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Abstract: This paper concerns the problem of attitude/altitude control of a quadrotor. The main contribution consists
of developing a simple Linear Parameter Varying (LPV) model which includes the motor dynamics, weight, and moment
of inertia variations. In addition, a robust LPV H∞ state-feedback controller is proposed. It allows us to perform both a
reference trajectory tracking and disturbance rejection for attitude/altitude control of a mass-varying quadcopter. First, an
augmented state which includes the integration of the trajectory errors for improving tracking control is computed. Next,
to penalize the control inputs of the attitude/altitude system, weight functions are also added to the previous augmented
system. Then, an H∞ state-feedback controller is designed by solving a set of Linear Matrix Inequalities (LMI) obtained
from the Bounded Real Lemma and LMI region characterization. Simulations are conducted for several types of distur-
bances (sine, impulse, step, and random) and variations (slow and abrupt) of mass and moments of inertia. The reference
path (sine, impulse, and step) is well-followed showing the ability of the design method to handle different performance
objectives.

Keywords: Quadcopter, Linear Parameter Varying (LPV), Takagi-Sugeno (TS), Linear Matrix Inequality (LMI), State-
feedback controller.

1. INTRODUCTION

Unmanned aerial vehicles are a really important device
used to perform predefined or autonomous tasks in a dan-
gerous and/or inaccessible environment, such as indus-
trial inspection of solar parks, wind parks, power lines,
engines and plants, and industrial parks, bridge inspec-
tion, visual structure assessment and monitoring, inspec-
tion and survey of structures, etc. Thanks to their wide
applicability, they have been seriously researched and de-
veloped. To correctly perform the assigned tasks, it is re-
quired to design the vertical takeoff and landing (VTOL)-
UAV which is highly maneuverable and extremely sta-
ble. To perform the movement in space, the position
of the UAV is mostly manually controlled by an opera-
tor through a remote-control system using visual feed-
back from an on-board camera, during which time the
UAV’s attitude/altitude is automatically stabilized by an
on-board controller.

Attitude/Altitude controller design is an important task
since it equips the UAV with the ability to maintain the
desired orientation, altitude, and to prevent the vehicle
from flipping over and colliding with the surrounding en-
vironment when the pilot performs the desired maneu-
vers. The attitude control problem for UAV has been
studied by numerous researchers and several controllers
have been proposed and applied. In [1], a robust adap-
tive tracking controller for the attitude of a quadcopter is
presented by designing an adaptive law to estimate the
inertia matrix of the vehicle. The algorithm can also be
extended to a general class of unstructured disturbances.
In [2][3][4] a robust nonlinear controller is applied by a
combination of backstepping technique and sliding mode
control methods to enhance the tracking performance
of the attitude and position of a quadrotor UAV under

bounded uncertainties and time-varying perturbations. In
[5], the problem of attitude and altitude control was ad-
dressed. An error model simplifies the problem and a
LPV controller has been proposed under the form of a
state feedback.

The mass and moments of inertia of UAVs are impor-
tant constraints to take into account in applications for
spraying pesticides, the mass and moments of inertia of
flying equipment may vary slowly over time. Meanwhile,
in goods transportation, the mass and moments of iner-
tia of aircraft may/often/typically change abruptly. Mass
variation implies changes in moments of inertia. Because
of the changes of the quadcopter’s parameter (mass and
moments of inertia), the dynamic model of the quad-
copter is also varying.

The aim of this paper is to propose a simple design
procedure of LPV state feedback for the attitude/altitude
stabilization problem of the mass-varying quadrotor air-
craft. In our context, the main objective of the state feed-
back synthesis is to handle the mass, moments of iner-
tia and rotors velocity variations which are assumed to
be measured. This is achieved using a LPV formalism
which allows to obtain a Takagi-Sugeno model with six-
teen sub-models depending on the extremal values of the
varying parameters. The controller is then synthesized on
the basis of a sixteen-sub-models system.

