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A B S T R A C T   

The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain is present in an evolutionarily conserved family of 
proteins that regulate a myriad of signaling pathways in archaea, bacteria and eukaryotes. The most studied 
SPFH proteins, prohibitins, have already been targeted by different families of small molecules to induce an-
ticancer, cardioprotective, anti-inflammatory, antiviral, and antiosteoporotic activities. Ligands of other SPFH 
proteins have also been identified and shown to act as anesthetics, anti-allodynia, anticancer, and anti-in-
flammatory agents. These findings indicate that modulators of human or bacterial SPFH proteins can be de-
veloped to treat a wide variety of human disorders.   

Introduction 

The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain, also 
known as the prohibitin homology (PHB) domain or Band-7 domain, is 
composed of an approximatively 200-amino acid motif of ancient 
origin. This domain is found in archaeal, bacterial and eukaryotic 
proteins.1,2 Based on their homology, these proteins are classified as 
prohibitins, flotillins (or Reggie), flotillin-likes, stomatins, erlins, po-
docins, HflKs, and HflCs. Most of the SPFH proteins shuttle between 
several cellular compartments based on their post-translational mod-
ification. They usually regulate a myriad of signaling proteins, in-
cluding kinases, membrane receptors, channel complexes, AAA pro-
teases, transcription factors, transcriptional coactivators and inhibitors, 
actin, myosin, tubulins and small GTPases.3–6 

Prohibitins (PHBs) are highly conserved proteins present in archaea, 
bacteria and every eukaryotes. Phylogenetic analyses indicate that 
PHBs can be divided into two types based on their relation with yeast 
PHB1 and PHB2. In animals and the cyanobacteria Synechocystis sp. for 
instance, only two isoforms, PHB1 and PHB2, are present, whereas the 
plants Arabidopsis thaliana and Oryza sativa contain respectively seven 
and four PHB isoforms. Several classes of mammalian PHB ligands have 
been discovered and shown to display diverse profiles of pharmacolo-
gical activities, suggesting that they stabilize different conformations of 
PHBs.7 The most studied class of PHB ligands are natural compounds 

called flavaglines found in trees used in traditional Chinese medicine. 
Most of the other types of PHBs ligands are small synthetic molecules 
identified in phenotypic screenings. 

Considering that the genetic inactivation of PHBs induce mi-
tochondrial dysfunctions leading to apoptosis, PHB ligands represent 
invaluable tools to unravel the role of PHBs in physiology in addition to 
their therapeutic potential. 

Prohibitins-1 or 2 (PHB1/2) are targeted by several classes of 
compounds, but some drugs targeting flotillins, STOML3, and unc-1 
have also been discovered (Fig. 1). 

Prohibitins and their ligands 

Overview of the function of prohibitins 

PHB1 and PHB2 undergo more than 70 different post-translational 
modifications that regulate the interaction with their partner proteins 
and their cellular localization in the plasma membrane, mitochondria, 
endoplasmic reticulum, peroxisomes, the cytosol or the nucleus.8 PHBs 
are also directly regulated by two second messengers, phosphatidyli-
nositol 3,4,5-triphosphate (PIP3) and sphingosine-1-phosphate.9,10 In 
addition, PHBs can also bind to DNA8,11 and long non-coding RNA.12 

PHBs interact with a multitude of signaling proteins, such as the 
kinases C-RAF (RAF1), Akt, IKK, MLK2, AMPK, the phosphatase Shp1/ 
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2, the scaffold proteins 14-3-3 and BIG3, histone deacetylases, the 
histone N-methyltransferase EZH2, the transcription factors STAT3, 
E2F, p53, HES1, RNF2, Rb, and the estrogen receptor to cite few ex-
amples.7 

