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Abstract

While traditional data mining techniques have been
used extensively for finding patterns in databases,
they are not always suitable for incorporating user-
specified constraints. To overcome this issue, CP
and SAT based frameworks for modeling and solv-
ing pattern mining tasks have gained a considerable
audience in recent years. However, a bottleneck
for all these CP and SAT-based approaches is the
encoding size which makes these algorithms inef-
ficient for large databases. This paper introduces
a practical SAT-based approach to discover effi-
ciently (minimal non-redundant) association rules.
First, we present a decomposition-based paradigm
that splits the original transaction database into
smaller and independent subsets. Then, we show
that without producing too large formulas, our
decomposition method allows independent min-
ing evaluation on a multi-core machine, improving
performance. Finally, an experimental evaluation
shows that our method is fast and scale well com-
pared with the existing CP approach even in the se-
quential case, while significantly reducing the gap
with the best state-of-the-art specialized algorithm.

1 Introduction

In the recent years, there is an increasing need to discover
relations among large transactional databases, which may be
tackled by association rules mining. The outputs generated
from the association rule mining are some rules, which pass
the user-specified minimum support and confidence mea-
sures. Each association rule consists of a couple of itemsets
representing the antecedent and consequent of the rule. As
the set of association rules (ARs, for short) in large databases
can rapidly grow to be unwieldy, many other kinds of ARs
have been studied essentially to reduce the redundancy in-
herent in a collection of rules. The most common ones are
minimal non-redundant association rules (MNRs, for short).

Mining ARs is beneficial to the correct and appropriate de-
cision made by decision makers. Since the first well known
application usually referred to as market basket data analysis
[Agrawal and Srikant, 1994], today, research work on ARs is

motivated by a range of application areas, such as banking,
manufacturing, medical diagnosis, and telecommunications.

Over the last decade, there have been a lot of proposals of
ARs mining (see [Ceglar and Roddick, 2006] for a survey).
These work can be generally partitioned into two main cate-
gories: specialized and declarative approaches. Specialized
algorithms, such as Apriori [Agrawal and Srikant, 1994] and
FP-Growth [Han et al., 2004], are generally a two-step pro-
cess: (1) finding all frequent itemsets with adequate supports,
and (2) generating ARs with high confidence by combining
these frequent or large itemsets. Nevertheless, the main bot-
tleneck of this line of research is that additional user-specified
constraints, i.e., rules with an antecedent and/or consequent
of a given size or rules with or without some specific items,
often require new implementations to filter out the ARs vio-
lating or satisfying the user’s constraints, which can be com-
putationally infeasible for large databases.

Since there are usually various constraints over patterns
to mine (i.e., support, confidence, etc.), new research have
began connecting data mining to symbolic Artificial Intel-
ligence (AI). Such fertilization leads to a number of algo-
rithms that have been proposed within Constraints Program-
ming (CP), Satisfiability (SAT), and Answer Set Program-
ming (ASP) for mining sequences [Jabbour et al., 2013;
Négrevergne and Guns, 2015; Gebser et al., 2016], fre-
quent itemsets [Henriques et al., 2012; Lazaar et al., 2016;
Schaus et al., 2017], association rules [Boudane et al., 2016;
Belaid et al., 2019], clustering [Dao et al., 2017; Boudane et
al., 2017a], and overlapping communities in networks [Jab-
bour et al., 2017; Ganji et al., 2017; Jabbour et al., 2020],
etc. The main advantage of symbolic AI approaches for pat-
tern mining is their declarativity and flexibility, which include
the ability to incorporate new user-specified constraints with-
out the need to modify the underlying system. To the best
of our knowledge, earlier work that deal with ARs mining
are that of [Boudane et al., 2016] and [Belaid et al., 2019].
In the first one, the authors developed a SAT-based approach
to discover closed and indirect ARs. More specifically, they
used propositional satisfiability with different linear inequal-
ities to ensure the minimum frequency and the confidence of
rules. Encoding ARs mining into SAT enables to take ad-
vantage of the recent and impressive progress achieved in
SAT solving. Unfortunately, the counterpart of this method
is the big encoding making such approach far from to be



scaling. The proposed approach of [Belaid et al., 2019]

presents a CP model to mine ARs and MNRs from transac-
tional databases. The authors extended the global constraint
coversize [Schaus et al., 2017] by adding a new one called
confidence to ensure the confidence of the rules. However,
these two constraints cannot been expressed within existing
global constraints. Hence, such extension generally borrowed
techniques from specialized algorithms (to define propaga-
tors over the coversize and confidence constraints) which is
far from the hoped-for declarativity.

