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Abstract—Currently, the training in the lum-
bar epidural anesthesia procedure, a very common
procedure, is mainly performed on patients under the
supervision of experts. The reason for this situation is
that the simulators that exist on the market are not
realistic enough to efficiently learn this particularly
haptic-sense-based gesture. To avoid this ethical issue
and provide an efficient, repeatable, and affordable
way of safely learning this gesture, the Ampère labo-
ratory designed PeriSIM: a haptic training computer-
based simulator. In this article, the trainees’ skill
assessment is tackled. This work presents various
machine learning approaches to the evaluation of
trainees and introduces a complete skill assessment
algorithm to use in conjunction with the PeriSIM
simulator. This work also aims to determine the
important variables of an lumbar epidural anesthesia
procedure for objective assessment purpose.

I. Introduction

A. Medical context

Lumbar epidural anesthesia is a commonly used,
yet complex, medical gestures mainly performed dur-
ing childbirth delivery. To perform these gesture the
anesthetists use a Tuohy needle paired with a syringe
filled with a physiologic saline solution. The procedure
aims to get the needle tip into the epidural space. This
epidural space is located near the spinal cord in the
lumbar area. To reach this area, the needle has to be
inserted between two vertebrae as shown in Fig.1. To
precisely know the position of the needle tip, anesthetists
exert pressure on the plunger of the syringe. As the
injected fluid spreads differently according to the crossed
tissues, this technique provides decent haptic feedback
about the nature of the tissues located at the needle tip,
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Figure 1: Insertion of a Tuohy needle in the epidural
space

and thus the needle tip position. The latter sequentially
crosses the following physical layers: derma, supraspinous
ligament, intraspinous ligament, and ligamentum flavum.
It then reaches the epidural space. As it is filled with
fat and vessels, once the needle tip enters it, the fluid is
injected into effortlessly. The anesthetists then experience
what is called the Loss Of Resistance (LOR) principle.

The difficulty of the procedure lies in the fact that
it is performed blindly while the epidural space is only 4
to 6mm wide on average. When the needle goes too far,
it opens a breach in the dura mater which may lead to
medical complications. Moreover, the needle insertion
might require some force depending on the patient
anatomy. Thus, the lack of visual cues, the necessary
force level, and the required precision all contribute to
the strong difficulty of the procedure. It then results
in a long learning curve: studies indicate that up to
90 tries are required to reach 80% accuracy [1]. Moreover,
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a common statement from public institutes such as the
French H.A.S. [2] (Haute Autorité de la Santé) prescribes
to "never do the first time on a patient", stressing further
the need for a precise and reliable training mean for
students having to learn the gesture.

B. Simulation and skill assessment

The need for a reliable and precise training facility
for the lumbar epidural anesthesia has brought some
proposals such as the ones introduced by Manoharan
et al. [3], Magill et al. [4], Hiemenz et al. [5] or Thao
et al. [6]. Recent improvments of numeric technology
allows to develop more complete simulators. Some of
them are commercially available [7], [8] and others are
still in development or open-source [9], [10]. No epidural
simulator uses two technologies (haptic and pneumatic)
to simulate both tissue resistance and syringe loss of resis-
tance. The Ampère laboratory designed a simulator [11],
[12] featuring the simulation of the LOR principle with
a higher degree of precision than ever. Compared to the
commercial ones and ones found in the literature, our
simulator allows to train for needle insertion and LOR
principle at the same time, to reproduce different kind of
patients and to record different data (position, velocity,
acceleration, force, etc.) during the process. This paper
introduces results obtained with this simulator.

The main requirements for this simulator originate
from an article by Vaughan et al. [1] stating some of the
requirements of a "perfect" lumbar epidural simulator.
Among these, this article covers the need for an automatic
evaluation provided by the simulator. As this system is
dedicated to hands-on training, the objective evaluation
requirement is crucial. Usually, skill assessment tech-
niques aim to provide a reliable and objective indication
of the skills of a trainee. In the medical domain, one
can cite as "gold standard" the Objective Structured
Assessment of Technical Skills (OSATS) [13], [14] and
the Global Operative Assessment of Laparoscopic Skills
(GOALS) [15], [16] methods. Both have been tested
in various studies [17], [18]. The former is dedicated
to assessing skills in open surgery while the latter is
aimed at assessing skills during laparoscopic procedures.
Even though such evaluation scales are interesting, they
were developed for medical procedures and cannot take
advantage of the measurements that can be gathered
using a computer-based haptic simulator.

