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LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF RANDOM WALKS

IN RANDOM SCENERY

FRANÇOISE PÈNE

Abstract. We study the asymptotic behaviour of additive functionals of random walks in
random scenery. We establish bounds for the moments of the local time of the Kesten and Spitzer
process. These bounds combined with a previous moment convergence result (and an ergodicity
result) imply the convergence in distribution of additive observables (with a normalization in

n
1
4 ). When the sum of the observable is null, the previous limit vanishes and we prove the

convergence in the sense of moments (with a normalization in n
1
8 ).

1. Introduction

1.1. Description of the model and of some earlier results. We consider two independent
sequences (Xk)k≥1 (the increments of the random walk) and (ξy)y∈Z (the random scenery) of
independent identically distributed Z-valued random variables. We assume in this paper that
X1 is centered and admits �nite moments of all orders, and that its support generates the group
Z. We de�ne the random walk (Sn)n≥0 as follows

S0 := 0 and Sn :=

n∑
i=1

Xi for all n ≥ 1.

We assume that ξ0 is centered, that its support generates the group Z, and that it admits a �nite
second moment σ2

ξ := E[ξ2
0 ] > 0. The random walk in random scenery (RWRS) is the process

de�ned as follows

Zn :=

n−1∑
k=0

ξSk =
∑
y∈Z

ξyNn(y) , (1)

where we set Nn(y) = #{k = 0, . . . , n − 1 : Sk = y} for the local time of S at position y
before time n. This process �rst studied by Borodin [7] and Kesten and Spitzer [32] describes
the evolution of the total amount won until time n by a particle moving with respect to the
random walk S, starting with a null amount at time 0 and wining the amount ξ` at each time
the particle hits the position ` ∈ Z. This process is a natural example of (strongly) stationary
process with long time dependence. Due to the �rst works by Borodin [7] and by Kesten and

Spitzer [32], we know that (n−
3
4Zbntc)t converges in distribution, as n goes to in�nity, to the

so-called Kesten and Spitzer process (σξ∆t, t ≥ 0), where ∆ is de�ned by

∆t :=

∫ +∞

−∞
Lt(x) dβx , (2)

with (βx)x∈R a Brownian motion and (Lt(x), t ≥ 0, x ∈ R) a jointly continuous in t and x
version of the local time process of a standard Brownian motion (Bt)t≥0, where ((Bt)t, (βs)s) is
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the limit in distribution of n−
1
2 ((Sbntc)t, (σ

−1
ξ

∑bnsc
k=1 ξk)s) as n → +∞. Observe that ∆ is the

continuous time analog of the random walk in random scenery. To be convinced of this fact, one
may compare the right hand side of (1) with (2). The process ∆ is a classical and nice example
of a (strongly) stationary process, self-similar with dependent (strongly) stationary increments
and exhibiting long time dependence.

In [7], Borodin established the convergence in distribution of Zn when X and ξ have second
order moments. Kesten and Spitzer established in [32] a functional limit theorem when the
distributions of X and ξ belong to the domain of attraction of stable distributions with respective
parameters α 6= 1 and β ∈ (0, 2]. Limit theorems have been extended by Bolthausen [6] (for
the case α = β = 2 for random walks of dimension d = 2), by Deligiannidis and Utev [19]
(α = d ∈ {1, 2}, β = 2, providing some correction to [6]) and by Castell, Guillotin-Plantard and
the author [12] (when α ≤ d and β < 2), completing the picture for the convergence in the sense
of distribution and for the functional limit theorem (except in the case α ≤ 1 and β = 1). Since
the seminal works by Borodin and by Kesten and Spitzer, random walks in random scenery and
the Kesten and Spitzer process ∆ have been the object of various studies (let us mention for
example [33, 50, 29, 3, 27, 25, 28, 2]).

Random walks in random scenery are related to other models, such as the Matheron and de
Marsily Model [39] of transport in porous media, the transience of which has been established
by Campanino and Petritis [11] and which has many generalizations (e.g. [26, 20, 23, 10, 9]),
and such as the Lorentz-Lévy process (see [40] for a short presentation of some models linked to
random walks in random scenery).

Random walks in random scenery constitute also a model of interest in the context of dynam-
ical systems. They correspond indeed to Birkho� sums of a transformation called the T, T−1

transformation appearing in [49, p. 682, Problem 2] where it was asked whether this Kolmogorov
automorphism is Bernoulli or not. In [30], Kalikow answered negatively this question by proving
that this transformation is not even loosely Bernoulli.

1.2. Main results. Before stating our main results, let us introduce some additional notations.
Let d ∈ N be the greatest common divisor of the set {x ∈ Z, P(ξ0− ξ1 = x) > 0} and α ∈ Z such
that P(ξ0 = α) > 0. This means that the random variables ξ` take almost surely their values
in α + dZ and that d is largest positive integer satisfying this property. Since the support of ξ
generates the group Z, necessarily α and d are coprime. Recall that the quantity d can be also
simply characterized using the common characteristic function ϕξ of the ξ`.

1

In the present paper we are interested in the asymptotic behaviour of additive functionals of
the RWRS (Zn)n≥1 that is of quantities of the following form:

Zn :=

n∑
k=1

f(Zk)

where f : Z→ R is absolutely summable. This quantity is strongly related to the local time Nn
of the RWRS Z, which is de�ned by

Nn(a) = #{k = 1, ..., n : Zk = a} .
Indeed if f = 10, then Zn = Nn(0) and if f = 10−11, then Zn = Nn(0)−Nn(1). In the general
case, Zn can be rewritten

Zn :=
∑
a∈Z

f(a)Nn(a) .

1Indeed d ≥ 1 is such that {u : |ϕξ(u)| = 1} = (2π/d)Z and a.s. e
2iπξ
d = e

2iπα
d which is a primitive d-th root

of the unity.
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The asymptotic behaviour of (Nn(0))n has been studied by Castell, Guillotin-Plantard, Schapira

and the author in [14, Corollary 6], in which it has been proved that the moments of (n−
1
4Nn(0))n≥1

converge to those of the local time L1(0) at position 0 and until time 1 of the process ∆. The
proof of this result was based on a multitime local limit theorem [14, Theorem 5] extending a
local limit theorem contained in [13] and on the �niteness of the moments of L1(0) (which was
a delicate question). We complete this previous work by establishing in Section 2 the following
bounds for the moments of L1(0).

Theorem 1. For any η0 > 0, there exists a > 0 and C > 0 such that

(Cm)
3m
4 ≤ E[(L1(0))m] = O

(
am (m!)

3
2

+η0

Γ(m4 + 1)

)
≤ O

(
mm( 5

4
+2η0)

)
.

Even if it uses some ideas that already existed in [14], the proof of Theorem 1 (given in
Section 2) is di�erent in many aspects. It requires indeed much more precise estimates which
changes in the approach of the control of the moments. The proof of Theorem 1 relies on several
auxiliary results. We summarize quickly its strategy. We will prove (see (9) coming from [14]
and (10)) that

E[(L1(0))m] =
m!

(2πσ2
ξ )

m
2

∫
0<t1<...<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4E

[
m−1∏
k=0

(
d(L(k+1),Wk)

)−1
]
dt1...dtm ,

where we set Wk := V ect(L(1), ..., L(k)) and L(k+1) := (Ltk+1
−Ltk)/(tk+1 − tk)

3
4 (normalized so

that |L(m)|L2(R) has the same distribution as |L1|L2(R)). We will prove, in Lemma 7, that

∃c, C > 0, m!

∫
0<t1<...<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1...dtm ∼ c(Cm)

3m
4 ,

as m→ +∞ and, in Lemma 6, that(
E
[
|L1|−1

L2(R)

])m
≤ E

[
m−1∏
k=0

(
d(L(k+1),Wk)

)−1
]
≤

m−1∏
k=0

(
sup
V ∈Vk

E
[
(d (L1, V ))−1

])
, (3)

where d(·, ·) is the distance associated with the L2-norm on L2(R) and where Vk is the set of
linear subspaces of L2(R) of dimension at most k. Theorem 1 will then follow from the next
self-interesting estimate on the local time L1 of the Brownian motion B up to time 1.

Theorem 2.

sup
V ∈Vk

E
[
(d (L1, V ))−1

]
= k

1
2

+o(1) , as k → +∞ . (4)

Now we use the following classical argument for positive random variables. The upper bound
provided by Theorem 1 allows us to prove that the Carleman's criterion is satis�ed for E

√
L1(0)

where E is a centered Rademacher distribution independent of L1(0) and of Z, indeed:∑
m≥1

E[(L1(0))m]−
1

2m ≥ c1

∑
m≥1

m−
5
8
−η0 =∞ ,

for every η0 ∈ (0, 3
8). This enables us to deduce from [14, Corollary 6] that n−

1
8E
√
Nn(0)

converges in distribution to E
√
σ−1
ξ L1(0) and so that

n−
1
4Nn(0)

L−→ σ−1
ξ L1(0) , as n→ +∞ , (5)

where
L−→ means convergence in distribution. This convergence in distribution is extended to

more general observables.
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Theorem 3. Let f : Z→ R be such that
∑

a∈Z |f(a)| <∞. Then n−
1
4
∑n−1

k=0 f(Zk) converges in

distribution and in the sense of moments to
∑

a∈Z f(a)σ−1
ξ L1(0).