The remainder of the paper is organized as follows:
Section 2 presents the dynamical model of the quadcopter
and some preliminary concepts for designing the objec-
tive of the multi-objective controller. Section 3 is dedi-
cated for designing the LPV state feedback controller for
the attitude/altitude of the quadcopter. The controller is
practically synthesized in section 4, while simulation re-
sults are presented in section 5. Finally conclusions and



some future work proposals wrap up the paper.
Notation: The notations in this paper are fairly stan-

dard. The notation X � 0(X ≺ 0) where X is symmet-
ric matrix, denotes that X is positive (negative) definite.
He [X ] is hermitian operator defined as He [X ] :=X +XT .
The symbol (∗)T generically denotes each of its symmet-
ric blocks. The N-unit simplex, denoted by ΛN , is defined

as the set ΛN =

{
χ ∈ RN

≥0 :
N
∑

i=1
χi = 1

}
. The set of posi-

tive definite matrix is denoted as Sn
�0.

2. SYSTEM MODEL AND PROBLEM
STATEMENT

This paper aims to develop a state feedback controller
for a quadcopter. The vehicle has six degrees of freedom
for a quadcopter and only four actuators. It is thus under-
actuated.

2.1 Quadrotor model
A quadcopter is a helicopter which consists of a rigid

cross frame equipped with four rotors as shown in Fig.
1. Its four rotors generate four independent thrusts. In
order to avoid the yaw drift due to the reactive torques,
the quadrotor aircraft is configured such that the set of
rotors M2,M4 (left-right) revolve clockwise (CW) at an-
gular speeds ω2 and ω4, respectively generating thrusts
of τ2 and τ4, while the pair of rotors M1,M3 (front-
rear) rotates at angular speeds ω1 and ω3 in counter-
clockwise (CCW) direction generating thrusts of τ1 and
τ3. The direction of rotation of the rotors are fixed (i.e.,
ωi ≥ 0, i ∈ {1,2,3,4}). The forward/backward, left/right
and the yaw motions are achieved through a differential
control strategy of the thrust generated by each rotor.

If a yaw motion is desired, the thrust of one set of ro-
tors has to be reduced and the thrust of the other set are
increased while maintaining the same total thrust to avoid
an up (down) motion. Therefore, the yaw motion is then
realized in the direction of the induced reactive torque.
Besides, forward (backward) motion is achieved by pitch-
ing in the desired direction by increasing the rear (front)
rotor thrust and decreasing the front (rear) rotor thrust to
maintain the total thrust. Finally, a sideways motion is
achieved by rolling in the desired direction by increasing
the left (right) rotor thrust and decreasing the right (left)
rotor thrust to maintain the total thrust.

Let I =
{

ex,ey,ez
}

denotes an inertial frame, and A =
{e1,e2,e3} denotes a frame rigidly attached to the aircraft
as shown in Fig. 1.

The mathematical model of the quadcopter was gen-
erated by the techniques of both Euler-Newton [6] and
Euler-Lagrange [7], given as follows:

ẍc = (sinψ sinϕ + cosψ sinθ cosϕ) U1
m

ÿc = (sinψ sinθ cosϕ− cosψ sinϕ) U1
m

z̈c = (cosθ cosϕ) U1
m −g

ϕ̈ =
Iy−Iz

Ix
θ̇ ψ̇− JrΩr

Ix
θ̇ + l

Ix
U2

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇ + JrΩr
Iy

ϕ̇ + l
Iy

U3

ψ̈ =
Ix−Iy

Iz
ϕ̇θ̇ + 1

Iz
U4

(1)

where m denotes the mass the of the quadcopter,
(xc,yc,zc) are the three positions of the center of mass,
(ϕ,θ ,ψ) are the three Euler angles, Ix, Iy, and Iz are the
moments of inertia w.r.t the three axis x, y, and z respec-
tively; Jr is the moment of inertia of the propellers, l rep-
resents the distance from the rotors to the center of mass
of the quadrotor aircraft. Ωr is the overall residual pro-
peller angular speed. The quadcopter’s inputs are: the
thrust force (U1), three torques (roll torque (U2), pitch
torque (U3), and yaw torque (U4)). The force and torques
are related on the rotor speed as follows:

U1 = k f
(
ω2

1 +ω2
2 +ω2

3 +ω2
4
)
=

4
∑

i=1
Ti

U2 = k f
(
ω2

4 −ω2
2
)
= T4−T2

U3 = k f
(
ω2

3 −ω2
1
)
= T3−T1

U4 = kz
(
−ω2

1 +ω2
2 −ω2

3 +ω2
4
)

= (T2 +T4)− (T1 +T3)

(2)

and

Ωr = ω1−ω2 +ω3−ω4 (3)

where ωi for i = 1,2,3,4 denotes the i-th rotor velocity,
and Ti for i = 1,2,3,4 are the thrust generated by the i-th
rotor and the thrust Ti (t) is a function of the rotor speed
defined by

Ti (t) = k f ω
2
i (4)

where k f is the constant coefficient.
The first three equations of the system differential

equations in (1) denote the translational movement, while
the last three present the rotational movement of the quad-
copter. We restrict the purpose of the paper to the attitude
tracking. Thus, the equations related to the longitudinal
and lateral motions of the quadcopter in (1) are removed.