In this paper, in order to break through these barriers and to
scale the symbolic AI based approaches to larger databases, a
declarative method for mining ARs and MNRs is first pro-
posed using a SAT representation. At the core of our ap-
proach is a novel decomposition method that allows to split
the original database into subsets that can be mined indepen-
dently. Hopefully, without causing too large formulas and the
associated memory problems, the advantage of our SAT en-
coding scheme is to allow independent evaluation on a multi-
core machine, improving performance. We stress the fact that
the introduced partitioning scheme in this paper is indepen-
dent of any particular solver and widely applicable. Finally,
a last contribution of this work consists of an empirical eval-
uation of the decomposition-based method, showing signifi-
cant computational benefits. Specifically, our approach out-
performs the CP-based algorithm CP4AR while significantly
reducing the performance gap with the specialized system
ECLAT-Z.

2 Formal Preliminaries

2.1 Propositional Logic and SAT problem

We consider a propositional language L defined from a finite
set of propositional variables V ar = {p, q, r, . . .}, the logical
constants ⊥,⊤, and the usual logical connectives (namely, ¬,
∧, ∨, →, and ↔). Propositional formulas will be denoted by
Greek letters Σ, ∆, etc. V ar(Σ) denotes the set of proposi-
tional variables appearing in the formula Σ. It is common for
logical reasoning algorithms to operate on normal form rep-
resentations instead of arbitrary sentences. A formula in con-
junctive normal form (CNF) is a conjunction (∧) of clauses,
where a clause is a disjunction (∨) of literals. A literal is a
propositional variable (p) or its negation (¬p). In addition, a
Boolean interpretation (or world) µ of a formula Σ ∈ L is a
total function from V ar(Σ) to {0, 1} (0 corresponds to false
and 1 to true). We denote by Σ|x the formula Σ where x
assigned true, i.e., Σ ∧ x. µ is a model of Σ iff it makes it
true in the usual truth functional way. Then, Σ is satisfiable
if there exists a model of Σ. models(Σ) denotes the set of
models of a formula Σ. Lastly, SAT is the NP-complete prob-
lem that consists in deciding whether a given CNF formula is
satisfiable or not.

2.2 A Glimpse at ARs Mining

Let Ω denote a universe of items (or symbols), called alpha-
bet. We use the letters a, b, c, etc. to range over the ele-
ments of Ω. An itemset I over Ω is defined as a subset of
Ω, i.e., I ⊆ Ω. We denote by 2Ω the set of all itemsets over
Ω and we use the capital letters I, J,K, etc. to range over

the elements of 2Ω. Typically, a transaction is an ordered
pair (i, I) where 1 ≤ i ≤ m, called the transaction identi-
fier, and I an itemset, i.e., (i, I) ∈ N × 2Ω. A transaction
database D is defined as a finite non empty set of transac-
tions (D ⊆ N × 2Ω) where each transaction identifier refers
to a unique itemset. Given a transaction database D and an
itemset I , the cover of I in D, denoted C(I,D), is defined as
follows: {i ∈ N | (i, J) ∈ D and I ⊆ J}. The support
of I in the database D, denoted as Supp(I,D), is defined as
the cardinality of C(I,D), i.e., Supp(I,D) = |C(I,D)|. An
itemset I ⊆ Ω such that Supp(I,D) ≥ 1 is closed iff, for all
itemsets J with I ⊂ J , Supp(J,D) < Supp(I,D).

