a straightforward way to guess in which state one atom is, and to compute the bubble size by a simple addition.

Mean expectation time

Figure 6 shows the bubble volume proles for four events of cavitation in a LJ liquid. The time reading begins just after the system transfer to its nal state. Every value of bubble volume on this plot has been averaged over 100 simulation steps. The cavitation time is dened when the bubble volume reaches 30% of the nal bubble volume,as it corresponds to the fast growing period of the bubble. In the case presented on Figure 6, it corresponds to R b = 1000σ 3 , represented by the dashed line. A suciently large threshold ensure to avoid noise due to thermal movement and its value does not change the relative dierence between the mean expectation time measured. We see on Figure 6 that the cavitation time τ is varying on dierent simulations. This variation arises from the probabilistic character of the nucleation. As the nucleation of a vapor bubble is considered as a rare event, the distribution of the cavitation time for dierent simulations with the same parameters follows a classical Poisson Law. We determine the mean expectation time of nucleation by taking average values over several simulations with the same conditions. It is valid when only one single critical nucleus is sucient for the entire system to transform into the equilibrium fraction of liquid/vapor. This is the case in our MD simulations of a highly stretched liquid.

The second thing we learn from Figure 6, is that the volume of the bubble increases very quickly from almost 0 to a volume V bubble ≈ 2000σ 3 . But we also notice that the bubble volume is still growing with a lower velocity. Meanwhile, we see the liquid pressure remaining, on average, constant over this longer timescale. The liquid pressure is represented in the insert in Figure 6. This slower volume growth is observed only in the case of liquid conned in a solid cell, and not for a fully periodic liquid. By sketching the spacial distribution of atoms in our simulations, we remark that once the liquid pressure comes back to a positive value, a few atoms tend to form a semi-organised layer next to, and due to the interaction with the solid part. The liquid pressure is represented on the insert in Figure 6 does not take into account these atoms. This observation leads to a decrease of the liquid atom number, so the bubble volume increase to deal with the equilibrium pressure to be constant. As this eect due to liquid and solid interaction is observed on longer timescales, it does not aect the bubble nucleation, but explains the shape of the curves on Figure 6.

RESULTS

Inuence of the solid/liquid potential on the wetting angle in our system

The geometry of liquid particles placed in solid cell, allows us to control the liquid/solid wetting angle θ m by varying only one parameter, namely the value of the potential parameter between the liquid particles and the solid ones. The inuence of on the contact angle is dened on Figure 7. This set of measures were performed on a N ≈ 100000 liquid particles, at the Temperature T * = 0.8 as described in part . For a given interaction parameter , we measure the wetting angle on dierent cases, meaning dierent locations of the bubbles.

The wetting angle is not dependent on the location. To acquire the value of the wetting angle, we approximate the surface of the droplet with a sphere as described on the Fig. 7. We nd out that when we increase the potential parameter between the liquid and solid particles, cos(θ m ) increases linearly, meaning that the wetting angle θ m decreases.

We performed other dedicated simulations to measure the contact angle for a droplets sitting on a solid surface. This is shown as the points in gray in Figure 7. We see that both curves are linear as function of ls , the contact angles being larger in the bubble case compare to the droplet case.

For a Lennard-Jones potential, the surface tension between solid and liquid γ SL is proportional to -/σ 2 . With this hint, it is clear that the variation of cos(θ m ) linearly depends on the interaction between the liquid and solid particles.