The proof of the moments convergence in Theorem 3 is a straigthforward adaptation of [14]
and is given in Appendix B. Due to Theorem 1 and to the above argument that lead to (5), the
convergence in distribution in Theorem 3 is a consequence of the moments convergence. Another
strategy to prove the convergence in distribution in Theorem 3 consists in seing this result as a
direct consequence of (5) combined with Proposition 13 stating the ergodicity of the dynamical

system (Ω̃, T̃ , µ̃) corresponding to

T̃ k((Xm+1)m∈Z, (ξm)m∈Z, Z0) = ((Xk+m+1)m∈Z, (ξm+Sk)m∈Z, Zk) .

This dynamical system preserves the in�nite measure µ̃ := P⊗ZX1
⊗ P⊗Zξ0 ⊗ λZ, where λZ is the

counting measure on Z. Actually, thanks to (5) and to the recurrence ergodicity of (Ω̃, T̃ , µ̃), we
prove the following stronger version of the convergence in distribution of Theorem 3.

Theorem 4. For any µ̃-integrable function f̃ : Ω̃→ R,

n−
1
4

n−1∑
k=0

f̃ ◦ T̃ k L(µ̃)−→
∫

Ω̃
f̃ dµ̃

σξ
L1(0) , as n→ +∞ ,

where
L(µ̃)−→ means convergence in distribution with respect to any probability measure absolutely

continuous with respect to µ̃.

Theorem 3 can be seen as weak law of large numbers, with a non constant limit. When∑
a∈Z f(a) = 0, the limit given by Theorem 3 vanishes, but then the next result provides a limit

theorem for Zn =
∑n−1

k=0 f(Zk) with another normalization. This second result corresponds to a
central limit theorem for additive functionals of RWRS. Let us indicate that, contrarily to the
moments convergence in Theorem 3, the next result is not an easy adaptation of [14], even if its
proof (given in Section 4) uses the same initial idea (computation of moments using the local
limit theorem) and, at the begining, some estimates established in [13, 14]. Indeed, important
technical di�culties arise from the cancellations coming from the fact that

∑
a∈Z f(a) = 0.

Theorem 5. Assume moreover that there exists some κ ∈ (0, 1] such that ξ0 admits a moment
of order 2 + κ. Let f : Z → R be such that

∑
a∈Z(1 + |a|)|f(a)| < ∞ and that

∑
a∈Z f(a) = 0.

Then ∑
`∈Z

∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z2

f(a)f(b)P(Z|`′+d`| = a− b)

∣∣∣∣∣∣ <∞ .

Moreover all the moments of
(
n−

1
8
∑n−1

k=0 f(Zk)
)
n
converges to those of

√
σ2
f

σξ
L1(0)N , where N

is a standard Gaussian random variable independent of L1(0) and where

σ2
f :=

∑
k∈Z

∑
a,b∈Z2

f(a)f(b)P(Z|k| = a− b) . (6)

In particular, for any a ∈ Z,
(
n−

1
8 (Nn(a)−Nn(0))

)
n
converges in the sense of moments to√

σ2
0,a

σξ
L1(0)N , with σ2

0,a :=
∑

k∈Z
[
2P(Z|k| = 0)− P(Z|k| = a)− P(Z|k| = −a)

]
.

Let us point out the similarity beween these results and the classical Law of Large Numbers
and Central Limit Theorem for sums of square integrable independent and identically distributed
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random variables. Indeed Theorems 3 and 5 establish convergence results of the respective
following forms

1

an

n∑
k=1

Yk → I(Y1)Y and
1
√
an

n∑
k=1

(Yk − I(Y1)Y 0
k )→

√
σ2
Y Y Z

as n→ +∞, with an → +∞, I an integral (with respect to the counting measure on Z) and Y 0
k

a reference random variable with integral 1 (e.g. Y 0
k = 10(Zk), note that we cannot take Y

0
k = 1

since it is not integrable with respect to the counting measure on Z).

The summation order in the expression (6) of σ2
f is important. Indeed recall that P(Zk = 0)

has order k−
3
4 and so is not summable. The sum

∑
k∈Z appearing in (6) is a priori non absolutely

convergent if d 6= 1. Indeed, considering for example that ξ0 is a centered Rademacher random
variable (i.e. P(ξ0 = 1) = P(ξ0 = −1) = 1

2) and that f = 10 − 11, then, for any k ≥ 0,∑
a,b∈Z2

f(a)f(b)P(Z|2k| = a− b) = P(Z|2k| = 0− 0) + P(Z|2k| = 1− 1) = 2P(Z|2k| = 0)

and∑
a,b∈Z2

f(a)f(b)P(Z|2k+1| = a−b) = −P(Z|2k+1| = 0−1)−P(Z|2k+1| = 1−0) = −P(|Z|2k+1|| = 1) .

But, σ2
f corresponds to the following sum of an absolutely convergent series (in k):

σ2
f =

∑
k∈Z

d−1∑
`′=0

∑
a,b∈Z2

f(a)f(b)P(Z|`′+dk| = a− b)

 .

Finally, let us point out that σ2
f de�ned in (6) corresponds to the Green-Kubo formula, well-

known to appear in central limit theorems for probability preserving dynamical systems (see
Remark 14 at the end of Section 3).

Let us indicate that results similar to Theorem 5 exist for one-dimensional random walks, that
is when the RWRS (Zn)n≥1 is replaced by the RW (Sn)n≥1, with other normalizations and with
an exponential random variable instead of L1(0). Such results have been obtained by Dobru²in
[21], Kesten in [31] and by Csáki and Földes in [17, 18]. The idea used therein was to construct a
coupling using the fact that the times between successive return times of (Sn)n≥1 to 0 are i.i.d.,
as well as the partial sum of the f(Sk) between these return times to 0 and that these random
variables have regularly varying tail distributions. This idea has been adapted to dynamical
contexts by Thomine [47, 48]. Still in dynamical contexts, another approach based on moments
has been developed in [41, 42] in parallel to the coupling method. This second method based
on local limit theorem is well tailored to treat non-markovian situations, such as RWRS. Indeed,
recall that the RWRS (Zn)n≥1 is (strongly) stationary but far to be not markovian (for example
it has been proved in [14] that Zn+m − Zn is more likely to be 0 if we know that Zn = 0) and
even more intricate conditionally to the scenery (it has been proved in [25] that the RWRS does
not converge knowing the scenery). Luckily local limit theorem type estimates enables to prove
moments convergence. But unfortunately Theorem 1 is not enough to conclude the convergence
in distribution via Carleman's criterion.

The paper is organized as follows. In Section 2, we prove Theorem 1 (bounds on moments of
the local time of the Kesten Spitzer process) and Theorem 2 (estimate on the distance in L2(R)
between the local time of a Brownian motion and a k-dimensional vector space). In Section 3, we

establish the recurrence ergodicity of the in�nite measure preserving dynamical system (Ω̃, T̃ , µ̃)
and obtain the convergence in distribution of Theorem 3 (Law of Large Numbers) as a byproduct
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of this recurrence ergodicity combined with (5). Section 3 is completed by Appendix B which
contains the proof of the moments convergence of Theorem 3. In Section 4 (completed with
Appendix A), we prove Theorem 5 (Central Limit Theorem).

2. Upper bound for moments: Proof of Theorem 1

This section is devoted to the study of the behaviour of E[(L1(0))m] as m→ +∞. It has been
proved in [14] that this quantity is �nite, but the estimate established therein was not enough
to apply the Carleman criterion. The proof of Theorem 1 requires a much more delicate study,
even if it uses some estimates used in [14]. We start by establishing bounds for E[(L1(0))m].

Lemma 6.(
E
[
|L1|−1

L2(R)

])m m!

(2πσ2
ξ )

m
2

∫
0<t1<...<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1...dtm ≤ E[(L1(0))m] (7)

and

E[(L1(0))m] ≤
m−1∏
j=0

(
sup
V ∈Vk

E
[
(d (L1, V ))−1

]) m!

(2πσ2
ξ )

m
2

∫
0<t1<...<tm<1

m−1∏
k=0

(tk+1−tk)−
3
4 dt1...dtm ,

(8)
where d(f, g) = |f − g|L2(R) and where Vk is the set of linear subspaces of L2(R) of dimension at
most k.

Proof. Recall that it has been proved in [14, Theorem 3] that

E[(L1(0))m] =
m!