An association rule is a pattern of the form X → Y
where X and Y are two disjoint itemsets. X and Y are
called the antecedent and the consequent of the rule, respec-
tively. In addition, the interestingness of ARs is defined
through the notions of support and confidence. The support
of an AR X → Y in a transaction database D, defined as

Supp(X → Y,D) = Supp(X∪Y,D)
|D| , determines how often a

rule is applicable to a given dataset, i.e., the occurrence fre-
quency of the rule. The confidence of X → Y in D, defined

as Conf(X → Y,D) = Supp(X∪Y,D)
Supp(X,D) , provides an estimate

of the conditional probability of Y given X . Then, a valid AR
is an AR with support and confidence greater than or equal to
the minimum support α and minimum confidence β thresh-
olds, respectively. More specifically, given a transaction
database D, a minimum user-specified support α and con-
fidence β thresholds, the problem of mining association rules
consists in computing the following set: {X → Y | X,Y ⊆
Ω ∧ Supp(X → Y,D) ≥ α ∧ Conf(X → Y,D) ≥ β}.

It is well-recognized that the main factor that hinders the
applications of ARs is the huge number of ARs returned
by the mining process. Typically, for reasonable thresh-
olds α and β, the number of ARs can reach impractical
amounts, such that analyzing the rules themselves becomes
a challenging task. Moreover, many of these rules have no
value to the user since they can be considered redundant.
In this work, we are also interested in the well-known min-
imal non-redundant association rules variant, namely MNRs
[Kryszkiewicz, 1998; Bastide et al., 2000].

Definition 1. Let D be a transaction database. Then, an AR
X → Y is a MNR iff there is no AR X ′ → Y ′ in D different
from X → Y s.t. (i) Supp(X → Y,D) = Supp(X ′ →
Y ′,D), (ii) Conf(X → Y,D) = Conf(X ′ → Y ′,D), and
(iii) X ′ ⊆ X and Y ⊆ Y ′.

3 SAT Encoding Scheme for ARs Mining

Here, we review the SAT encoding scheme for the problem of
mining ARs proposed in [Boudane et al., 2016]. Basically, to
encode the ARs mining problem into SAT one must define a
set of variables and a set of constraints on the variables. Then,
the idea was to build a one-to-one mapping between the set
of ARs and the models of the corresponding CNF formula.
More precisely, different variables are used to represent the
covers of the two parts of the rule X → Y , namely, X and
X ∪ Y . These variables are used in 0/1 linear inequalities to
ensure the support and the confidence of the rules.



Given a transaction database D = {(1, I1), . . . , (m, Im)},
a minimum support α and confidence β thresholds. To rep-
resent the itemsets X and Y of each candidate rule X → Y ,
two propositional variables xa and ya are associated to each
item a in order to guarantee if a belongs to X (i.e., xa =
true) or Y (i.e., ya = true). For the covers of X and X ∪Y ,
new variables pi and qi are also introduced to each transaction
identifier i ∈ {1 . . .m}. In addition, the following constraints
(see Figure 1) are introduced on the variables to build a one-
to-one mapping between the models of the obtained CNF for-
mula, denoted as ΣAR

D,α,β , and the ARs. More precisely, Con-

straint (1) ensures the non-overlapping between X and Y .
The formulas (2) and (3) capture the cover of X and X ∪ Y ,
respectively. Moreover, the inequality constraints (4) and (5)
express the support and the confidence constraints w.r.t. the
user-specified thresholds α and β. Then, the ARs mining
problem from D corresponds to the enumeration of the mod-
els of the CNF formula: ΣAR

D,α,β = (1)∧ (2)∧ (3)∧ (4)∧ (5).
Under a Boolean interpretation µ, the candidate rule is X =
{a ∈ Ω | µ(xa) = 1} → Y = {b ∈ Ω | µ(yb) = 1} where
C(X,D) = {i ∈ N | µ(pi) = 1} and C(X ∪ Y,D) = {i ∈
N | µ(qi) = 1}. Now, Constraint (6) ensures the closure of
the itemset X∪Y , i.e., if C(X∪Y,D) = C(X∪Y ∪{a},D),
then the item a has to belong to X ∪ Y (a is either in X or
Y ). We note here that Constraint (6) allows to add n clauses
to the SAT encoding where n is the number of items.