Flavaglines as PHB ligands 

The most studied PHB ligands are complex natural ompounds called 
flavaglines (Fig. 1)13 that both induce the death of cancer cells and 
promote the survival of non-cancer cells toward various types of 
stresses. In addition to their effect on PHB signaling, flavaglines also 
inhibit the initiation factor of translation eIF4A to induce anticancer, 
antiviral and neuroprotectant effects.14 Therein, we will comment only 
on the effects that were demonstrated to be due to an action on PHBs. 
These anticancer drugs block the PHB-dependent activation of both C- 
RAF (Raf-1) and KRAS downstream of tyrosine kinase receptors.15–17 

This effect is determinant to their in vivo antitumor efficacy in several 
murine models of cancers (Fig. 3). Flavaglines also directly inhibit the 
interaction between PHB2 and the protease PARL, leading to an in-
hibition of mitophagy in cancer cells.18 They also inhibit the signaling 
of Wnt and NF-κB,19–21 and activate the signaling of p38 MAP kinase, 
the TRPM6 channel and GADD45α to promote the death of cancer 
cells.22–24 

In addition to their potent anticancer effects, flavaglines protect the 
heart of mice against the severe toxicity of widely used chemother-
apeutic agents, such as doxorubicin, through the activation of mi-
tochondrial STAT3 and the small heat shock protein Hsp27 in cardiac 
cells.25,26 Flavaglines also reduce the inflammation and, at the same 
time, protect the intestinal epithelial cells against the inflammatory 
stress in a mouse model of inflammatory bowel disease.27 In line with 
these studies, a flavagline developed by the pharmaceutical company 
Bayer exhibits anti-inflammatory and neuroprotectant properties in 
mouse models of Parkinson's disease and traumatic brain injury.28 

The viruses responsible for chronic hepatitis C, Chikungunya, hand- 
foot-and-mouth disease and probably COVID-19 use PHBs for viral re-
plication and/or internalization. Noteworthy, these events have been 
shown to be blocked by flavaglines.29–33 

Other families of PHB ligands 

Fluorizoline, a PHB ligand with a very different structure, was 
shown to be cytotoxic to cancer cells by inducing a fragmentation of 
mitochondria,34 inhibiting RAS-induced C-RAF activation,16 and trig-
gering a calcium influx leading to the phosphorylation of two key fac-
tors regulating protein synthesis, initiation factor 2 (eIF2) and elonga-
tion factor 2 (eEF2).35 Unfortunately, this compound is not active in 
vivo, probably because of a poor bioavailability.36 

Melanogenin derivatives are perfluorophenoxytriazines that bind to 
PHBs to induce the biosynthesis of melanin through a pathway that 
involves PHBs, the autophagic factor LC3, the kinase ERK and the 
transcription factor MITF.37 

Chang and collaborators have identified some sulfonyl- and phos-
phoryl-amidines that block in vitro and in vivo the differentiation of pre- 
osteoclasts into osteoclasts for the treatment of osteoporosis. They 
identified PHB1 as the molecular target of these compounds. Similarly 
to flavaglines these compounds are also able to block the PHB-depen-
dent entry of Chikungunya virus into microglial cells,31 indicating that 
they may display some pharmacological effects unrelated to osteo-
clastogenesis. 

Qadri and collaborators discovered that the Vi capsular poly-
saccharide (Vi) of Salmonella typhi suppresses the immune response 
during the initial stages of typhoid fever infection through its binding to 
cell surface PHBs. This binding inhibits ERK activity signaling and in-
terleukin-8 secretion in human intestinal epithelial cells.38 Vi also 
blocks the GTPases Rac1 and Cdc42, NF-κB signaling, ERK pathways 
and actin cytoskeletal rearrangements in monocytes and T-cells to 

Fig. 1. Representative examples of SPFH proteins ligands.  
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suppress the immune response.39 

K. Rajalingam and collaborators took advantage of this im-
munosuppressive activity to propose a new therapeutic strategy against 
multiple sclerosis.40 Indeed, they found that Vi alleviates symptoms in a 
mouse model of this disease. They also showed that Vi blocks C-RAF 
activation in T helper 17 cells that express PHB1 at the cell surface. 