2.2 Actuator model
Adopting an actuator model has twofold. First of them

is to reflect the low pass filtering of each actuator with
a time constant κi, i = 1,2,3,4. The second allows us to
prevent the B matrix of the obtained state-space represen-
tation to be parameter dependent. Each actuator thrust
Laplace transform is given by

Ti (s) =
Ki

1+κis
Vi (s) , i = 1,2,3,4 (5)

Ti is the Laplace transform of the thrust Ti (t), Vi is the
pulse width modulation (PWM) voltage applied to rotor
i, and Ki is the armature gain.

The corresponding differential equation is

Ṫi =−
1
κi

Ti +
Ki

κi
Vi (6)

Remark 1: Based on the PWM applied to each rotor,
the rotor speed ωi can be estimated. Thus, the residual
speed Ωr = ω2 +ω4−ω1−ω3 can also be estimated.



2.3 Simplified model
The previous model still exhibits too many parameters

and its polytopic representation will involve at least 26

sub-models. If one considers control synthesis using LMI
methods, the solvability of the resulting LMI conditions
in this case is quite compromised due to conservativeness
of conditions which will request the common stabiliza-
tion of a huge number of sub-models. In order to reduce
this number, we adopt here a simplified model. In partic-
ular, suppose that Ix = Iy and ϕ and θ are small so that
cosϕcosθ ≈ 1.

We also assume that the attitude/altitude subsystem of
the quadcopter is affected by torques dϕ , dθ , dψ , and force
dz allowing to write:

ϕ̈ = − JrΩr
Ix

θ̇ + l
Ix
(T4−T2)+

1
Ix

dϕ

θ̈ = JrΩr
Ix

ϕ̇ + l
Ix
(T3−T1)+

1
Ix

dθ

ψ̈ = (T4+T2)−(T3+T1)
Iz

+ 1
Iz

dψ

z̈c = T1+T2+T3+T4
m + 1

m dz−g

(7)

Note that g is also the disturbance to the system. Then the
disturbances can be written in the vector form as d (t) =[

dϕ dθ dψ dz g
]T .

Then, the LPV model of attitude/altitude sub-system
in (1) is performed as:

ẋ(t) = A(Ix, Iz,Ωr,m)x(t)+B(Ix, Iz,Ωr,m)u(t)
+E (Ix, Iz,Ωr,m)d (t) (8)

where state x =
(
ϕ,θ ,ψ,zc, ϕ̇, θ̇ , ψ̇, żc,T1,T2,T3,T4

)T

has twelve components, the control input vector is com-
posed of the four motor voltages u = (v1,v2,v3,v4)

T , and
the system matrices A(Ix, Iz,Ωr,m), B(Ix, Iz,Ωr,m), and
E (Ix, Iz,Ωr,m) are

A(Ix, Iz,Ωr,m) =
[

A11 A12 A13
]

B(Ix, Iz,Ωr,m) =

[
09×3
B∗

]
E (Ix, Iz,Ωr,m) =

 04×5
E∗

04×5


where

A11 = [012×4]

A12 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 Ix−Iz

Ix
ψ̇− Jr

Ix
Ωr 0 0

− Ix−Iz
Ix

ψ̇ + Jr
Ix

Ωr 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



A13 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −l/Ix 0 l/Ix
−l/Ix 0 l/Ix 0
−l/Iz l/Iz −l/Iz l/Iz
1/m 1/m 1/m 1/m
−1/κ1 0 0 0

0 −1/κ2 0 0
0 0 −1/κ3 0
0 0 0 −1/κ4



B∗ =


K1/κ1 0 0 0

0 K2/κ2 0 0
0 0 K3/κ3 0
0 0 0 K4/κ4



E∗ =


1/Ix 0 0 0 0

0 1/Ix 0 0 0
0 0 1/Iz 0 0
0 0 0 1/m −1


Note that, as described above, the system matrix B is time
invariant.