To simplify the notation, in the sequel we use Σ instead of
ΣAR

D,α,β whenever it is clear from the context.

4 Our Approach

Encoding problems in CNF format and solving them with
SAT solvers is indeed a competitive approach. SAT has the
advantage of being very easy in its formulation. Nonetheless,
the simplicity of the CNF format makes its use very restric-
tive. For instance, a constraint problem with a few dozen
of variables may result in a SAT problem with thousands
of variables and millions of clauses. Also, one may argue
that a cause of inefficiency is the huge number of models of
the CNF formula. Clearly, this is also the bottleneck for the
SAT encoding scheme [Boudane et al., 2016] for ARs mining
problem. Indeed, in this encoding, the number of clauses is,
in the worst case, |D| × |Ω|.

In order to prune the search space, one can add more con-
straints to the previous model. For instance, Constraint (7)
allows us to propagate the literal ya when the number of trans-
actions supporting such literal is less than α. Similarly, Con-
straint (8) allows us to propagate the literal qi when the asso-
ciated transaction has all items assigned false.

∧

a∈Ω

(ya →
∑

Ti∈D | a∈Ti

qi ≥ α) (7)

∧

T∈D

((
∧

a∈T

¬xa)→ ¬qi) (8)

Unfortunately, these two cardinality constraints can outgrow
the available memory and can consequently make SAT solv-
ing inefficient. To break through this barrier, in the sequel we
propose to use a decomposition method that allows to split
the search space into numerous but smaller sub-problems and

easier to solve. Such decomposition based method allows us
to avoid encoding the whole transaction database. Our main
idea is as follows. First, given a CNF formula Σ and a vari-
able xa ∈ V ar(Σ), the models of Σ can be partitioned into
those of Σ∧xa and Σ∧¬xa. By generalizing such principle,
one can split a CNF formula into subformulas such that each
subformula can be evaluated in an independent way.

Definition 2. Let Σ ∈ L be a CNF formula. P = {Σ ∧
Γ1, . . . ,Σ ∧ Γn} is a partition of Σ if Γ = {Γ1, . . . ,Γn} is a
set of formulas defined over V ar(Σ) such that

∨n

i=1 Γi ≡ ⊤,
and Γi ∧ Γj |= ⊥, for all 1 ≤ i 6= j ≤ n. Γ = {Γ1, . . . ,Γn}
is called the Σ-partition.

That is, by Definition 2, the set of models of Σ is equal to
⊎

models(Σ ∧ Γi) (1 ≤ i ≤ n). The above definition is a
general definition that allows for a range of possible splitting
techniques to be defined. In what follows, we consider an in-
stantiation that consists in splitting Σ into its literal conjuncts
w.r.t. a given ordering on the variables of Σ.

4.1 A Decomposition-based Encoding for ARs

Here, we present our decomposition method to extract ARs.
Given an AR X → Y , we select the variables encoding
the antecedent X = {a1, . . . , an} to define the partition P .
Let 〈xa1

, . . . , xan
〉 be an ordering on the set of variables en-

coding X . Then, the Σ-partition Γ = {Γ1, . . . ,Γn} over
{xa1

, . . . , xan
} is defined as: Γi = xai

∧
∧

1≤k<i ¬xak
(1 ≤

i ≤ n). Now, the main idea is to split recursively the formula
Σ w.r.t. its positive and negative literals. Then, the formula
Σ ∧ Γi ≡ Σ|...¬xai−1

,xai
enforces xai

to be true, that is the

item ai belongs to X . Consequently, the encoding can be
restricted to transactions containing the item ai. Also, the lit-
eral xak

for all 1 ≤ k < i assigned false allows to exclude the
item ak to be in X . Clearly, this allows to avoid encoding the
entire database and without causing too large formulas and
the associated memory problems.

Clearly, the splitting of Σ leads to many independent sub-
formulas encoding subsets of a specific list of transactions of
the original database. However, some of such sub-problems
might remain large, hence there is again a firm barrier to the
scalability of the approach to larger databases. To illustrate,
let us suppose that an item ai appears in each transaction of
the database D. Then, the encoding of the cover of X ∪ Y
requires considering all the transactions but excluding ai.