Regarding the evaluation of gestures through
measurements, several metrics can be highlighted. One of
the simplest metrics that is often used to assess skill may

be the Task Completion Time (TCT) [19]. It often high-
lights that a masterful gesture is completed far quicker
than a novice gesture. Regarding the metrics specific
to a gesture, one can cite for example the deviation
from the optimal path [20], motion smoothness [21],
motion economy [20], path length [21] or curvature and
affine velocity [22]. These are some of the metrics that
may be used to assess mastery of a gesture in a 3D
space. Concerning the specific lumbar epidural anesthesia
procedure, one of the most commonly used metrics is
what is called "overshoot" [23]in medical jargon. This
overshoot corresponds to the distance crossed between
the time the needle tip enters the epidural space and the
time the gesture is stopped.

In this study, we propose an evaluation of the skill
level of the trainees based on the data measured during
their tries. Rather than using a single metrics, we chose
to gather as many relevant variables as possible to come
up with an objective classification of the mastery of the
gesture using different machine learning methods

II. Experimental setup

In this section, we detail the simulator and the
experimental setup we used to gather the measurements.

A. Materials and simulator design

As the lumbar epidural procedure features two
main dependent parts (the needle and the syringe), the
simulator was designed accordingly. To reproduce the
needle, a customized Haption Virtuose 6D is involved and
the syringe is reproduced with a double-acting pneumatic
cylinder [11].

Concerning the needle insertion, the simulation of
the force feedback is based on a simplified yet realistic
enough representation of the anatomy involved during
the procedure. We based the force generation on the
work of Okamura et al. [24]. We also included the force
trajectories designed by Kuckenbecker et al. [25] to
improve the feeling of bone contact. A more complete
description of the simulator design is available in [11].

Concerning the syringe simulation we used
a double-acting pneumatic cylinder (Airpel®
M16D100D [26]), with a position sensor (MPS-
064TSNU0 [27] manufactured by SICK®), two pressure
sensors (Festo® EPRB-1 [28]), a Festo® MPYE-5-M5-
010 B servovalve controlled by a dSPACE® board.
Moreover, some mechanical parts were added to improve
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the overall realism. The complete simulator is presented
in Fig.2.

Figure 2: Complete simulator

B. Experimental setup

Concerning the measurements, we gathered val-
ues from a total of twelve experts and twelve novices.
On the one hand, the novices that took part in the
measurement campaign were anesthesiology residents
who were about to start their internship in a hospital.
On the other hand, the experts were anesthetists who
had performed at least 300 lumbar epidural anesthesia.
Each person recorded twelve tries. These twelve tries
corresponded to four standard pregnancy patients, four
calcified elderly patients, and four obese patients. A
patient is considered standard regarding the different
measurements and resistant forces which are considered
average. A calcified patient suffers from calcification of the
ligaments thus resulting in higher cutting forces when the
needle is cutting those ligaments. And the obese patient
presents an important part of the fat in the tissues that
increases the distance between the skin and the epidural
space but also lowers the cutting force. The order of
the twelve patients was set randomly and the type of
patient was announced to the test subject before each
test. Both novice and expert subjects got the opportunity
to perform a couple of tries beforehand. This was a way
for experts to get accustomed to the simulator and to
see whether they needed to make any adjustments to
their usual way of performing lumbar epidural anesthesia
to comply with simulation constraints. For the novices,
these first manipulations aimed at getting some pointers
and advice on how to perform the procedure. Before

the novice trying the procedure for the first time, two
senior anesthetists provided them with a lecture and
some explanations concerning this procedure. The Fig.3
depicts the simulator in use.

Figure 3: Simulator in use

We did not record the test tries, but only the data
from the twelve consecutive patients. For each try, the
simulator records the position along the x, y and z axis of
the handle of the electrical haptic interface, the number of
insertions needed to perform the anesthesia, the direction
of each insertion, the number of bone contacts, the time
at which the needle reaches the epidural space, and the
position of the plunger of the pneumatic cylinder. These
measurements then serve as raw data to generate a total
of 26 variables for each try.