(2πσ2
ξ )

m
2

∫
0<t1<...<tm<1

E[(detDt1,...,tm)−
1
2 ] dt1...dtm , (9)

with Dt1,...,tm :=
(∫

R Lti(x)Ltj (x) dx
)
i,j=1,...,m

where (Lt(x))t≥0,x∈R is the local time of the Brow-

nian motion B. Since detDt1,...,tm is a Gram determinant, we have the iterative relation

detD
1
2
t1,...,tm+1

= detD
1
2
t1,...,tm

d(Ltm+1 , V ect(Lt1 , ..., Ltm)) ,

where d(f, g) = ‖f − g‖L2(R) and where V ect(Lt1 , ..., Ltm) is the sublinear space of L2(R) gener-
ated by Lt1 , ..., Ltm . It follows that

detD−
1
2

t1,...,tm
=

m−1∏
k=0

(
d(Ltk+1

, V ect(Lt1 , ..., Ltk))
)−1

. (10)

But, for any m ≥ 1 and any 0 < t1 < ... < tm+1 < 1 and any k = 0, ...,m− 1,

E
[
d
(
Ltk+1

, V ect(Lt1 , ..., Ltk)
)−1
∣∣∣ (Bs)s≤tk]

= E
[
d
(
Ltk+1

− Ltk , V ect(Lt1 , ..., Ltk)
)−1
∣∣∣ (Bs)s≤tk]

= E
[
d
(
(Ltk+1

− Ltk)(Btk + ·), V ect(Lt1(Btk + ·), ..., Ltk(Btk + ·))
)−1
∣∣∣ (Bs)s≤tk] .

Therefore

E
[∣∣Ltk+1

− Ltk
∣∣−1

L2(R)

]
≤ E

[
d
(
Ltk+1

, V ect(Lt1 , ..., Ltk)
)−1
∣∣∣ (Bs)s≤tk] (11)

and

E
[
d
(
Ltk+1

, V ect(Lt1 , ..., Ltk)
)−1
∣∣∣ (Bs)s≤tk] ≤ sup

V ∈Vk
E
[
d
(
(Ltk+1

− Ltk)(Btk + ·), V
)−1
]
, (12)
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where Vk is the set of linear subspaces of dimension at most k of L2(R) and where we used the
independence of (Ltk+1

− Ltk)(Btk + ·) with respect to (Bs)s≤tk and the fact that (Lt1(Btk +
·), ..., Ltk(Btk + ·)) is measurable with respect to (Bs)s≤tk . Thus, by induction and using the fact
that the increments of B are (strongly) stationary, it follows from (10) and (12) that

m−1∏
k=0

E
[∣∣Ltk+1

− Ltk
∣∣−1

L2(R)

]
≤ E

[
detD−

1
2

t1,...,tm

]
≤

m−1∏
k=0

sup
V ∈Vk

E
[(
d
(
(Ltk+1

− Ltk)(Btk + ·), V
))−1

]
=

m−1∏
k=0

sup
V ∈Vk

E
[(
d
(
Ltk+1−tk , V

))−1
]
, (13)

with the convention t0 = 0. Recall that (Lu(x))x∈R has the same distribution (
√
uL1(x/

√
u))x∈R

and so (d(Lu, V ect(g1, ..., gk)))
2 has the same distribution as

min
a1,...,ak

∫
R

(
√
uL1

(
x√
u

)
−

k∑
i=1

aigi(x)

)2

dx = u min
a′1,...,a

′
k

∫
R

(
L1

(
x√
u

)
−

k∑
i=1

a′igi(x)

)2

dx

= u
3
2 min
a′1,...,a

′
k

∫
R

(
L1 (y)−

k∑
i=1

a′igi(
√
uy)

)2

dy

= u
3
2 (d(L1, V ect(h1, ..., hk)))

2

setting a′i := ai/
√
u, and making the change of variable y = x/

√
u, with hi(x) = gi(

√
ux) and so

(13) becomes

m−1∏
k=0

(
(tk+1 − tk)−

3
4E
[
|L1|−1

L2(R)

])
≤ E

[
detD−

1
2

t1,...,tm

]
≤

m−1∏
k=0

(tk+1−tk)−
3
4 sup
V ∈Vk

E
[
(d (L1, V ))−1

]
,

(14)
which ends the proof of the lemma. �

We �rst study the behaviour, as m→ +∞, of the integral appearing in Lemma 6.

Lemma 7.

m!

∫
0<t1<...<tm<1

m−1∏
k=0

(tk+1 − tk)−
3
4 dt1...dtm =

m! Γ(1
4)m

Γ(m4 + 1)
∼ c(Cm)

3m
4 ,

as m→ +∞.
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Proof.

am+1 :=

∫
0<t1<...<tm+1<1

m∏
k=0

(tk+1 − tk)−
3
4 dt1...dtm+1

=

∫
xi>0 :x1+...+xm+1<1

m+1∏
k=1

x
− 3

4
k dx1...dxm+1

=

∫ 1

0
x
− 3

4
m+1(1− xm+1)−

3m
4

(∫
xi>0 :x1+...+xm<1−xm+1

m∏
k=1

(xk/(1− xm+1))−
3
4 dx1...dxm

)
dxm+1

=

∫ 1

0
x
− 3

4
m+1(1− xm+1)

m
4

(∫
ui>0 :u1+...+um<1

m∏
k=1

u
− 3

4
k du1...dum

)
dxm+1

= am

∫ 1

0
x
− 3

4
m+1(1− xm+1)

m
4 dxm+1 = amB

(
1

4
,
m

4
+ 1

)
= am

Γ(1
4)Γ(m4 + 1)

Γ(m+1
4 + 1)

,

where B(·, ·) and Γ stand respectively for Euler's Beta and Gamma functions, and so, by induc-

tion, am = Γ(1/4)m

Γ(m
4

+1) proving the �rst point of the lemma. Moreover

m!am ∼ (Γ(1/4))mmm+ 1
2 (m+ 4)−

m
4
− 1

2 4
m
4

+ 1
2 e−

3m
4

+1 ,

where we used the Stirling formulas m! = Γ(m + 1) and Γ(z) ∼
√

2πzz−
1
2 e−z. This ends the

proof of the lemma. �

Observe that E
[
|L1|−1

L2(R)

]
> 0. Thus, the proof of Theorem 1 will be be deduced from the

two previous lemmas combined with Theorem 2, which can be rewritten as follows

∀η0 > 0, ∃C > 1, ∀k ∈ N∗, C−1k
1
2
−η0 ≤ sup

V ∈Vk
E
[
(d (L1, V )))−1

]
≤ Ck

1
2

+η0 . (15)

Due to [44, Cor. (1.8) of Chap. VI, Theorem (2.1) of Chap. I], L1 is almost surely Hölder
continuous of order 1

2 − η0 and its Hölder constant admits moments of any order. The lower
bound of theorem 2 follows directly from this fact.

Proof of the lower bound of Theorem 2. We prove the lower bound of (15). Let η0 ∈ (0, 1
2). Let

C1 be the Hölder constant of order
1
2−η0 of L1. Let Vk be the linear subspace of L

2(R) generated
by the set {

1[m/k,(m+1)/k], m = −
⌊
k

2

⌋
, ...,

⌈
k

2

⌉
− 1

}
,

and consider L̃k ∈ Vk given by

L̃k :=

d k
2
e−1∑

m=−b k
2
c

L1

(m
k

)
1[m

k
,m+1
k

) .

Let K0 > 0. We will use the fact that

E
[
(d (L1, Vk))

−1
]
≥ E

[
(d (L1, Vk))

−1 1{C1≤K0, sup[0,1] |B|≤ k−1
2k
}

]
.
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Observe that, if sup[0,1] |B| ≥ k−1
2k and C1 ≤ K0, then

d (L1, Vk)
2 ≤ d(L1, L̃k)

2 =

d k
2
e−1∑

m=b k
2
c

∫ m+1
k

m
k

(L1(u)− L1(m/k))2 du

≤
d k

2
e−1∑

m=b k
2
c

k−1
(
K0k

− 1
2

+η0

)2
≤
(
K0k

− 1
2

+η0

)2
.

Thus

E
[
(d (L1, Vk))

−1
]
≥ E

[
(d (L1, Vk))

−1 1{C1≤K0, sup[0,1] |B|≤ k−1
2k
}

]
≥ E

[(
K0k

− 1
2

+η0

)−1
1{C1≤K0, sup[0,1] |B|≤ k−1

2k
}

]
≥ K−1

0 k
1
2
−η0 P

(
C1 ≤ K0, sup

[0,1]
|B| ≤ 1

3

)
.