Inuence of the liquid/solid wetting on τ

Inuence of the contact angle on τ

With our system, an interesting thing to study is the inuence of the wetting angle θ m on the mean expectation time for a cavitation bubble. As we saw in Eq.12, if we increase the wetting angle θ m , it is easier for the system to nucleate a bubble. In fact, the measurement of a mean expectation time τ hete by increasing the wetting angle for a given depression ∆p becomes very dicult. To measure a τ hete dierent than 0 (meaning that the bubble nucleates instantaneously), we also have to decrease the depression of the system. The As we see on Eq.14, we have normalized our measurement by the depression ∆p of the system with the depression ∆p 0 in the homogeneous case. In our computation, we have to evaluate τ homo , ∆p 0 , τ hete and ∆p. By putting these values in Eq.14, we shall obtain the value of the function Ψ. Here we use the value of the surface tension γ = 0.396 as an average surface tension given on multiple references, represented in Table 2. The values to calculate Ψ are summarized in table 3. 
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Normalization from the spatial position of nucleation: eect of the geometry If we plot directly the values of Ψ on Figure 2, we see that they are between these three curves. The explanation of this, is that the location of the bubble nucleation cannot be dened with these parameters. For a given ∆p and θ m the bubble has a certain probability to nucleate on a plane, on a dihedral and on a corner. In dierent conditions, we can measure the proportion of bubbles nucleating in dierent parts of the cell. Our measurements clearly shows that the proportion of bubbles nucleating on dierent parts of the cell is independent of the wetting angle. for example, for two contact angles (80°and 25 °), the proportions in dierent locations are respectively for corners: 68.9 % / 69.5 %, dihedral: 25.7 % / 26.1 %, planes: 5.4 % / 4.4 %. Bulk: 0.0 % / 0.0 %.

On average, the proportion of bubbles nucleating on a corner, is the largest, is 69.2%, the proportion of bubbles nucleating on a dihedral is 25.9%, the proportion of bubbles nucleating on a plane is 4.9%. Figure 8 shows a representation of the nucleation sites for a set of a hundred simulations. We clearly see that a majority of bubbles nucleates on the corner of the solid cell.

As we now know, the probability for a bubble to appear in the three dierent locations of the solid cell, we estimate the mean value of the function Ψ, normalized by the mean location of the nucleation of the bubble Ψ . This function is given by Ψ = 0.692Ψ 3p + 0.259Ψ 2p + 0.049Ψ 1p . the model.

After nucleation, the bubbles presents an oscillating regime before reaching their equilibrium radius due to the connement, this is observed on the Figure 6. It shows oscillations of the bubble volume and as a consequence, in the liquid pressure. This observation has been studied experimentally by O. Vincent. [START_REF] Vincent | Birth and Growth of Cavitation Bubbles within Water under Tension Conned in a Simple Synthetic Tree[END_REF] We will present later our results on these oscillations and their possible consequences for the multi cavities case.

CONCLUSION

In this paper, our goal is to understand the eect of a solid connement on the nucleation of vapor bubble in a highly stretched liquid. We use MD simulations to compute this system in the Canonical ensemble. All these simulations were carried out with a xed temperature T * = 0.8. By changing the interaction between the liquid atoms and the solid atoms, we control the wetting angle very precisely.

We rst study the inuence of the interaction parameter on a vapor bubble on planes in dierent geometries. The measurement of the wetting angle θ m is performed by approximating the surface of the vapor bubble with a portion of sphere and its angle with the solid plane. We have shown that cos(θ m ) increases linearly with the potential parameter between the liquid and the solid phases. We compare these angles to other simulations done on simple droplets on plane system. Both values evolve linearly with ls , but with a slightly dierent coecient.

Then the main goal of this work is to understand the eect of the wetting angle on the nucleation of vapor bubbles. The MD simulations are very convenient for this study to make this statistical measurements, as the nucleation is a probabilistic phenomenon. We use a method based on the Voronoi volumes to detect the nucleation of the bubble and to have very easily access to its size, position and shape. By measuring the cavitation mean expectation time for dierent wetting angles, we could compare to the CNT adapted to the heteregeneous case on planes, dihedrals and corners. We found a very good agreement for the ratio between heterogeneous and homogeneous mean expectation times with the CNT, providing that the in-situ contact angles measured are used. We can then predict very precisely, even though the probabilistic character of the nucleation, how the wetting angle inuence the appearance of a bubble, knowing that small-scale or geometrical eects are quantitatively expressed in the value of an eective contact angle, dierent from the one obtained for droplets on a plane.