III. Results and analysis

A. Global validation

In order to assess the realism of our simulator,
a face validity questionnaire revealed a satisfactory
overall score of 75% concerning the reproduction of the
derma and the intraspinous ligament, 84% concerning the
reproduction of the ligamentum flavum, 92% concerning
the reproduction of the epidural space. Concerning the
realism of the 3 different patients available (standard
pregnancy patients, calcified elderly patients and obese
patients), respectively 100%, 73% and 92% were very
satisfied or satisfied.
Concerning the numerical values, we obtained similar
results than Manoharan et al. [3] and Tran et al. [29].
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B. Data pre-processing

Before starting the data analysis, the data gathered
has to be processed to be usable. In a first approach, we
collected as many different variables as possible for each
try:

• the position of the needle tip in three dimensions;

• forces applied to the tip of the needle in three
dimensions;

• insertion angles, both pitch, and yaw;

• number of insertion;

• number of bone contacts;

• position of the needle tip at the end of the procedure;

• position of the piston of the pneumatic cylinder;

• pneumatic force produced by the pneumatic cylinder.

As most of these measurements are time-series,
they constitute the base to define variables for skill as-
sessment purpose. This represents a total of 26 variables:

• mean velocity of the needle tip along each axis;

• mean acceleration of the needle tip along each axis;

• variance of the velocity of the needle tip along each
axis;

• variance of the acceleration of the needle tip along
each axis;

• insertion angles (pitch and yaw);

• number of insertions;

• number of bone contacts;

• proportion of syringe emptied (which might be
superior to 1)

• overshoot;

• mean velocity of the pneumatic cylinder piston;

• mean acceleration of the pneumatic cylinder piston;

• variance of the velocity of the pneumatic cylinder
piston;

• variance of the acceleration of the pneumatic cylinder
piston;

• success of the procedure (whether the needle punc-
tured the dura mater or not).

Once these variables are computed for each try, one
has to analyze them to produce some skill assessment. All

the work presented hereafter was achieved using machine
learning methods provided by the software R.

C. Data classification : a per variable approach

As a first approach to the skill assessment issue,
data were studied and classified using each variable
individually. We looked for trends in the data-set to set
apart novices and experts. In that regard, some variables
have already been identified as crucial concerning the
lumbar epidural anesthesia procedure, the most prevalent
being the overshoot ([30], [23]) . Some other remarkable
variables are the proportion of syringe emptied, variances
of the velocity, and acceleration as a representation of
motion smoothness and mean insertion velocity which
can be linked to TCT. These variables are presented
in Fig.4. Also, when faced with the skill assessment in
general in surgical procedures, some variables are often
highlighted such as acceleration [31] or TCT [19].
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Figure 4: Remarkable variables from the data-set

These results clearly show a significant difference
between novices and experts using the Wilcoxon test
(p < 0.05 in each case) on these variables and most of
the results were expected the same. However, usually,
the TCT tends to reduce with the increase in skill of the
user and this does not seem to be the case here. Indeed
the experts often prioritize security and precision instead
of speed. That is why they tend to go at a slower and
constant pace to be sure to reach the epidural space
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with enough precision. Anyway, it seems that experience
is taking into account possible serious adverse events
and that success without harm is more important than
speed. Zivkovic et al. [32] compared experts to novices in
epidural anesthesia procedures and it shows that clinical
experience was not correlated with procedure time.

With this mindset, it is possible to produce classi-
fications based solely on the values of the aforementioned
variables. The objective was to classify each try in two
categories: the novices and the experts. To do so, the
measures were divided into two parts: one training set
containing two-thirds of the complete set of measures
chosen at random and the last third to serve as the testing
set. We then used an algorithm from rpart [33] (rpart
method from rpart package) trained on the training
set to produce a classification tree. Depending on the
content of the training set, the classification tree does
change. However, some variables often end up in the
trees such as the overshoot for example. One of the trees
obtained with this method is presented in Fig.5 as well
as the corresponding classification performance. In the
tree presented here, the overshoot is one of the deciding
factors as well as velocity variances of the needle along
the x and z axis. The x axis being the main insertion
direction, the velocity variance along x is related to the
smoothness of the needle trajectory. As expected experts
tend to have a lower velocity variance along this axis.
Also, as expected, the lower the overshoot, the most
likely it is that the user is an expert. The z axis being
the vertical axis, thus related to the inclination of the
needle, vzvar.haptic (the variance of velocity along the
z-axis) is related to the pitch of the insertion. The fact
that experts tend to have a higher value on this variable
may indicate that they tend to not stay on a horizontal
plane while inserting the needle.