To limit such blow up in terms of encoding size, we there-
fore opt to develop a different encoding based on a double
splitting over X . More formally, the Σ-partition Γ in Defini-
tion 2 can be redefined as follows:















Γi,j = xai
∧ xaj

∧
∧

k<j, k 6=i

¬xak
if i < j

Γi,i = xai
∧

∧

k 6=i

¬xak

Clearly, Γi,j extends Γi by performing a second call to Γi at
each branch. In other words, after the selection of an item ai,
we iterate the same reasoning over transactions involving ai.

Our algorithm for ARs mining is illustrated in Algorithm
1, that we refer to as SATAR (SAT approach for ARs min-
ing). Given a transaction database D and following an order-
ing over items of D at each iteration an item a is fixed to be



∧

a∈Ω

(¬xa ∨ ¬ya) (1)
m∧

i=1

(¬pi ↔
∨

a∈Ω\Ii

xa) (2)

m∧

i=1

(¬qi ↔ ¬pi ∨ (
∨

a∈Ω\Ii

ya)) (3)

m∑

i=1

qi ≥ m× α (4) 100 ∗
m∑

i=1

qi − β ∗
m∑

i=1

pi ≥ 0 (5)

∧

a∈Ω

((
∧

i=1..m, a 6∈Ii

¬qi)→ xa ∨ ya) (6)

Figure 1: SAT Encoding Scheme for ARs.

Algorithm 1: Decomposition-based ARs Mining

Data: A transaction database D, α, β
Result: The set of all ARs R

1 R← ∅, Γ← ∅, V = 〈a1 . . . an〉 ← items(D);
2 for a ∈ V do

3 D′ ← {T ∈ D | a ∈ T};
4 V ′ ← items(D′) \ {a};
5 Γ← Γ ∪ {a};
6 for a′ ∈ V ′ do

7 D′′ ← {T ∈ D′ | a′ ∈ T};
8 Γ← Γ ∪ {a′};
9 F = encode cnf(Γ,D′′); // F = Σ ∧ Γi,j

10 R = R ∪ enumerate models(F ) ;

11 Γ← (Γ \ {a′}) ∪ {¬a′};
12 end

13 F = encode cnf(Γ,D′) ; // F = Σ ∧ Γi,i

14 R = R ∪ enumerate models(F ) ;

15 Γ← (Γ \ {a}) ∪ {¬a};
16 end
17 return R;

in X restricting the encoding to transactions containing a de-
noted D′ over a subset of items V ′ ⊆ V . A second iteration
is performed by fixing a second item a′ to be in X leading
to more restricted subset of transactions D′′. Then, the func-
tion encode cnf is called over D′′ to encode the problem into
a CNF formula. Finally, the enumeration of the models of
the CNF formula is performed using the function enumer-
ate models incarnating a SAT-based enumeration solver.

4.2 A Decomposition-based Encoding for MNRs

Now, we extend our decomposition-based approach to enu-
merate MNRs. To do so, new constraints have to be added to
the previous encoding. Then, we perform the same splitting
technique to limit the overhead in terms of the huge number
of clauses. First, let us recall that MNRs have been charac-
terized through the closure [Taouil et al., 2000] and the no-
tion of minimal generator. In fact, a rule X → Y is non-
redundant iff X ∪ Y is closed and X is a minimal generator.
In other words, the MNRs are the closed rules in which the
antecedents are minimal w.r.t. set inclusion. Using such prop-
erty, in [Boudane et al., 2017b] the authors provided a char-
acterization of the antecedents of the MNRs, called minimal
generators. Let us first introduce some useful notions.

Definition 3. Let D be a transaction database and X a
closed itemset in D. Then, an itemset X ′ ⊆ X is a min-
imal generator of X iff Supp(X ′,D) = Supp(X,D), and
there is no X ′′ ⊆ X s.t. X ′′ ⊂ X ′ and Supp(X ′′,D) =
Supp(X,D).