�

The rest of this section is devoted to the proof of the upper bound of Theorem 2 (i.e. the
upper bound of (15)), which is much more delicate to establish. To this end, we will prove a
sequence of estimates. Let us �rst introduce the quantities used in this proof. We �x η0 > 0 and
d = 1

2 + η0 > 1/2. Choose ε0 ∈ (0, 1
10) such that

d >
1 + ε0

2(1− ε0)
. (16)

Fix a, b, η, γ ∈ (0, 1
10) such that 0 < b

8 <
a
2 and small enough so that

(1 + γ)(1 + ε0)

2
+
a

2
+
b

8
< 1 (17)

and

(2d(1− ε0)− 1− ε0)(1− 2η)− 8η > 0 . (18)

Let θ > 0 such that (1− 2η)θ > 1 and

1− b

4
− (1 + γ)(1 + ε0)

2
< θ(1− 2η)

(
1− (1 + γ)(1 + ε0)

2
− a

2
− b

8

)
(19)

and

(1− ε0)(1 + 2d) < θ [(2d (1− ε0)− 1− ε0)(1− 2η)− 8η] . (20)

The existence of such a θ is ensured by (17) and (18). Fix then K such that 1
4a−b < K and

v0 = d16/be. We will also consider the following quantities which will depend on k ≥ 1. We set
M := dθke and M ′ := Md. For x > M ′, we also set:

r0 := (x/M ′)−(1+γ)(1+ε0)M−
1+ε0

2 M ′
−1−ε0 , x0 = (x/M ′)aM, x1 = (x/M ′)b . (21)

Let V be a linear space generated by g1, ..., gk ∈ L2(R). Observe that

E
[
(d (L1, V )))−1

]
=

∫ ∞
0

P
(

(d (L1, V )))−1 > x
)
dx

= O(M ′) +

∫ ∞
M ′

P
(
d (L1, V )) < x−1

)
dx . (22)
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Lemma 8. Uniformly on x > M ′:

P
(
d (L1, V )) < x−1

)
≤ O

(
(x/M ′)−2

)
+ P

(
∀` = −v0, ..., v0, D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n=1,...,M

,W
(`x
− 1

8
1 )

V

)
< 2x−1r

− 1
2

0

)
.

(23)

where W
(y0)
V := Span

((∫ y0+(n+1)/x0

y0+n/x0
gj(y

′) dy′
)
n=1,...,M

, 1, ..., k

)
⊂ RM and where D is the

usual euclidean metric in RM .

Proof. We set

C1 := sup
y,z∈R : y 6=z

|L1(y)− L1(z)|
|y − z|u

, with u :=
1

1 + ε0
− 1

2
.

Since C1 admits moments of every order, it follows that

P (d (L1, V ) < 1/x) ≤ P
(
d (L1, V )) < 1/x, C1 ≤ (x/M ′)γ

)
+O((x/M ′)−2) ,

Note that, if x > M ′, then

r0x0 = (x/M ′)a−(1+γ)(1+ε0)M
1−ε0

2 M ′
−1−ε0 ≤ 1 ,

as soon as x > M ′, since a < 1 < (1+γ)(1+ε0) and sinceM ′ = Md with 1
2 ≤ d, and so r0 ≤ x−1

0 .

Assume moreover that d(L1, V ) < 1/x and C1 ≤ xγ . Let aj such that d
(
L1,
∑k

j=1 ajgj

)
< x−1.

Then, for every ` ∈ Z, the following estimate holds true

x−1 >

 M∑
n=1

∫ `x
− 1

8
1 + n

x0
+r0

`x
− 1

8
1 + n

x0

L1(y)−
k∑
j=1

ajgj(y)

2

dy


1
2

≥

 M∑
n=1

∫ `x
− 1

8
1 + n

x0
+r0

`x
− 1

8
1 + n

x0

L1

(
`x
− 1

8
1 +

n

x0

)
−

k∑
j=1

ajgj(y)

2

dy


1
2

−
(
Mr0(x/M ′)2γr2u

0

) 1
2

≥
√
r0D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n=1,...,M

,W
(`x
− 1

8
1 )

V

)
−
√
M(x/M ′)γr

1
2

+u

0 .

Since 1
2+u = 1

1+ε0
and r0 = (x/M ′)−(1+γ)(1+ε0)M−

1+ε0
2 M ′−1−ε0 , we conclude that

√
M(x/M ′)γr

1
2

+u

0 =

x−1 and so

P (d (L1, V )) < 1/x, C1 ≤ xγ)

≤ P

(
∀` = −v0, ..., v0, D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n

,W
(`x
− 1

8
1 )

V

)
< 2x−1r

− 1
2

0

)
.

�

Recall that v0 = d16/be. Set

E0,W :=

D
(x0

∫ n+1
x0

n
x0

Y ′(y) dy

)
n=1,...,M

,W

 < 2x−1√x0

 .
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Lemma 9. The following estimate holds true uniformly on x > M :

P
(
d (L1, V )) < x−1

)
≤ O

(
(x/M ′)−2

)
+ sup

W
P (E0,W ) , (24)

where supW means the supremum over the set of linear subspaces W of RM of dimension at most

k and where Y ′ is a squared Bessel process of dimension 0 starting from x
− 1

4
1 .

Proof. We adapt the proof of [14, Lemma 9]. Setting ε′ := x
− 1

8
1 and Tu := min{s > 0 : |Bs| = u}

for the �rst hitting time of {±u} by the Brownian motion B, we observe that

P(Tv0ε′ > 1) = P

(
sup
s∈[0,1]

|Bs| ≤ v0ε
′

)
= O(e−c0(v0ε′)−2

) = O
(

(x/M ′)−bv0/8
)

= O
(
(x/M ′)−2

)
.

(25)
(using e.g. [43, Proposition 8.4, page 52]). Moreover, due to [44, Exercise 4.12, Chapter VI, p
265], for every n = 0, ..., v0 − 1,

P
(
LT(n+1)ε′ (BTnε′ )− LTnε′ (BTnε′ ) ≤ (ε′)2|(Bu)u≤Tnε′

)
≤ P(LTε′ (0) ≤ (ε′)2) ≤ ε′

and so, due to the strong Markov property,

P
(
∀n = 0, ..., v0 − 1, LT(n+1)ε′ (BTnε′ )− LTnε′ (BTnε′ ) ≤ (ε′)2

)
≤ (ε′)v0 ,

and this, combined with (25), ensures that there exists C0 > 0 such that P(∀` = −v0, ..., v0, L1(`ε′) ≤
(ε′)2) ≤ C0(ε′)v0 and so

P (∀` = −v0, ..., v0, t`(x1) > 1) ≤ C0(x/M ′)−bv0/8 ≤ C0(x/M ′)−2 , (26)

setting t`(x1) := inf{s > 0 : Ls(`x
− 1

8
1 ) > x

− 1
4

1 }. Moreover, for any ` = 1, ..., v0, we have

sup
V

P

(
t`(x1) < 1, D

((
L1

(
`x
− 1

8
1 +

n

x0

))
n

,W
(`x
− 1

8
1 )

V

)
< 2x−1√x0

)

≤ sup
V

P

(
t`(x1) < 1, D

((
Lt`(x1)

(
`x
− 1

8
1 +

n

x0

))
n

,W
(`x
− 1

8
1 )

V,0

)
< 2x−1√x0

)

≤ sup
W

P
(
D

((
Lt`(x1)

(
`x
− 1

8
1 +

n

x0

))
n

,W

)
< 2x−1√x0

)
, (27)

setting W
(`x
− 1

8
1 )

V,0 := W
(`x
− 1

8
1 )

V +

(
(Lt`(x1) − L1)

(
`x
− 1

8
1 + n

x0

))
n

. Due to the second Ray-Knight

theorem (see [44, Theorem 2.3, page 456]), (Lt`(x1)(`x
− 1

8
1 + y))y≥0 has the same distribution as

Y ′. The lemma follows from (26) and (27). �

Recall that 4a− b > 0. Set

E1 :=

{
sup

s≤M/x0

|Y ′(s)− x−1/4
1 | < x

−1/4
1

2

}
.

Lemma 10. For every K > (4a− b)−1, the following estimate holds true uniformly on x > M :

P (E1) = 1−O
(

(x/M ′)−K(4a−b)
)
. (28)
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Proof. Using the Burkholder-Davis-Gundy inequality, combined with the fact that Y ′ is domi-

nated by the square of a Brownian motion starting from x
− 1

4
1 , we observe that

px = P

[
sup

s≤M/x0

|Y ′(s)− x−1/4
1 | ≥ x

−1/4
1

2

]

≤ CK x2K
1 28K E

(∫ M/x0

0
Y ′(u) du

)4K


≤ C ′K x2K
1 (M/x0)4K−1

∫ M/x0

0
E
[
Y ′(u)4K

]
du (29)

with C ′K = 28KCK , and so

px ≤ C ′K x2K
1 (M/x0)4K−1

∫ M/x0

0
E
[
(x
−1/8
1 +Bu)8K

]
du

≤ C ′K x2K
1 (M/x0)4K28K

(
x−K1 + (M/x0)4K

)
≤ C ′′K

(
xK1 (M/x0)4K + x2K

1 (M/x0)8K
)

with C ′′K = 28KC ′K and

xK1 (M/x0)4K = (x/M ′)−K(4a−b) ,

since x0 = (x/M ′)aM and x1 = (x/M ′)b. �

Lemma 11. Uniformly on x > M ′,

sup
W

P (E0,W ∩ E1) ≤C ′′k(x/M ′)
[
1− b

4
− (1+γ)(1+ε0)

2

]
k−M(1−2η)

[
1− (1+γ)(1+ε0)

2
−a

2
− b

8

]

×M
(1−ε0)k

4
+

(1+ε0)(1−2η)M
4

+2ηMM ′
(

1−ε0
2

)
(k−(1−2η)M)

.