Unfortunately, this type of method does not pro-
vide sufficient performance in terms of classification
rate as shown in Fig.6. Nevertheless, it does have some
interests in a teaching environment. Indeed, it does
highlight the important variables and thus provides some
pointers to improve one’s performance by showing which
compartment to focus on. In this case, having a steady
pace during the insertion appears to be a key factor of
masterful lumbar epidural anesthesia.

D. Data classification : a more complex approach

1) Cleaning the data: Before implementing a more
advanced classification method, the data can be "cleaned
up" to remove any less important components. In that
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Figure 5: Example of classification tree obtained where
vxvar.haptic is the velocity variance of the needle tip
along x and vzvar.haptic the velocity variance of the
needle tip along the z axis
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Figure 6: Classifier efficiency using the tree shown in
Fig.5

regard, a Principal Components Analysis (PCA) is an
unsupervised method used as a way to select the most
relevant variables in the data-set. To do so, a PCA is
applied and the most important components are selected
using the PCA method from FactoMineR package [34].
The Fig.7 shows the obtained variance from the first
components. To keep enough variance from the original
data-set, five components are kept to rack up to more
than 60% of the initial variance using the scree test [35].

From this, the initial variables are classified accord-
ing to their importance in the construction of the first
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five components of the PCA, as shown in Fig.8. Knowing
that some variables are crucial in the understanding of
the outcome of the lumbar epidural anesthesia procedure,
the different insertion angles, the number of insertions as
well as the mean piston acceleration are taken out of the
data-set as they do not seem to be impactful enough in
terms of variability from one measurement to the next. In
the end, the first five components account for almost 80%
of the initial inertia once the undesirable components are
taken out. The PCA result is shown in Fig.9.

Finally, to avoid the PCA to be lopsided toward a
specific data point, the contribution of each observation is
analyzed to seek out any abnormal ones. Table I displays
the most important contributions across the five first
components. We set a contribution threshold at 5 and
gathered all observations that reach this threshold on
any of the five first components of the PCA. Then we
highlighted the highest in bold.

In this table, the observations taken out are :

• expert 5, try 1 because of its contribution toward
the third component;

• expert 5, try 7 because of its contribution toward
the third component.

We decided to keep the observations from novice 7
try 5 and 6 as the high contribution is located on the fifth
component only. The presented observations, however,
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Figure 8: Sum of variables contributions to the first five
dimensions of the PCA
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Table I: Observations presenting high contributions to
the five first variables

Observations Co. 1 Co. 2 Co. 3 Co. 4 Co. 5
Nov. 7, try 5 0,31 11,83 0,17 7,39 21,15
Nov. 7, try 6 0,73 5,55 0,32 7,00 18,18
Nov. 9, try 3 0,85 5,90 0,64 0,05 0,01
Exp. 5, try 1 0,34 0,17 25,30 0,17 0,05
Exp. 5, try 4 0,98 8,67 0,08 0,43 0,99
Exp. 5, try 6 0,65 8,67 0,01 3,43 2,12
Exp. 5, try 7 0,35 0,29 27,37 1,55 0,05
Exp. 5, try 12 1,03 9,33 0,14 0,96 2,23

have been taken out of the data-set to establish the final
version of the PCA used to classify the data. It has to
be noted, that these two data points were re-introduced
once the PCA had been computed. They were put apart
only to get the best PCA result as possible.

2) Implementing more advanced classification
methods: Once the data have been cleaned up using the
method described above, another unsupervised method
is uses: t-SNE (t-distributed Stochastic Neighbor Em-
bedding) [36] is applied to the data-set using the Rtsne
method from Rtsne package [37] to get the result shown
in Fig.10. The main objective of a t-SNE algorithm is to
reorganize the data assuming it has a certain statistical
distribution. By using this algorithm, similar data points
were gathered, resulting in a more manageable data-set.
With this algorithm, only the first three components were
selected. As shown in Fig.10, there is a clear separation
between groups of expert tries and novice tries, which is
very encouraging. At that time the initial data-set was
available in three different types:
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Figure 10: Representation of the data-set after a t-SNE
analysis

• the "raw" measurements, once the non-significant
variables were taken out;

• the PCA first five components;

• the t-SNE first three components.