The main objective of the control design procedure
is to synthesize a state feedback controller that could be
scheduled according to mass, moment of inertias and ro-
tor speeds variations. As it can be seen from the sim-
plified quadrotor model, it is linear in all the parameters.
One can thus obtain a LPV model depending on four pa-
rameters, the moment of inertia with respect to x axis Ix ∈[

Ix Ix
]

, the moment of inertia with respect to z axis
Iz ∈

[
Iz Iz

]
, the residual velocity Ωr ∈

[
Ωr Ωr

]
,

and the mass m ∈
[

m m
]

of the quadcopter.
Thus a Takagi-Sugeno (TS) model with sixteen sub-

models could be obtained depending on the extremal val-
ues of the parameters. This representation is called non-
linear sector approximation [8]. In fact, if we define the
varying parameters as follows

ρ1 =
1
Ix
∈
[

1
Ix

1
Ix

]
=
[

ρ
1

ρ1
]

ρ2 =
1
Iz
∈
[

1
Iz

1
Iz

]
=
[

ρ
2

ρ2
]

ρ3 =
1
m ∈

[
1
m

1
m

]
=
[

ρ
3

ρ3
]

ρ4 =
Ix−Iz

Ix
ψ̇− Jr

Ix
Ωr ∈

[
ρ

4
ρ4
]

(9)

then a sixteen sub-models TS system is achieved

ẋ(t) =
16

∑
i=1

µi
(
Āix(t)+Bu(t)+ Ēid (t)

)
(10)

where µi ≥ 0,1≤ i≤ 16,∑16
1 µi = 1 and

µ1(ρ(t)) = m11m21m31m41; µ2(ρ(t)) = m11m21m31m42
µ3(ρ(t)) = m11m21m32m41; µ4(ρ(t)) = m11m21m32m42
µ5(ρ(t)) = m11m22m31m41; µ6(ρ(t)) = m11m22m31m42
µ7(ρ(t)) = m11m22m32m41; µ8(ρ(t)) = m11m22m32m42
µ9(ρ(t)) = m12m21m31m41; µ10(ρ(t)) = m12m21m31m42
µ11(ρ(t)) = m12m21m32m41; µ12(ρ(t)) = m12m21m32m42
µ13(ρ(t)) = m12m22m31m41; µ14(ρ(t)) = m12m22m31m42
µ15(ρ(t)) = m12m22m32m41; µ16(ρ(t)) = m12m22m32m42



with

m11(ρ(t)) =
ρ1−ρ1
ρ1−ρ1

, m12(ρ(t)) = 1−m11

m21(ρ(t)) =
ρ2−ρ2
ρ2−ρ2

, m22(ρ(t)) = 1−m21

m31(ρ(t)) =
ρ3−ρ3
ρ3−ρ3

, m32(ρ(t)) = 1−m31

m41(ρ(t)) =
ρ4−ρ4
ρ4−ρ4

, m42(ρ(t)) = 1−m41

The matrices Ai,1≤ i≤ 16 are obtained from

Ā1 = A
(

ρ
1
,ρ

2
,ρ

3
,ρ

4

)
; Ā2 = A

(
ρ

1
,ρ

2
,ρ

3
,ρ4

)
Ā3 = A

(
ρ

1
,ρ

2
,ρ3,ρ4

)
; Ā4 = A

(
ρ

1
,ρ

2
,ρ3,ρ4

)
Ā5 = A

(
ρ

1
,ρ2,ρ3

,ρ
4

)
; Ā6 = A

(
ρ

1
,ρ2,ρ3

,ρ4

)
Ā7 = A

(
ρ

1
,ρ2,ρ3,ρ4

)
; Ā8 = A

(
ρ

1
,ρ2,ρ3,ρ4

)
Ā9 = A

(
ρ1,ρ2

,ρ
3
,ρ

4

)
; Ā10 = A

(
ρ1,ρ2

,ρ
3
,ρ4

)
Ā11 = A

(
ρ1,ρ2

,ρ3,ρ4

)
; Ā12 = A

(
ρ1,ρ2

,ρ3,ρ4

)
Ā13 = A

(
ρ1,ρ2,ρ3

,ρ
4

)
; Ā14 = A

(
ρ1,ρ2,ρ3

,ρ4

)
Ā15 = A

(
ρ1,ρ2,ρ3,ρ4

)
; Ā16 = A(ρ1,ρ2,ρ3,ρ4)