Proposition 1. [Boudane et al., 2017b] Given a transaction
database D, the rule X → Y is a MNR in D iff X → Y
is a closed AR, and |X| = 1 or, for all items a ∈ X ,
Supp(X,D) < Supp(X \ {a},D).

Proposition 1 characterizes minimal generators by provid-
ing constraints over its items. A direct translation of such
characterization into constraints can be done as follows:

∆ =
∧

a∈Ω

(xa →
∨

(T∈D | a 6∈T )

(
∑

b 6∈T

xb ≤ 1)) (9)

That is, Constraint (9) enforces that if a belongs to X then
there exists a transaction T such that X 6⊂ T and X \ {a} ⊂
T . Hence, the MNRs correspond to the models of the CNF
formula Σ ∧∆ ∧Θ where Θ is the closure constraint (6).

Unfortunately, Constraint (9) leads to too large formulas.
In particular, the inequality constraint

∑

b6∈T xb ≤ 1 has to

be encoded for each transaction in the database. In the worst
case, minimal generator constraints require a large number of
clauses making the encoding of MNRs ever, large.

To tackle this problem, we consider the same splitting
principle that leads to independent sub-problems of the form
Σ∧∆∧Θ∧ Γi,j . The main difference with the enumeration
of ARs lies in the fact that the minimal generator constraint
depends on the whole transaction database. In fact, a minimal
generator of the database D restricted to transactions with ai
and aj is not necessarily a minimal generator of D.

Next, let us show how the formula ∆ is simplified by Γi,j

when i < j. The transaction database D can be partitioned
into D1, D2, D3, and D4 such that D1 contains ai and not aj ,
D2 contains aj and not ai, D3 contains both ai and aj , and
D4 does not contain neither ai nor aj . Under Γi,j , ∆ can be
rewritten as the conjunction of ∆ over the items of D3 as:

∆ ∧ Γi,j = (xai
→

∨

T∈D2

(
∑

b6∈T

xb ≤ 1)) ∧

(xaj
→

∨

T∈D1

(
∑

b6∈T

xb ≤ 1)) ∧

(
∧

ak∈D3, k 6=i, k 6=j

(xak
→

∨

T∈D3

(
∑

b6∈T

xb ≤ 1)))

More importantly, D4 is not used in ∆ under Γi,j assump-
tion where i < j thanks to the double splitting over X , i.e.,
none of ai and aj are present in the transactions of D4. Con-
sequently, for all T ∈ D4,

∑

b6∈T xb ≤ 1 is already falsified

by two items. Moreover, ∆ ∧ Γi,i ≡ ⊤ since X is singleton
and thus is a minimal generator.

For the closure constraint Θ, we proceed by simplifying
the constraint (6) under Γi,j leading to:

Θ ∧ Γi,j =
∧

c∈D3

((
∧

T∈D3, c 6∈T

¬qi) → xc ∨ yc)



5 Empirical Investigation

We now present the experiments carried out to evaluate the
performance of our approach. In particular, we study the run-
ning time for discovering ARs and MNRs in sequential and
parallel setting. For baseline comparison, we retain the CP-
based algorithm CP4AR [Belaid et al., 2019] and the special-
ized method ECLAT-Z [Szathmary et al., 2008], which in turn
is shown more competitive than all existing approaches.

Algorithm 1 is implemented in C++ top-on the SAT solver
MiniSAT [Eén and Sörensson, 2002], which is changed
to enumerate all models by performing a DPLL procedure
[Davis et al., 1962] without restart. We use the API OpenMP
that supports multi-platform shared memory multiprocessing
programming in C/C++. The partition is performed by con-
sidering the items frequencies in increasing order.

Our experiments were performed on a machine with Intel
Xeon quad-core processors with 32GB of RAM running at
2.66 GHz on Linux CentOS. Time-out was set to 1800 sec-
onds and memory-out to 10 GB in all runs. We consider the
datasets used in [Belaid et al., 2019] coming from FIMI1 and
CP4IM2 repositories. The minimum confidence threshold β
is fixed to 75%3 and different minimum support values are
chosen w.r.t. the size of each dataset. All experiments are
available at: https://github.com/crillab/satar-xp.