From these results, three approaches were tested
to try and find a successful enough classifier. The first
tested classifier was a supervised method named: kNN
algorithm (kNN method from class R package) [38]. For
this algorithm, one only has to select the number of
neighbors to consider. In this case, the optimal number
of neighbors is selected for each version of the data-set
looking at the success rate. The results are displayed
in Fig.11. The kNN algorithm has the advantage of
providing an estimation of its confidence for each ranking
as it is possible to look at the number of neighbors of
each category. As expected, this algorithm led to the best
results using the first three components extracted by the
t-SNE algorithm.
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Figure 11: Classification success rates obtained using a
kNN algorithm using: (a) PCA coordinates with k=16,
(b) t-SNE coordinates using k=3, (c) raw data k=4

Then another supervised method is used: SVM
algorithm is implemented using the SVM method from
the e1071 package [39]. In this case, the most important
part was to choose the most appropriate type of kernel
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to delimit the different classes. Knowing the content of
our data, it seemed interesting to use a radial kernel for
the t-SNE version and a linear one was used for the rest.
The success rate obtained using this type of algorithm is
displayed in Fig.12. Once again it was possible to extract
the confidence of the classification.

Finally, a third supervised method is implemented:
basic neural network approach (neuralnet method from
neuralnet package [40]). In this case, it was mostly a way
of providing first-hand insight into this type of method
that might need to be examined further to obtain better
results. For each version of the data-set, the architecture
(hidden layers) of the neural network was slightly modified
using trial and error method to reach a decent enough
result. These results are presented in Fig.13. The major
drawback of this approach is that it does not provide more
insight into the classification than the class itself. But
once again, it was used to set a sort of basic benchmark
to propose a more complete classification method.
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Figure 12: Classification success rates obtained using a
SVM algorithm on : (a) PCA coordinates, (b) t-SNE
coordinates, (c) raw data

These results are comparable to those obtained
using an SVM approach or a kNN. If this may not be
enough to be considered as the go-to method in this case.
However, it seems that a more detailed approach to this
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Figure 13: Classification success rates obtained using a
neural network on: (a) PCA coordinates (hidden layers
6-4-1), (b) t-SNE coordinates (hidden layers 10-8-6-4-1),
(c) raw data (hidden layers 10-8-6-4-1)

type of method may be a great source of improvement.

E. Final results

The classification methods presented above are not
sufficient to provide a general understanding of the skill of
a person. Indeed, as it treats each trial separately, it does
not inherently provide a general skill rating. To do so, it
is possible to simply gather up the classifications of each
person. Doing so allows us to put up a kind of skill rating
by showing the proportion of expert rated attempts in all
the trials of a person. The Table II and Table III shows
the result of such a method on the data-set using the
most effective classification algorithm described in the
previous paragraph. These tables show the classifications
obtained for each trial of a given subject in the first
two columns. Then, the last two columns provide the
final prediction and the confidence of this prediction.
Whenever the algorithm is not able to conclude, for
example when there are as many trials classified as expert
and novice, the overall predicted ranking is undefined: a
no-confidence index is issued.
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Table II: Individual classification using data processed
with a t-SNE algorithm and classed using a kNN with
k = 3

Rankings Evaluation
Novice Expert Pred. Confi.

Novice 1 3 0 Novice 1
Novice 2 7 1 Novice 0,88
Novice 3 2 0 Novice 1
Novice 4 3 0 Novice 1
Novice 5 4 0 Novice 1
Novice 6 3 1 Novice 0,75
Novice 7 1 1 Undef. -
Novice 8 4 0 Novice 1
Novice 9 5 2 Novice 0,71
Novice 10 2 0 Novice 1
Novice 11 5 0 Novice 1
Novice 12 4 0 Novice 1
Expert 1 0 2 Expert 1
Expert 2 1 3 Expert 0,75
Expert 3 0 3 Expert 1
Expert 4 0 4 Expert 1
Expert 5 1 3 Expert 0,75
Expert 6 0 2 Expert 1
Expert 7 0 2 Expert 1
Expert 8 0 5 Expert 1
Expert 9 3 3 Undef. -
Expert 10 1 5 Expert 0,83
Expert 11 1 7 Expert 0,88
Expert 12 1 2 Expert 0,67

Table III: Individual classification using data processed
with a PCA algorithm and classed using a kNN with
k = 16

Rankings Evaluation
Novice Expert Pred. Confi.