Proof. Observe that

E0,W ∩ E1 ⊂

{(
Y ′(n/x0)

)
n=1,...,M

∈ B∞

(
x
−1/4
1 ,

x
−1/4
1

2

)
∩Wx

}
, (30)

where B∞
(
x
−1/4
1 ,

x
−1/4
1
2

)
is the ball (for the supremum norm) of radius

x
−1/4
1
2 and centered on

(x
−1/4
1 , ..., x

−1/4
1 ), and whereWx is the ε = 2x−1r

− 1
2

0 -neighbourhood ofW for the metric D. Note
that

ε = 2(x/M ′)
(1+γ)(1+ε0)

2
−1M

1+ε0
4 M ′

1+ε0
2
−1

(31)

and

Rx :=

√
M x

−1/4
1

ε
=

1

2
(x/M ′)1− b

4
− (1+γ)(1+ε0)

2 M
1−ε0

4 M ′
1− 1+ε0

2 � 1 , (32)

uniformly in x > M ′, since b
4 + (1+γ)(1+ε0)

2 < 1. Observe that B∞
(
x
−1/4
1 ,

x
−1/4
1
2

)
∩Wx is contained

in B2

(
x
−1/4
1 ,

√
Mx

−1/4
1

)
∩ Wx where B2

(
x
−1/4
1 ,

√
Mx

−1/4
1

)
is the euclidean ball centered on

(x
−1/4
1 , ..., x

−1/4
1 ) with radius

√
Mx

−1/4
1 .

Let z0, z
′
0 ∈ B2

(
x
−1/4
1 ,

√
Mx

−1/4
1

)
∩ Wx and z1 ∈ W ∩ B2(z0, ε), z

′
1 ∈ W ∩ B2(z′0, ε). Then

z′1 ∈ B2

(
z1, 3
√
Mx

−1/4
1

)
. Due to [45, Theorem 3, pages 157], there exists c > 0 such that
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W ∩ B2

(
z1, 3
√
Mx

−1/4
1

)
is contained in the union of at most (cRx)k euclidean balls of radius ε

in W . Thus Wx ∩ B2

(
x
− 1

4
1 ,
√
Mx

−1/4
1

)
is contained in the union of at most (cRx)k euclidean

balls of radius 2ε. We conclude that B∞
(
x
−1/4
1 ,

x
−1/4
1
2

)
∩Wx is contained in the union of at most

(cRx)k euclidean balls of radius 4ε centered at a point contained in B∞
(
x
−1/4
1 ,

x
−1/4
1
2

)
∩Wx. It

follows from this combined with (30) that

P [E0,W ∩ E1] ≤ (cRx)k sup

z∈B∞

(
x
−1/4
1 ,

x
−1/4
1

2

)P
(
(Y ′(n/x0))n=1,...,M ∈ B2(z, 4ε)

)
. (33)

Note that if z ∈ B∞
(
x
−1/4
1 ,

x
−1/4
1
2

)
and (Y ′(n/x0))n=1,...,M ∈ B2(z, 4ε), then maxn=0,...,M−1 |zn+1−

x
− 1

4
1 | <

x
− 1

4
1
2 and there exist at most ηM indices n′ that |Y ′(n′/x0)− zn′ | ≥ 4ε/

√
ηM , and so at

least (1− 2η)M indices n = {0, ...,M − 1} such that(∣∣∣∣Y ′( n

x0

)
− zn

∣∣∣∣ , ∣∣∣∣Y ′(n+ 1

x0

)
− zn+1

∣∣∣∣) < 4ε/
√
ηM ,

with z0 = x
− 1

4
1 . Due to [44, after Corollary 1.4, page 441], the distribution of Y ′((n + 1)/x0)

knowing Y ′(n/x0) = y is the sum of a Dirac mass at 0 and of a measure with density

z 7→ qx0(y, z) :=
x0

2

√
y

z
exp

(
−x0(y + z)

2

)
I1 (x0

√
yz) ,

where I1 is the modi�ed Bessel function of index 1 which satis�es I1(z) = O(ez/
√
z), as z →∞,

(see [35, (5.10.22) or (5.11.10)]). So

qx0(y, z) = O
(
x

1
2
0 x

1
8
1 exp

(
−
x0(
√
y −
√
z)2

2

))
= O

(
x

1
2
0 x

1
8
1

)

uniformly on y, z ∈

[
x
− 1

4
1
4 , 2x

− 1
4

1

]
. We will use the expression x0, x1 and ε given in (21) and (31).

Thus by using the Markov property (and M !
(M(1−2η))!(2ηM)! ≤ M2ηM ), we get by induction, that,

when x > M ′,

sup

z∈B∞

(
x
−1/4
1 ,

x
−1/4
1

2

)P
(
(Y ′(n/x0))n=1,...,M ∈ B2(z, 4ε)

)

≤M2ηM

(
C ′(x/M ′)

−
(

1− (1+γ)(1+ε0)
2

−a
2
− b

8

)
M

1+ε0
4 M ′

−1+
1+ε0

2

)(1−2η)M

.

Recalling that M = O(k), the previous estimate combined with (33) and (32) ensures that

sup
W

P (E0,W ∩ E1) ≤C ′′k(x/M ′)
[
1− b

4
− (1+γ)(1+ε0)

2

]
k−M(1−2η)

[
1− (1+γ)(1+ε0)

2
−a

2
− b

8

]

M
(1−ε0)k

4
+

(1+ε0)(1−2η)M
4

+2ηMM ′
(

1− 1+ε0
2

)
(k−(1−2η)M)

, (34)

which ends the proof of the lemma. �
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Proof of the upper bound of Theorem 2. Formula (15) follows from (22) and Lemmas 9, 10 and
11. We will use the fact that

∀Q > 1,

∫ ∞
M ′

(x/M ′)−Q dx = O(M ′) . (35)

Thanks to this, the error terms in Lemmas 9 and 10 gives directly a term in O(M ′) = O(kd).
Let us detail the term coming from Lemma 11. We �rst observe that the exponent of (x/M ′) is
strictly smaller than -1 for k large enough. Indeed this exponent is[

1− b

4
− (1 + γ)(1 + ε0)

2

]
k −M(1− 2η)

[
1− (1 + γ)(1 + ε0)

2
− a

2
− b

8

]
which is smaller than

k

[
1− b

4
− (1 + γ)(1 + ε0)

2
− θ(1− 2η)

(
1− (1 + γ)(1 + ε0)

2
− a

2
− b

8

)]
where we used the fact that M = dθke ≥ θk. The fact that this quantity is strictly smaller than
-1 for any k large enough comes from our conditions (17) and (19). It follows from this combined
with (35) and Lemma 11 that∫ +∞

M ′
sup
W

P (E0,W ∩ E1 ∩ E2) dx

≤ C ′′kM
(1−ε0)k

4
+

(1+ε0)(1−2η)M
4

+2ηMM ′
1+
(

1−ε0
2

)
(k−(1−2η)M)

≤ C ′′kMd+
(1−ε0)(1+2d)M

4θ
+

(1+ε0−2d(1−ε0))(1−2η)M
4

+2ηM ,

where we used the fact that M ′ = Md and that k ≤ dθke/θ = M/θ. Finally, we notice that
1 + ε0 − 2d(1− ε0) < 0 (due to (16)) and that (20) ensures that

(1− ε0)(1 + 2d)

4θ
+

(1 + ε0 − 2d(1− ε0))(1− 2η)

4
+ 2η < 0

and conclude that ∫ +∞

M ′
sup
W

P (E0,W ∩ E1 ∩ E2) dx = O(1) .

�

3. Law of large numbers: Proof of Theorem 3

We complete the sequence (Xn)n≥1 into a bi-in�nite sequence (Xn)n∈Z of i.i.d. random vari-
ables. Theorem 3 could be proved by an adaptation of the proof of [14, Corollary 6] (combined
with Theorem 1). We use here another approach enabling the study of more general additive
functionals. Recall that (ξm+Sk)m∈Z is the scenery seen from the particle at time k.

Proposition 12. Let f̃ : ZZ × ZZ × Z→ R be a measurable function such that∑
`∈Z
|E[f̃((Xn+1)n∈Z, (ξn)n∈Z, `)]| <∞ .

Then (∑n−1
k=0 f̃((Xm+k+1)m∈Z, (ξm+Sk)m∈Z, Zk+m)

Nn(0)

)
n≥0

converges almost surely to I(f̃) :=
∑

`∈Z E[f̃((Xn)n∈Z, (ξn)n∈Z, `)].
In particular, this combined with (5) ensures that
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(
n−

1
4

n−1∑
k=0

f̃((Xm+k+1)m∈Z, (ξm+Sk)m∈Z, Zk)

)
n≥0

converges in distribution to I(f̃)σ−1
ξ L1(0).