(11)

The output vector y =
[

ϕ θ ψ z
]T is constituted

by the quadrotor attitude/altitude position which are ob-
tained from

y =Cx+Du (12)

where C =
[

I4×4 04×8
]

and D = [04×4]

Fig. 1 Quadcopter

P(s)

K
u x

w z

Fig. 2 Control structure

Remark 2: Suppose the quadcopter is attached with n
objects o1, ...,on, and the mass of quadcopter and objects
are mq, mo1 , ...,mon respectively. Therefore, the mass of
the system consists of the quadcopter and n objects can
be easily calculated by the equation m = mq +mo1 + ...+
mon . When oi - the i-th object is detached from the quad-
copter for i = n, ...,1, the remaining mass of the system
can be recalculated.

Depending on the mass and shape of each object, ones
can calculate its moments of inertia around the axes pass-
ing through its center of mass. When attaching these ob-
jects to the quadcopter, based on their shapes and posi-
tions with respect to the center of gravity G of the quad-
copter, their the moments of inertia with respect to the
three axes Ix, Iy, Iz of the quadcopter can be calculated.
Thus the moment of inertia of the system which contains
quadcopter and n objects o1, ...,on relative to Ix, Iy, Iz can
be calculated.

Another online approach to estimate the geometric and
inertia parameters of a multirotor aerial vehicle is already
developed in [9].

Remark 3: From Remarks 1 and 2 one can see that all
the varying parameters can be estimated in real time.

2.4 Preliminary concepts
Suppose the polytopic LPV system is of the form

ẋ(t) = A(ρ (t))x(t)+B1 (ρ (t))w(t)+B2u(t)
z(t) =C (ρ (t))x(t)+D11 (t)w(t)+D12u(t)
x(0) = x0

(13)

where x ∈ Rn is the system state, u ∈ Rm is the control in-
put, w ∈ Rp is the exogenous input, and z ∈ Rq is the con-
trolled output. The ρ-parameter dependent system matri-
ces is defined as

A(ρ(t)) =
N
∑

i=1
µi(ρ(t))Ai; B1(ρ(t)) =

N
∑

i=1
µi(ρ(t))B1i

C1(ρ(t)) =
N
∑

i=1
µi(ρ(t))C1i ;D11(ρ(t)) =

N
∑

i=1
µi(ρ(t))D11i

while B2 and D12 are constant matrices.
The purpose of this section is to design a LPV state-

feedback control law

u(t) =
N

∑
i=1

Kix(t) (14)

such that:
• The H∞ norm of the system (13) from w to z (as de-
picted in Fig. 2) is guaranteed to be smaller than some
predefined value γ > 0 for tracking and disturbance re-
jection (robustness). This condition is guaranteed by the
following Theorem 1 below
• Closed loop poles are placed in a predefined LMI re-
gion [11] for ensuring the ability of fast and well-damped
transient response. The closed-loop poles satisfy the con-
dition Re

(
eig
(
A+B2Y X−1

))
<−α for α > 0

Re
(
eig
(
A+B2Y X−1

))
<−α, α > 0 ⇔

∃X = XT � 0
s.t 2αX +He(AiX +B2Yi)≺ 0, i = 1, ...,N

(15)

Theorem 1: (Theorem 3.4.1 in [10]) The LPV
system (13) is quadratically stabilizable using a state-
feedback of the form (14) if there exist a matrix X ∈ Sn

�0,
matrices Yi ∈ m×n, i= 1, ...,N, and a scalar γ > 0 such that
the LMIs He(AiX +B2Yi) (∗)T (∗)T

Ei
T −γIp (∗)T

CiX +D12Yi D11i −γIq

≺ 0 (16)

hold for all i= 1, ...,N. Moreover, the state-feedback con-
trol law given by (14) with the matrices Ki = YiX−1 en-
sures that the L2-gain of the transfer w→ z is smaller than
γ > 0 for all µ : R≥0→ ΛN . �

Then the state-feedback control law given by (14)
with the matrices Ki = YiX−1 satisfy Theorem 1 and
equation (15) ensures that the L2-gain of the transfer
w → z is smaller than γ > 0 for all µ : R≥0 → ΛN
and the poles of the close loop system satisfy condition
Re
(
eig
(
A+B2Y X−1

))
<−α, α > 0.