Figure 1 :

 1 Figure 1: Schematic representation of the free energy of the system as a function of the radius R of the bubble: innite liquid (dashed line), conned liquid (plain line).

Figure 2 :

 2 Figure 2: Variation of the three function ψ respectively from the right to the left, for a bubble on a plane, on two planes (dihedral) and on three planes (corner)

Figure 5 :

 5 Figure 5: Radial distribution of the Voronoi volume of each atom centered at the center of the bubble. The horizontal line corresponds to the limit V c = 4σ 3

Figure 6 :

 6 Figure6: Top. Time dependence of the bubble volume for four molecular dynamics simulations of cavitation of a LJ liquid at T * = 0.8 and ρ * = 0.6038 in a system of N = 60702 atoms in the liquid state. In insert, is represented the liquid pressure as a function of time during the bubble nucleation. The liquid pressure reaches quickly equilibrium, but the volume reaches its equilibrium value in a longer time. Bottom: full length curve showing the evolution of the bubble volume. Due to reorganisation at the walls, the liquid volume decreases, consequently increasing the volume of the bubble.

Figure 7 :

 7 Figure 7: Dependence of the liquid/solid contact angle θ m with the parameter between liquid and solid for a vapor bubble on a solid interface (bottom, black) and for a droplets on a solid surface (top, gray).

Figure 8 :

 8 Figure 8: Location of a hundred of nucleations inside a solid cell. We clearly see that in a majority of case, the location of the nucleation is a corner (intersection of 3 plans)

Fig. 9 Figure 9 :

 99 Fig.9shows the evolution of the function Ψ controlling the eect of the wetting angle on the mean expectation time of a nucleation. The values of the dots are calculated from the measured values of τ hete using Eq.13. We clearly get a very good agreement between the measured values and the theoretical values of the function Ψ without any free parameter in

Table 1

 1 represents some interesting values to picture the eect of the wetting angle on the nucleation time τ hete . The values are averages on sets of simulations. It clearly shows that for a given metastable state it is easier to nucleate a bubble by increasing the wetting angle, represented by a lower expectation time.

Table 1 :

 1 Simulations values of mean expectation time τ for equivalent depression of the liquid before nucleation. Interaction liquid/solid Wetting angle θ m Expectation time τ

	1.0	0	570
	0.8	26	393
	0.6	80	51

Table 2 :

 2 Values of the surface tension given in litteratureT * Method Surface tension γ Reference

	0.80	MC	0.405 ± 0.003	Trokhymchuk et al. 28
	0.80	MD	0.408 ± 0.018	Trokhymchuk et al. 28
	0.80	MD	0.39 ± 0.01	Nijmeijer et al. 24
	0.80	MD	0.388 ± 0.004	Haye and Bruin 27
	0.80	MD	0.39 ± 0.02	

Table 3 :

 3 Simulations values to calculate Ψ(θ m ).

	τ homo	∆p 0	Ψ
	131.7447 0.5808	1.0000
	τ hete	∆p	Ψ
	123.2211 0.6004 1.0459 ± 0.0736
	327.2889 0.5103 0.9953 ± 0.0279
	465.8154 0.4694 0.9159 ± 0.0561
	613.7895 0.4155 0.7621 ± 0.0542
	699.0540 0.3561 0.5754 ± 0.0601
	602.7879 0.2936 0.3791 ± 0.0877
	477.5800 0.2547 0.2711 ± 0.0464

Acknowledgement

This study was supported by the "Agence Nationale de la Recherche" (Young researcher project, CAVISOFT : ANR-10-JCJC-0407), by the CNRS (Centre Nationale de la Recherche Scientique, INP institute) and the Region PACA (Region Provence Alpes Cote d'Azur).

This work was granted access to the HPC and visualization resources of ?Centre de Calcul Interactif? hosted by ?Université Côte d?Azur?.