Our approach to prove Proposition 12 uses an ergodic point of view. Let us consider the
probability preserving dynamical system (Ω, T, µ) given by

Ω = ZZ × ZZ, T ((xk)k∈Z, (yk)k∈Z) = ((xk+1)k∈Z, (yk+x0)k∈Z), µ = P⊗ZX1
⊗ P⊗Zξ0 ,

i.e. T (x,y) = (σx, σx0y), where we write σ : ZZ → ZZ for the usual shift transformation given
by σ ((zk)k∈Z) = (zk+1)k∈Z.

This system is known to be ergodic (see [49, 30]). We set Φ(x, y) := y0. With these notations,

Zk corresponds to the Birkho� sum
∑n−1

k=0 Φ◦T k. Consider the Z-extension (Ω̃, T̃ , µ̃) over (Ω, T, µ)
with step function Φ. This system is given by

Ω̃ := Ω× Z, µ̃ = µ⊗ λZ ,

where λZ =
∑

`∈Z δ` is the counting measure on Z and with

T̃ (x, y, `) = (T (x, y), `+ y0) .

In particular

T̃ k ((xm+1)m∈Z, (ym)m∈Z, `) =

(xm+k+1)m∈Z, (ym+x0+...+xk−1
)m∈Z, `+

k−1∑
j=0

yx0+...+xj

 .

Observe that Nn(0) corresponds to the Birkho� sum
∑n−1

k=0 h0 ◦ T̃ k(x,y, 0) with h0(x,y, `) =

10(`), and the sum studied in Proposition 12 corresponds to
∑n−1

k=0 f̃ ◦ T̃ k(x,y, 0), while I(f̃) =∫
Ω̃
f̃ dµ̃.

Proposition 13. The system (Ω̃, T̃ , µ̃) is recurrent ergodic.

Proof. Since (Ω, T, µ) is ergodic and since Φ is integrable and µ-centered, we know (by [46,
Corollary 3.9] combined with the Birkho� ergodic theorem) that P(Zn = 0 i.o.) = 1, thus that

(Ω̃, T̃ , µ̃) is recurrent (i.e. conservative). Now let us prove that this system is also ergodic. Let

g : Ω̃→ (0,+∞) be a positive µ̃-integrable function such that g(x,y, `) = g0(`) does not depend
on (x,y) ∈ Ω and with unit integral (g is a probability density function with respect to µ̃). By

recurrence of (Ω̃, T̃ , µ̃), we know that ∑
k≥1

g ◦ T̃ k =∞ (36)

µ̃-almost everywhere. Let K ∈ N. Consider f : Ω̃ → R a µ̃-integrable function constant on
the K-cylinders of the �rst coordinate, i.e. such that f(x,y, `) = f0((xm)|m|≤k,y, `) does not
depend on (xk)|k|>K .

Since (Ω̃, T̃ , µ̃) is recurrent, the Hopf-Hurewicz's theorem (see e.g. [1, p. 56]) ensures that

lim
|n|→+∞

∑n
k=1 f ◦ T̃ k∑n
k=1 g ◦ T̃ k

= H(f,g) := Egµ̃
[
f

g

∣∣∣∣ Ĩ] (37)
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µ̃-almost everywhere, where Ĩ is the σ-algebra of T̃ -invariant events. Thus the ergodicity of

(Ω̃, T̃ , µ̃) will follow from the fact that H(f,g) is µ̃-almost everywhere constant for every f as
above (g can be �xed). Observe that, for k > K,

f ◦ T̃ k(x,y, `) = f

(
σkx, σx0+...+xk−1y, `+

k−1∑
m=0

yx0+...+xm

)

= f0

(
xk−K , ..., xK+k, σ

x0+...+xk−1y, `+
k−1∑
m=0

yx0+...+xm

)
does not depend on (xk)k≤−1. Analogously, for k > K,

f ◦ T̃−k(x,y, `) = f

(
σ−kx, σ−x−1−...−x−ky, `−

k∑
m=1

y−x−1−...−x−m

)

= f0

(
x−K−k, ..., x−(k−K), σ

−x−1−...−x−ky, `−
k∑

m=1

y−x−1−...−x−m

)
does not depend on (xk)k≥0. Of course g ◦ T̃ k satis�es the same property. Thus, due to (36) and

(37), it follows that H(f, g)(x,y, `) does not depend on x. Thus, H(f,g)(x,y, `) = H
(0)
(f,g)(y, `)

for µ̃-almost every (x,y, `) ∈ Ω̃.

By T̃ -invariance of H(f,g), given two distinct points x0, x
′
0 ∈ Z such that P(X1 = x0)P(X1 =

x′0) > 0, the following equality holds true almost everywhere

H
(0)
(f,g)(y, `) = H

(0)
(f,g)(σ

x0y, `+ y0) = H
(0)
(f,g)(σ

x′0y, `+ y0) ,

where we write σ for the usual shift on ZZ given by σ((yk)k∈Z) = (yk+1)k∈Z. It follows that,

for every ` ∈ Z, H(0)
(f,g)(·, `) is σx0−x′0-invariant almost everywhere. By ergodicity of σx0−x′0 ,

we conclude that H(f,g)(x,y, `) = H
(1)
f,g (`) depends only on ` almost everywhere. Since it is

T̃ -invariant, for every y0 ∈ Z such that P(ξ0 = y0) > 0, H
(1)
f,g (`) = H

(1)
f,g (` + y0). Since the

support of y0 generates the group Z, we conclude that H(f,g) is µ̃-almost everywhere equal to a
constant. �

Note that the system in in�nite measure (Ω̃, T̃ , µ̃) describes the evolution in time m of
((Xm+k+1)k∈Z, (ξSm+k)k, Zm). In comparison, the system corresponding to ((Xm+k+1)k, Sm)
is also recurent ergodic, but the analogous system corresponding to ((Xm+k+1)k, (ξSm+k)k, Sm)
is recurrent (since P(Sn = 0 i.o.) = 1) not ergodic (since the sets of the form {(x, y, `) : (yn−`)n ∈
A0} are invariant).

Proof of Proposition 12. Since (Ω̃, T̃ , µ̃) is recurrent ergodic, the Hopf ergodic theorem ensures

that, for any f̃ ∈ L1(µ̃), the sequence

( ∑n−1
k=0 f̃◦T̃

k∑n−1
k=0 h̃0◦T̃k

)
n≥0

converges µ̃-almost everywhere to∫
Ω̃
f̃ dµ̃∫

Ω̃
h̃0 dµ̃

= I(f̃). Thus(∑n−1
k=0 f̃((Xm+k+1)m∈Z, (ξm+Sk)m∈Z, Zk+m)

Nn(0)
=

∑n−1
k=0 f̃ ◦ T̃ k∑n−1
k=0 h̃0 ◦ T̃ k

((Xm)m∈Z, (ξm)m∈Z, 0)

)
n≥0

converges almost surely to I(f̃), and we have proved the �rst part of the proposition. The second
part comes from the �rst part combined with (5) and the Slustky theorem. �
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Proof of Theorem 4. Proposition 12 states that n−
1
4
∑n−1

k=0 f̃ ◦ T̃ k converges in distribution, with

respect to µ ⊗ δ0 � µ̃, to
∫

Ω̃
f̃ dµ̃ σ−1

ξ L1(0). Thus, Theorem 4 follows from Proposition 12

combined with [51, Theorem 1]. �

We end this section with an interpretation of σ2
f in terms of the famous Green-Kubo formula.

Remark 14. Assume the assumptions of Theorem 5. consider the function f̃ : Ω̃→ Z given by

f̃(x,y, `) := f(`). Then σ2
f can be rewritten

σ2
f =

∑
k∈Z

∫
Ω̃
f̃ .f̃ ◦ T̃ |k| dµ̃ .

4. Proof of the central limit theorem: proof of Theorem 5

We start by stating key intermediate results. We recall that d and α have been introduced in
the beginning of Section 1.2.

Proposition 15. Assume the assumptions of Theorem 5. Let M ∈ N∗ and η > 0. There exists
L ∈ (0, 1) such that for every θ ∈ (0, 1) the following holds true with the notations nj := kj−kj−1,
with the convention k0 = 0.

First,

∑
k′j=0,...,d−1, ∀j∈J

E

 m∏
j=1

(
f(Zkj+k′j )

sj∏
s=1

f(Zkj+`j,s)

) = O

((
m∏
i=1

n
− 3

4
i

)
Ek

)
, (38)

uniformly over the k = (k1, ..., km) and ` = (`j,s)j=1,...,m;s=1,...,sj such that n > kj > kj−1 + nθ

(with convention k0 := 0) and `j,s ∈ {0, ..., bnLθc} with M =
∑m

j=1(sj + 1), where we set

J := {j = 1, ...,m : sj = 0} and k′j = 0 if j 6∈ J ′, and with

Ek = O

 ∑
J ′⊂{1,...,m} : #J ′≥#J /2

∏
j∈J ′

n
− 1

2
+η

j

 .