3. LPV ATTITUDE STATE FEEDBACK
CONTROLLER DESIGN

In this section, we aim to design a H∞ LPV feedback
control scheme for the attitude/altitude stabilization of the
quadrotor aircraft.

First, the output y =
[

ϕ θ ψ zc
]T of the sys-

tem must track r =
[

ϕre f θre f ψre f zre f
]T , a ref-

erence trajectory . Therefore, to achieve these objectives,
the outputs of the integrator are considered as extra state
variables xe =

[
xϕ xθ xψ xz

]T as

xϕ =
t∫

0
eϕ (δ )dδ , eϕ = ϕre f −ϕ

xθ =
t∫

0
eθ (δ )dδ , eθ = θre f −θ

xψ =
t∫

0
eψ (δ )dδ , eψ = ψre f −ψ

xz =
t∫

0
ez (δ )dδ , ez = zre f − zc

(17)

Define the error signal e = y− r. The error signal e can
be rewritten in the matrix form as

e = y− r =Cx− I4r (18)

Second, for penalizing the outputs U1,U2,U3,U4 of the
system, the weight functions Wui , i= 1,2,3,4 are added to
the system as depicted in Fig (3). The system matrices of
weight functions Wui , i = 1,2,3,4 are Aui , Bui , Cui , and
Dui .

Then, the dynamic of the all the weight functions Wu1 ,
Wu2 , Wu3 and Wu4 can be constituted as{

ẋu = Auxu +Buu
yu = Cuxu +Duu (19)

where xu =
[

xu1 xu2 xu3 xu4

]T is the state, u =[
U1 U2 U3 U4

]T represents the input, yu =[
z1 z2 z3 z4

]T is the outputs of weight functions,
and the system matrices of the weight function in (19) can
be deducted as follows:

∆u =


∆u1 0 0 0
0 ∆u2 0 0
0 0 ∆u3 0
0 0 0 ∆u4

 , ∆ ∈ {A,B,C,D}

.
The augmented system with the new states, weight

functions is depicted in Fig. 3.
Define w =

[
r d

]T , z =
[

yu e
]T , and x̃ =[

x xe xu
]T respectively as the exogenous input,

exogenous output, and state of the augmented affine
parameter-dependent. The affine parameter-dependent of
the system differential equations in (8) with augmented
states and weight functions can be regathered from (8),
(12), (18), and (19) as follows: ˙̃x =

16
∑

i=1
µi
(
Ãix̃+ B̃1iw+ B̃2u

)
z = C1x̃+D11w+D12u

(20)

where

Ãi =

 Ai 0 0
−C 0 0
0 0 Au

 ; B̃1i =

 0 E i
−I4 0

0 0


B̃2 =

 Bi
0

Bu

 ;C1 =

[
0 0 Cu
C 0 0

]
D11 =

[
0 0
−I4 0

]
;D12 =

[
Du
0

]
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Fig. 3 Block diagram of the attitude robust controller
with augmented states and weight functions

The aim now is to design the LPV H∞ optimal state-
feedback controller of the form

u(t) =

(
16

∑
i=1

µiKi

)
x̃(t) (21)

making the closed-loop system

˙̃x(t) =
16

∑
i=1

µi
((

Ãi + B̃2Ki
)

x̃(t)+ B̃1iw
)

(22)

robustly asymptotically stable.
Define the LMIs for H∞ optimal state-feedback con-

troller for all TS sub model with common matrix X and
each Yi for each TS sub model based on Theorem 1 and



poles location conditions in (15) as

minimize
γ,X ,Y1,...,Y16

γ

subject to

X = XT � 0 He
(
AiX +B2Yi

)
(∗)T (∗)T

BT
1i

−γI (∗)T

C1iX +D12Yi D11i −γI

≺ 0

He
(
AiX +B2Yi

)
+2αX ≺ 0; i = 1..16

(23)

By solving the LMIs in (23), the optimal H∞ state feed-
back controller with the smallest attenuation level γ > 0
for the attitude/altitude sub system of the mass-varying
quadcopter can be formulated as

K (ρ) =
16

∑
i=1

µiYiX−1 (24)