We perform two kinds of experiments. In the first evalua-
tion, we carry out a comparison to enumerate both ARs and
MNRs. In the second, we perform a parallel evaluation to
mining ARs and MNRs by varying the number of cores.

Sequential Evaluation. Table 1 reports comparative results
of SATAR against CP4AR and ECLAT-Z, using different values
of α (in percent). Table 1 contains both results for ARs and
MNRs. It reports the number of models (i.e., patterns) and
the total CPU time (in seconds) for each dataset with different
values of α. “TO” (resp. “MO”) is shown when time limit is
exceeded (resp. when the memory limit is reached). We also
use the symbol “–” to indicate that the method is not able
to scale on the number of patterns under the time limit. As
one can observe, for ARs mining, SATAR outperforms CP4AR

on almost all tested datasets. Moreover, for some datasets
e.g., connect and pumsb, the gain is impressive. Interestingly
enough, our approach overpasses the specialized algorithm
ECLAT-Z, e.g., anneal, chess and mushroom datasets. Re-
markably, for the largest dataset kosarak, our approach is able
to enumerate all ARs while ECLAT-Z and CP4AR fail for all
the considered values of α. In total, on 19/33 SATAR provides
the best time when ECLAT-Z ranked first on 13/33. CP4AR is
not able to provide the best time on any test.

For MNRs mining, we have similar observations as for ARs.
SATAR and ECLAT-Z show better results than CP4AR. Indeed,
SATAR wins on 20 from 33 datasets, followed by ECLAT-Z

with a score of 10, whereas CP4AR has only 2 datasets. Fur-
thermore, on some large datasets SATAR outperforms ECLAT-
Z on MNRs, e.g., pumsb and T10I4D100K with α = 75%
and 0.02%, respectively.

1http://fimi.ua.ac.be/data/
2http://dtai.cs.kuleuven.be/CP4IM/datasets/
3Similar results were observed when β is set to 50% and 90%.

Parallel Evaluation. The decomposition technique defined
in this work allows to generate independent problems that can
be handled on a multi-core machine. Hence, we extended
SATAR algorithm for multi-core solving. The different sub-
formulas Σ ∧ Γi,j are then distributed over the used cores to
be solved. The sub-problems are fairly assigned to cores. We
perform similar experiments by considering 1,2 and 4 cores
and varying the minimum support threshold values. Figure 2
shows the solving time on a representative sample of datasets.
As expected, our parallel approach allows us to considerably
reduce the computing time. For instance, with a single core,
the T10I4D100K dataset is not solved for α = 0.01% for
MNRs, while this task is achieved when the number of cores
is greater than 1. Moreover, the time needed to extract all
MNRs from pumsb dataset with α = 75% is reduced from
950 seconds with a single core to less than 400 seconds with
4 cores. Clearly, the runtime gain increases with the number
of cores. As one can observe in Figure 2, this gain is more
important when the number of cores passes from 1 to 2 cores
rather than from 2 to 4.

Let us stress that our decomposition is performed before
the solving process rather than in a dynamic way during the
search. Consequently, the time required by cores to solve
their assigned sub-problems is different in general. In the
sequel, we analyze the load unbalancing of our approach.

Load Balancing. To assess the suitability of our load bal-
ancing strategy, we provide an empirical analysis of the CPU
time with different number of cores on a sample of datasets.
We limit our analysis to ARs mining. Similar observations
are made on MNRs. We fix the number of cores to 4. In
Figure 3, for each value of α we report the average time over
cores, the minimum and maximum time to quantify the idle-
ness of some cores. The tighter the difference between mini-
mum and maximum time is, the better the load balancing is.

As we can observe, our approach allows to limit the rela-
tive load unbalancing, i.e., all the cores spent almost the same
time to solve their assigned sub-problems. This is more im-
pressive for the dataset T10I4D100K. Overall, our decompo-
sition strategy allows to balance correctly the search between
the different cores. Last, it allows to tackle large datasets e.g.,
kosarak and T10I4D100K, proving the efficiency and scala-
bility of our SATAR approach.