Second, if sj = 1 for all j, then

E

 m∏
j=1

(
f(Zkj )f(Zkj+`j )

) =
dmEk

(2πσ2
ξ )

m
2

m∏
j=1

Akj ,`j +O

n−L(M+1)θ
m∏
j=1

n
− 3

4
j

 ,

uniformly on k, ` as above, with Ek depending on k but not on ` and such that Ek = O
(∏m

j=1 n
− 3

4
j

)
uniformly on k as above, and Ek ∼ n−

3m
4 E

[
detD−

1
2

t1,...,tm

]
as kj/n → tj and n → +∞, with

Dt1,...,tm = (
∫
R Lti(x)Ltj (x) dx)i,j=1,...,m where L is the local time of the brownian motion B,

limit of (Sbntc/
√
n)t as n goes to in�nity, and where

Ak,` :=
∑

a∈kα+dZ, b∈Z

(
f(a)

m∏
s=1

f(b)

)
P(Z` = b− a) .
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Third,

d−1∑
k′1,...,k

′
m=0

n
κθη
10M∑

`1,...,`m=0

2#{j:`j>0}
m∏
j=1

Akj+k′j ,`j = σ2m
f + o(1) ,

as (k1/n, ..., km/n)→ (t1, ..., tm) and n→ +∞.

Proof. The proof of Proposition 15 is based on several technical lemmas. For reader convenience,
the most technical points are proved in Appendix A. Let M ≥ 1, θ ∈ (0, 1) and η ∈

(
0, 1

100

)
.

Choose L = κη
10M . Assume nθ < nj < n and let `j,1, ..., `j,sj = 0, ..., bnLθc with

∑m
j=1(1+sj) = M .

We set N ′j(y) := #{s = 0, ..., nj − 1 : Skj−1+s = y}, N∗j := supyN
′
j and R′j := #{y ∈ Z :

N ′j(y) > 0}. Analogously, we set N ′j,s = #{s = 0, ..., `j,s − 1 : Skj+s = y}. The left hand side of

(38) can be written

Bk,` =
∑
a,b

 m∏
j=1

(
f(aj)

sj∏
s=1

f(bj,s)

) pk,`(a, b) , (39)

where
∑
a,b means the sum over (a, b) ∈ ZM with a = (a1, ..., am) and b = (bj,s)j=1,...,m;s=1,...,sj ,

with the convention a0 = 0 and

pk,`(a, b) = P(∀j = 1, ...,m, Zkj = aj , ∀s = 1, ..., sj , Zkj+`j,s = bj,s) .

An classical computation (detailed in Appendix A) ensures the following.

Lemma 16.

pk,`(a, b) = 1{∀i, ai=kiα+dZ}
dm

(2π)M

∫
[−π

d
,π
d

]m×[−π,π]M−m
e−i

∑m
j=1[(aj−aj−1)θj+

∑sj
s=1(bj,s−aj)θ′j,s]ϕk,`(θ,θ

′) d(θ,θ′) .

(40)

with θ = (θj)j=1,...,m and θ′ = (θ′j,s)j=1,...,m;s=1,...,sj and

ϕk,`(θ,θ
′) = E

∏
y∈Z

ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y))

) . (41)

For any event E and any I ⊂ [−π
d ,

π
d ]m × [−π, π]M−m, we also set

ϕk,`(θ,θ
′, E) = E

1E∏
y∈Z

ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y))

) , (42)

pk,`(a, b, I, E) = 1{∀i, ai=kiα+dZ}
dm

(2π)M

∫
I
e−i

∑m
j=1[(aj−aj−1)θj+

∑sj
s=1(bj,s−aj)θ′j,s]ϕk,`(θ,θ

′, E′) d(θ,θ′) .

(43)

and

Bk,`,I,E =
∑
a,b

 m∏
j=1

(
f(aj)

sj∏
s=1

f(bj,s)

) pk,`(a, b, I, E) . (44)

Let γ < min(Lθ, ηθ2M ). Let θ′ ∈ (0, θη2 ) such that θ′ ≤ θ
2 − 2MLθ. We consider the set

Ωk :=

{
detDk ≥ n−θ

′
m∏
i=1

n
3
2
i

}
∩

m⋂
j=1

Ω
(j)
k , (45)
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with

Ω
(j)
k :=

 sup
r=0,...,nj

|Sr+kj−1
− Skj−1

| ≤
n

1
2

+γ

j

3
, sup

y 6=z

|N ′j(y)−N ′j(z)|

|y − z|
1
2

≤ n
1
4

+ γ
2

j

 ,

and with Dk =
(∑

y∈ZN
′
i(y)N ′j(y)

)
i,j
. The following lemma follows from [14] (see appendix A

for details).

Lemma 17. For any p > 1, P(Ωk) = 1− o(n−p), and so B
k,`,[−πd ,

π
d ]
M
,Ωck

= o(n−p).

Note that, on Ωk,

R′j ≤ n
1
2

+γ

j , (46)

N∗j = |N∗j − 0| ≤ n
1
4

+ γ
2

j ((nj)
1
2

+γ)
1
2 � n

1
2

+ η
2

j , (47)

Vj :=
∑
z∈Z

(N ′j(z))
2 ≥

(∑
z∈ZN

′
j(z)

)2

R′j
≥

n2
j

n
1
2

+γ

j

≥ n
3
2
− η

2
j , (48)

Vj ≤ R′j(N∗j )2 ≤ n
3(1+η)

2
j . (49)

It will be useful to notice that

∣∣ϕk,`(θ,θ′, E)
∣∣ ≤ E

1E ∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣
 (50)

with

F :=
{
y ∈ Z : ∀(j, s), N ′j,s(y) = 0

}
,

and that

#(Z \ F) ≤
m∑
j=1

sj∑
s=1

`j,s ≤MnLθ = o(n
1
4 ) . (51)

Using a straighforward adaptation of the proof of [13, Proposition 10], we prove (see Appendix
A) that

Lemma 18.

B
k,`,I

(1)
k ,Ωk

= o
(
e−n

c)
, (52)

uniformly on k, ` as in Proposition 15, where I
(1)
k is the set of (θ,θ′) ∈

[
−π
d ,

π
d

]m × [−π, π]M−m

such that there exists j = 1, ...,m so that n
− 1

2
+η

j < |θj |.

Lemma 19.

B
k,`,I

(2)
k ,Ωk

= O

 m∏
j=1

n
− 5

4
+η

j

 , (53)

uniformly on k, ` as in Proposition 15, where I
(2)
k is the set of (θ,θ′) ∈

[
−π
d ,

π
d

]m × [−π, π]M−m

such that for all j = 1, ...,m, |θj | < n
− 1

2
+η

j and there exists j′ = 1, ...,M such that n
− 1

2
−η

j′ < |θj′ |.
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It remains to estimate the integral over I
(3)
k , the set of (θ,θ′) ∈

[
−π
d ,

π
d

]m × [−π, π]M−m such

that for all j = 1, ...,m, |θj | < n
− 1

2
−η

j .

We set J := {j = 1, ...,m : sj = 0} = {j(1), ..., j(J)}.

Lemma 20. Under the assumptions of Theorem 5 with
∑

a∈Z f(b + ad) = 0 for all b ∈ Z. Let
J ′ ⊂ J , then

∑
k′j=0,...,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

= O

 m∏
j=1

n
− 3

4
j

 ∑
J ′′⊂J ′∪(J ′+1) : #J ′′≥J /2

 ∏
j∈J ′′

n
− 1

2
+η

j

 ,

(54)
uniformly on k, ` as in Proposition 15, and where we set k′ = (k′1, ..., k

′
m) with k′j = 0 if j 6∈ J ′.

Moreover, if sj = 1 for all j (and J ′ = ∅), then,

B
k+k′,`,I

(3)
k ,Ωk

=

(
d√

2πσξ

)m ∑
a1,...,am∈Z

1{∀i, ai=kiα+dZ}E
[
(detDk)−

1
21Ωk

]
m∏
j=1

f(aj)E
[
f
(
aj + Z`j

)]
+O

n−(M+1)Lθ
m∏
j=1

n
− 3

4
j

 ,

uniformly on k, ` as above, with

E
[
(detDk)−

1
21Ωk

]
= O

 m∏
j=1

n
− 3

4
j

 ,

uniformly on k as above, and

E
[
(detDk)−

1
21Ωk

]
∼ n−

3m
4 E

[
detD−

1
2

t1,...,tm

]
.

as kj/n→ tj and n→ +∞.

We can now complete the proof of Proposition 15. The two �rst points of Proposition 15 comes

from the upper bounds provided by Lemmas 16, 17, 18, 19 and 20, with Ek := E
[
(detDk)−

1
21Ωk

]
.