Spirooxindoles are another class of PHB ligands that can protect 
cardiomyocytes against the adverse effects of the anticancer medicine 
doxorubicin.41 Similarly to flavaglines, they induce the phosphoryla-
tion of STAT3 and its translocation to mitochondria to promote cell 
survival. 

The adenine derivative PDD005 is a PHB ligand that rescues cog-
nitive deficits associated with aging in mice.42 It also alleviates neu-
rogenesis deficiency and inhibits neuro-inflammation, confirming PHBs 
as emerging therapeutic targets against neurodegenerative diseases. 

Flotillins 

Similarly to PHBs, flotillins exist as 2 isoforms, flotillin-1 and flo-
tillin-2, which are ubiquitously expressed scaffold proteins involved in 
various aspects of cell signaling, cytoskeleton remodeling, endocytosis, 
release of extracellular vesicles and protein trafficking.43 To fulfill these 
functions, they directly interact with several proteins, including the 
EGF receptor, the kinases Lyn, Fyn, Lck, cRAF, MEK1, ERK2, cRAF, 
MEK1/2, ERK1/2, KSR1 the small GTPases Gαq, Rab11, β-catenin, γ- 
catenin, E-cadherin, N-cadherin, the adaptor protein ArgBP2, the 
adapter protein SORBS1 /CAP/Ponsin, the E3 ubiquitin-protein ligase 
Cbl, α-actinin or F-actin. As far as we know, no small molecules tar-
geting flotillins has been discovered yet, but such agents could display 
interesting effects to treat several types of diseases, including cancers, 
immunological, cardiac and neurodegenerative disorders. 

Cofilin and their ligands, cucurbitacins 

Cofilin promotes actin filament turnover by stimulating depoly-
merization and severance of actin filaments.44 As such, it is involved in 
cancer cell survival, migration, and invasion. This scaffold protein is 
inactivated by LIM-kinases (LIMKs) and testicular protein kinases 
(TESKs), which are downstream of receptor tyrosine kinases, G protein- 
coupled receptors integrins and cadherin signaling pathways (Figure 4). 
Cofilin is reactivated by dephosphorylation by the slingshot (SSH) fa-
mily of protein phosphatases and chronophin. 

Cucurbitacin E is a tetracyclic triterpenoid cytotoxic in several 
cancer cell lines. Using an affinity chromatography approach, 
Yoshikawa and coworkers identified cofilin as the molecular target of 
this natural compound.45 Furthermore, Cucurbitacin E was shown to 
inhibit the phosphorylation of cofilin and the depolymerization of actin 
(Fig. 2B). Thereafter, Olsen and collaborators found that cucurbitacin E 
irreversibly alkylates cysteine residues of cofilin-1 as well as other 
proteins.46 

Cucurbitacin B, an analogue of cucurbitacin E, which also induces a 
rapid dephosphorylation of cofilin, was shown to rapidly translocate to 
mitochondria to induce apoptosis.47 Importantly, cucurbitacin B in-
hibited tumor growth in a murine model of multiple myeloma, without 
any apparent toxicity, suggesting that cofilin could represent a valuable 
target in oncology. 

Stomatin, stomatin-like proteins and their ligands 

The best characterized functions of the mammalian members of the 
stomatin family (stomatin, stomatin-like proteins and podocin) are re-
lated to the modulation of ion channel function. For instance, stomatin 
directly regulates the activity the glucose transporter type 1 (GLUT1) 
and members of the acid-sensing ion channel (ASIC) family. 

To characterize the mechanism of action of volatile anesthetics, 

such as halothane, Sedensky and Morgan screened C. elegans mutants 
that display an anomalous behavior to volatile anesthetics.48,49 Worms 
carrying a mutation of the stomatin homologues unc-1 and unc-24 
displayed abnormal locomotion and an impaired sensitivity to volatile 
anesthetics. Interestingly, these mutations affect residues localized in 
the SPFH domain, suggesting that volatile anesthetics act via stomatin 
in lipid rafts. 