Novice 1 3 0 Novice 1
Novice 2 4 4 Undef. -
Novice 3 2 0 Novice 0,60
Novice 4 2 1 Novice 0,67
Novice 5 4 0 Novice 1
Novice 6 3 1 Novice 0,75
Novice 7 1 1 Undef. -
Novice 8 3 1 Novice 0,75
Novice 9 5 2 Novice 0,71
Novice 10 2 0 Novice 1
Novice 11 5 0 Novice 1
Novice 12 4 0 Novice 1
Expert 1 0 2 Expert 1
Expert 2 2 2 Undef. -
Expert 3 1 2 Expert 0,67
Expert 4 0 4 Expert 1
Expert 5 0 4 Expert 1
Expert 6 0 2 Expert 1
Expert 7 0 2 Expert 1
Expert 8 0 5 Expert 1
Expert 9 2 4 Expert 0,67
Expert 10 0 6 Expert 1
Expert 11 0 1 Expert 1
Expert 12 1 2 Expert 0,67

This methodology allows generating an overall
skill rating for each person and drastically reducing the
errors of the classifier. In this case, either using the
kNN algorithm on the t-SNE coordinates or the PCA
coordinates prevents classification errors. It only remains
a few uncertain rating in each case.

IV. Discussion

The three most common classification methods [41]
have been implemented in order to compare expert and
novice data recorded using the PeriSIM. All of them allow
to distinguish experts and novices. As expected, their
success rate depends on the method used to select the
most relevant variables. This paper presents the different
results of these methods according to the method of
reduction used.

The results obtained using simple classification
algorithms are quite encouraging. The proposed, overall
skill rating algorithm allows getting a rather precise
assessment of the skill of the user. There remain some
uncertainties in the ranking provided by the algorithm.
However, these uncertainties remain limited. Due to the
relatively small test data-set, some users only count a few
trials, which limits the accuracy of the algorithm. Indeed,
raising the number of rated trials increases the precision
of the ratings. Thus, more tries need to be recorded and
rated using the data-set presented in this article as the
training data-set.

Moreover, it might be interesting to investigate
neural-network approaches deeper. Indeed, a simple and
quick implementation of such a method already showed
quite decent results. However, the lack of perspective
on the result of the classification may be an important
hurdle if such a classifier is used in a learning context.

Regarding the incorrect classifications, they might
be caused by the specific trials being genuinely skillful or
not. As each person performed all of his/her twelve trials
in a row, novices may have increased their precision on
some tries whereas some expert users may have taken the
tries less seriously, thus resulting in some false ratings.
This, however, does not take away the overall results
obtained with this data-set.

In other possible improvements, it might be inter-
esting to expand the algorithm to take into account the
different types of patients provided by the simulator. It
might be relevant to include different ratings, one for
each patient type. However, with the current amount of
recorded tries, dividing the data-set into three separate
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ones might thin the data-set too much to be able to
provide a precise enough ranking algorithm.

Another limit of this study is the lack of perspec-
tive about the use of such a simulator on the learning
curve of the students. However, the presented results
allow considering using this simulator in a teaching
environment.

V. Conclusion

In this paper, we proposed a simple yet but
effective rating algorithm to assess the skill of a user
when doing an lumbar epidural anesthesia procedure
on the PeriSIM simulator. This haptic simulator has
been developed previously in the Ampère Laboratory
and aims at providing an efficient and affordable training
tool for novice anesthetists. This study gathered a total of
more than 200 data points and used them to design and
test an objective and efficient skill assessment algorithm.
The results obtained are encouraging and may require
more recordings to deeply test the proficiency of the
algorithm. Some changes might be undertaken to the
type of algorithm used to classify the tries such as neural
network approaches.

In conclusion, the proposed ranking algorithm may
be summed up as presented in Fig.14. This complete
algorithm can easily be improved using a different
classification algorithm if needed.

 Processed dataset

 Raw measures

Individually classified

tries

Overall Skill 

assessment

kNN algorithm

Variable extraction

+

PCA or t-SNE

Gathering

Figure 14: Summary of the skill assessment algorithm
presented in this article for the epirual anesthesia proce-
dure
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