6 Conclusion

In this paper, we have proposed a novel SAT based approach
to mine (minimal non-redundant) ARs from large transaction
databases. Our approach relies on a decomposition strategy
that allows us to achieve efficiency by suitably lowering the
size of the sub-problems without jeopardizing completeness.
An extensive campaign of experiments conducted over dif-
ferent real-world datasets has shown that our approach scales
well and outperforms the CP based approach CP4AR while
competed with the specialized approach ECLAT-Z.

Different research directions can improve this work. First,
our decomposition approach can be performed dynamically
in order to limit the load unbalancing. We are also interested
in studying better ordering among variables to improve our
decomposition technique.



Instance | D |, | Ω | α
ARs MNRs

ECLAT-Z CP4AR SATAR #Models ECLAT-Z CP4AR SATAR #Models

70% TO TO 1166.29 48151597 243.58 8.08 1.69 8638086189
anneal 812, 89 80% 104.27 336.06 16.00 111119768 10.07 4.47 0.39 78954

90% 1.11 4.49 0.10 187590 0.80 2.73 0.10 2557

40% TO TO 982.46 3617072999 TO TO 453.56 346164794
chess 3196, 75 50% 466.60 TO 166.96 477566469 TO 563.36 102.05 83324019

60% 43.73 296.68 28.50 62457693 882.45 126.53 21.18 17970343

85% 29.65 TO 100.37 43896880 107.11 113.71 60.11 1349555
connect 67557, 129 90% 5.75 175.59 26.09 3640704 12.77 33.62 24.03 319352

95% 2.47 11.84 8.59 78656 2.55 11.83 10.23 25549

0.5% MO MO 96.85 2865 MO MO 125.18 2865
kosarak 990002, 41267 2% MO MO 16.44 116 MO MO 18.53 116

5% MO MO 6.62 30 MO MO 8.13 30

5% 279.27 529.54 36.49 129322936 31.19 6.45 22.46 55371
mushroom 8124, 112 10% 21.35 79.55 8.59 17406340 6.85 5.69 7.05 22756

20% 3.67 11.60 2.29 1373250 2.32 4.20 2.38 5262

75% 700.81 TO TO 351194878 TO TO 1578.32 39406675
pumsb 49046, 7117 80% 53.95 1738.93 639.80 28276846 126.87 526.54 286.11 5504722

85% 8.67 113.11 77.07 1408950 12.31 72.81 58.04 580651

0.1% 9.95 67.77 63.47 1425 23.33 194.73 102.50 1412
retail 88162, 16470 0.3% 8.79 12.02 11.89 244 8.85 24.23 16.51 244

0.5% 8.22 10.00 4.97 117 7.98 16.81 6.01 117

0.02% 21.86 69.43 109.35 1752672 1333.98 372.72 217.59 516743
T10I4D100K 100000, 870 0.1% 4.82 18.02 26.29 296921 42.27 36.54 34.37 280831

0.5% 1.62 8.27 5.28 964 2.03 13.04 5.67 964

0.3% TO TO TO – TO TO TO 444178969
T40I10D100K 100000, 942 1.0% 9.95 189.36 239.74 3545811 125.28 319.74 357.84 3545811

1.6% 3.48 15.35 77.73 1080 6.26 31.81 101.16 1080

5% 13.03 26.96 5.59 8455184 55.96 13.36 10.35 2520334
vote 435, 48 10% 4.70 8.64 1.48 1875960 15.52 8.97 2.47 1288014

30% 0.42 2.84 0.00 3836 0.44 2.51 0.00 3836

5% 55.04 143.48 8.80 60865572 12.99 4.36 0.16 40804
zoo 101, 36 30% 1.53 3.91 0.00 387113 1.18 2.71 0.00 6462

50% 0.13 1.83 0.00 867 0.32 1.86 0.00 548

Table 1: Discovering Association Rules: ECLAT-Z vs. CP4AR vs. SATAR
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Figure 2: Performance gain w.r.t. the number of cores.
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Figure 3: Load unbalancing between cores.
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