Unc-1 plays a central role in the regulation of the anesthetic re-
sponse, while unc-24 controls the correct localization of unc-1. 
Subsequently, it has been shown that unc-1 physically interacts with a 
homolog of degenerin, which is a component of Acid-sensing ion 
channels (ASICs) and the degenerin/epithelial sodium channel (DEG/ 
ENaC) in human cells.50 Altogether, these studies suggest that the 
binding of volatile anesthetics to stomatin affects the activity of ASICs 
and DEG/ENaCs to induce their anesthetic effect. 

Similarly to PHBs, stomatin-like protein 3 (STOML3, also called 
SLP3) binds to cholesterol in lipid rafts where it is organized as oligo-
mers. In sensory cells specialized to detect small mechanical changes, 
STOML3 facilitates force transfer and regulates the sensitivity of me-
chano-gated channels Piezo 1 and 2 (Fig. 5).51 Recently, Gary Lewin 
and collaborators screened a library of small molecules for their ability 
to inhibit STOML3 self-association. They identified two compounds, 
OB-1 and OB-2 that reduce the sensitivity of mechanically gated cur-
rents in sensory neurons and block mechanoreceptors in vivo. Tactile 
allodynia is a neurological condition in which extreme pain can occur 
with a simple touch. Notably, OB-1 was able to completely abolish the 
tactile-evoked pain in a mouse model of allodynia. This drug also al-
leviated painful diabetic neuropathy induced by streptozotocin in mice. 
Thus, this impressive study paved the road for the development of new 
treatments against painful diabetic neuropathy and tactile allodynia. 

SPFH proteins as therapeutic targets against infectious diseases 

Flotillins are present in bacteria, archaea, and eukaryotes. Lopez 
and collaborators found that zaragozic acid, an inhibitor of squalene 
oxidase that affects the composition of lipid rafts, inhibits the oligo-
merization of the flotillin-homolog protein FloA, which is necessary for 
assembly of protein complexes involved in Staphylococcus aureus viru-
lence. Importantly, zaragozic acid could limit infections by multidrug- 
resistant S. aureus in mice.52 In line with this study, Manoil and colla-
borators found that mutation of the SPFH proteins HflK and HflC in-
creases the sensitivity of Pseudomonas aeruginosa toward the ami-
noglycoside tobramycin,53 confirming that SPFH proteins represent 
potential targets to develop novel antibiotics against pathogenic mul-
tidrug-resistant bacteria. 

Matz Kooji and collaborators discovered an unusual prohibitin-like 
protein (PHBL) in the murine malaria model parasite Plasmodium ber-
ghei.54 They demonstrated that this protein is essential for parasite 
colonization of the mosquito vector, suggesting that it may also offer 
some opportunities for the development of a novel class of antimalarial 
medicines. 

Conclusion 

SPFH proteins form a large family of ubiquitous proteins that reg-
ulate a myriad of signaling pathways, not only in humans and animals 
but also in infectious bacteria. Up to now, most of the drug targeting an 
SPFH protein act on PHB1 and PHB2, which are the most studied SPFH 
proteins. These compounds display some potential for the treatment of 
cancers, osteoporosis, inflammatory, cardiac, and neurodegenerative 
diseases. However, the recent discovery of ligands for other SPFH 
protein indicates that modulators of other SPFH proteins can be used to 
treat a wide variety of diseases, including bacterial infections and ma-
laria. 
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Fig. 2. Overview of PHB signaling. Post-translational modifications and endogenous ligands (sphingosine-1-phosphate, DNA and long noncoding RNA) control the 
localization of PHBs and their interactions with signaling proteins. 

Fig. 3. Overview of the mechanism of action of PHB ligands in cancer cells.  
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