4. PRACTICAL CONTROLLER DESIGN
We consider Takagi-Sugeno model where the mass

varies in the interval interval [m,m] with m = 1.12(kg)
and m = 2.0(kg). The moments of inertia Ix = Iy
varies in the interval

[
Ix, Ix

]
with Ix = 0.0119

(
kg.m2

)
and Ix = 0.0142

(
kg.m2

)
. The moments of inertia Iz

varies in the interval
[
Iz, Iz

]
with Iz = 0.0223

(
kg.m2

)
and

Iz = 0.0267
(
kg.m2

)
. The total residual angular speed

Ωr of motors varies in the interval
[
Ωr,Ωr

]
with Ωr =

−1000
[
rad · s−1

]
and Ωr = 1000

[
rad · s−1

]
. The con-

troller is designed using the procedure developed above.
The quadcopter parameters for simulation are listed in

the following table (Fig. 1). Based on the quadcopter’s

Table 1 Quadcopter parameters definition

Par. Name Value Unit
m Quad. mass 2.0 Kg
l Arm length 0.23 m
Ix, Iy Inertia vs x, y 0.0142 Kg.m2

Iz Inertia vs z 0.0267 Kg.m2

Jr Rotor inertia 8.5×10−4 Kg.m2

ωi Rotor speed [0,500] rad/s
κi Rotor time const 15 rad/s
g Gravity accel. 9.81 m/s2

parameters in Table 1, and the definition of varying pa-
rameters in subsections 2.3, the ranges of varying param-
eters are shown in the Table 2.

5. TESTING SCENARIO
In simulations, the mass of the quadcopter is vary-

ing abruptly between 5s and 25s from 2(kg) to 1.12(kg).
Along with the quadcopter’s mass variation, the moments
of inertia Ix, Iy, Iz for Ix = Iy ∈

[
0.0119 0.0142

]
, and

Iz ∈
[

0.0223 0.0267
][

kg ·m2
]

also abruptly change
as in Fig. 4. Fig. 5 shows the responses of ϕ , θ , ψ and
z when the reference signals are impulses and the distur-
bances dϕ , dθ , dψ , and dz are impulses. Fig. 6 shows the

Table 2 Variation ranges of varying parameters

ρ
i
, i = 1,2,3,4 ρ i, i = 1,2,3,4

ρ1 47.09580 84.0336
ρ2 35.84230 44.8430
ρ3 0.5000 0.89290
ρ4 -74.1176 74.1176

responses of ϕ , θ , ψ and z when the reference signals are
random, the z reference signal is impulse, and the distur-
bances dϕ , dθ , dψ , and dz are random. Fig. 7 shows the
responses of ϕ , θ , ψ when the reference signals φ ,θ ,ψ
are, the z reference signal is step, and the disturbances dϕ ,
dθ , dψ , and dz are also sine.

The simulation results suggest that the proposed con-
troller works well for various reference signals (impulse,
random, constant, and sine) and several types of distur-
bances (impulse, random, constant, and sine).

The same simulations for gradual variation of mass
are also conducted, the reference paths are also well-
followed.
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Fig. 4 Variations of Mass, Ix, Iy, and Iz

0 5 10 15 20 25 30

-5

0

5

0 5 10 15 20 25 30

0

10

20

30

0 5 10 15 20 25 30

0

10

20

30

0 5 10 15 20 25 30

0

10

20

30

0 5 10 15 20 25 30

time(s)

0

0.5

1

1.5

Fig. 5 Impulse references ϕ , θ , ψ , impulse reference z,
and impulse disturbances dϕ , dθ , dψ , dz
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Fig. 6 Random references ϕ , θ , ψ , impulse reference z,
and random disturbances dϕ , dθ , dψ , dz

6. CONCLUSION
This paper addresses the problem of attitude/altitude

control of a quadcopter UAV. The focus is on handling
mass, moments of inertia variation of the UAV according
to the specific application of transporting different device
types. By adding some additional state and weight func-
tions, the linear parameter-dependent system is gathered.
Thus the problem of reference tracking is formulated as
H∞ state feedback. It is solved using the LMI conditions
framework. The obtained controller is found to be able to
follow the prescribed trajectory with a high level of per-
formance even under disturbances and variations of dy-
namic parameters.

Future works concern the observer-based controller for
a mass-varying quadcopter.
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