It remains to prove the last point of Proposition 15. We assume that sj = 1 for all j and that
kj/n → tj and n → +∞. Recall that d0 = min{n ≥ 1 : nξ0 ∈ dZ} = min{n ≥ 1 : nα ∈ dZ}.
Observe that, for every aj ∈ Z there is a unique k′ ∈ {0, ..., d0−1} such that aj ∈ (kj+k′j)α+dZ.
Thus

d−1∑
k′1,...,k

′
m=0

n
κθη
10M∑

`1,...,`m=0

2#{j:`j>0}
m∏
j=1

Akj+k′j ,`j =
n
κθη
10M∑

`1,...,`m=0

2#{j:`j>0}
∑

aj , bj∈Z

m∏
j=1

f(aj)f(bj)P
(
Z`j = bj − aj

)
.

Finally, due to the last point of Lemma 20 and to the next lemma, this quantity is equivalent to

∑
`1,...,`m≥0

2#{j:`j>0}
∑

aj , bj∈Z

m∏
j=1

f(aj)f(bj)P
(
Z`j = bj − aj

)
,

as kj/n→ tj and n→ +∞. �
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Lemma 21. Under the assumptions2 of Theorem 5,

∑
`≥1

∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z

f(a)f(b)P(Z`′+`d = b− a)

∣∣∣∣∣∣ <∞
Proof. The proof of this lemma only uses estimates established in [13]. Since

∑
a,b |f(a)f(b)| <∞

and using Lemma 16, we observe that∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z

f(a)f(b)P(Z`′+`d = b− a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d−1∑
`′=0

∑
a∈Z

∑
b∈a+(`d+`′)α+dZ

f(a)f(b)
d

2π

∫
[−π

d
,π
d

]
e−it(b−a)E

∏
y∈Z

ϕξ (tN`d+`′(y))

 dt
∣∣∣∣∣∣ .

Moreover, due to [13, Propositions 8,9,10], P(Ωk) = 1− o(k−1−η0) (due to [14, Lemma 16]), and

due the fact that |ϕξ(tNk(y))| ≤ e−
σ2
ξ (tNk(y))2

4 on Ωk when |t| ≤ k−
3
4

+η, we have

∫
[−π

d
,π
d

]
e−it(b−a) E

∏
y∈Z

ϕξ (tN`d+`′(y))


=

∫
|t|≤`−

3
4 +η

e−it(b−a) E

∏
y∈Z

ϕξ (tN`d+`′(y))1Ω`d+`′

 dt+ o(`−1−η0)

=

∫
|t|≤`−

3
4 +η

e−it(b−a) E

∏
y∈Z

ϕξ (tN`d(y))1Ω`d

 dt+ o(`−1−η0) ,

using also the fact that #{y ∈ Z : N`d(y) 6= N`d+`′(y)} ≤ d. It follows that∣∣∣∣∣∣
d−1∑
`′=0

∑
a,b∈Z

f(a)f(b)P(Z`′+`d = b− a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ d2π
∫
|t|≤`−

3
4 +η

∑
a,b∈Z

f(a)f(b)
(
e−it(b−a) − 1

)
E

∏
y∈Z

ϕξ (tN`d(y))1Ω`d

 dt
∣∣∣∣∣∣+ o(`−1−η0)

≤ d

2π

∫
|t|≤`−

3
4 +η

∑
a,b

|f(a)f(b)t(b− a)| E

[
e−

σ2
ξ t

2V`d

4 1Ω`d

]
dt+ o(`−1−η0)

≤ CE
[
V −1
`d 1Ω`d

]
+ o(`−1−η0) ,

since
∑

a,b∈Z f(a)f(b) = 0,
∑

a∈Z |af(a)| < ∞ and using the change of variable v = tV
1
2
`d . Now,

due to (48), V −1
`d 1Ω`d ≤ `−

3
2
−2γ = O(`−1−η0) up to take η0 small enough, which ends the proof

of the lemma. �

2Our proof is valid in a more general context. The assumptions on f and S can be relaxed in
∑
a∈Z |af(a)| <∞,∑

a∈Z f(a) = 0, and ‖Sn‖
L

8
3
= O(

√
n).
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Theorem 5 follows directly from the following corollary of Proposition 15 and Lemma 21, since

E[N 2N ] = (2N)!
N !2N

and E[(L1(0))N ] =
∫

[0,1]N

E
[
detD

− 1
2

t1,...,tN

]
(2π)

N
2

dt1...dtN (due to [14]).

Corollary 22. [A rewritting of Theorem 5]Under the assumptions of Theorem 5,

E

( n∑
k=1

f(Zk)

)2N+1
 = o

(
n

2N+1
8

)
,

and

E

( n∑
k=1

f(Zk)

)2N
 =

(2N)!

N !2N
n

2N
8

σ2N
f

(2πσ2
ξ )

N
2

∫
[0,1]N

E
[
detD−

1
2

t1,...,tN

]
dx1...dxN .

Proof. Since f is bounded, it is enough to prove the result for n = n′d. We start by writing

E

( n∑
k=1

f(Zk)

)M =
∑

1≤m1≤...≤mM≤n
cmE

 M∏
j=1

f(Zmj )

 , (55)

where cm is the number of (r1, ..., rM ) ∈ {1, ..., n}M such that r1, ..., rM and m1, ...,mM contain
the same values with same multiplicities.

Let θ0 ∈
(

0, 1
M+1

)
. Given a sequence 1 ≤ m1 ≤ ... ≤ mM ≤ n with convention m0 = 0, we

consider p ∈ {0, ...,M} such that no mj − mj−1 (for j = 1, ...,M) is in (nL
p+1θ0 , nL

pθ0 ]. Set
θ = Lpθ0. We write k1 = m1 and, inductively, if kj = mu(j), we set kj+1 = mu(j+1) for the

smallest integer mr such that mr > kj + nθ, sj = u(j + 1)− u(j)− 1 and then `j,s = mu(j)+s.
Thus each m = (m1, ...,mM ) with 1 ≤ m1 ≤ ... ≤ mM ≤ n can be represented by at least one

(k, `) ∈
M⋃
p=0

M⋃
m=1

⋃
sj≥0 :M=

∑m
j=1(1+sj)

Fn,Lpθ0,m,s1,...,sm , (56)

with Fn,θ,m,s1,...,sm the set of M -uple (k, `) of nonnegative integers with k = (kj)j=1,...,m, ` =

(`j,s)j=1,...,m;s=1,...,sj such that, for all j = 1, ...,m, kj ≥ kj−1 + nθ (with convention k0 = 0) and,

for all j = 1, ...,m and all s = 1, ..., sj , 0 ≤ `j,s ≤ nLθ and, with this representation,

E

 M∏
j=1

f(Zmj )

 = E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) . (57)

We �rst study separately the following sums

∑
(m,s)∈GM

∑
(k,`)∈Fn,θ,m,s1,...,sm

c(k,`)E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) ,
with GM the set of (m, s) with m ∈ {1, ...,M} and s = (s1, ..., sm) with sj ≥ 0 for all j = 1, ...,m
and such that M =

∑m
j=1(sj + 1).

Let us �x for the moment (m, s) ∈ GM . With the notation (39), we wish to study

∑
(k,`)∈Fn,θ,m,s1,...,sm

E

 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

) =
∑

(k,`)∈Fn,θ,m,s1,...,sm

Bk,` . (58)
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We say that (k, `) and (k′, `′) belong to a same block if

∀r 6∈ J , kr = k′r, ∀j ∈ J , bkj/dc = bk′j/dc, ` = `′ .

A block is an equivalence class for this equivalence relation. We write F ′n,θ,m,s1,...,sm for the set

of (k, `) such that their block is contained in Fn,θ,m,s1,...,sm . We will see that the contribution
of the sum over Fn,θ,m,s1,...,sm \ F ′n,θ,m,s1,...,sm is neglectable in (58). Indeed, observe that if

(k, `) ∈ Fn,θ,m,s1,...,sm \ F ′n,θ,m,s1,...,sm , then at least one of the following condition holds true

(a) bkj/dcd− kj−1 < nθ ≤ (bkj/dc+ 1)d− 1− kj−1 if j − 1 6∈ J (or bkj/dcd− (bkj−1/dc+

1)d− d < nθ ≤ (bkj/dc+ 1)d− 1− bkj−1/dcd if j − 1 ∈ J )
(b) m ∈ J and dbkm/dc+ maxs `m,s < n ≤ d(bkj/dc+ 1) + maxs `m,s

Let us �x J ′′ ⊂ J . Due to the �rst point of Lemma 20, the contribution to (58) of blocks having
a type (a) or (b) problem at indices J ′′ is in

∑
(kj)j 6∈J ′′ ,`

O

 m∏
j=1

n
− 3

4
j

 ∑
J ′∈{1,...,m} : #J ′≥#(J\J ′′)/2

∏
j∈J ′

n
− 1

2
+η

j


= O

nLMθ
n∑

(nj)j 6∈J ′′=n
θ

 m∏
j=1

n
− 3

4
j

 ∑
J ′∈{1,...,m} : #J ′≥#(J\J ′′)/2

∏
j∈J ′

n
− 1

2
+η

j

 .

The study of this quantity corresponds to (59) up to replace m par m − #J ′′ and to delete

indices J ′′, which thus will be in o(n−
M
8 ), as proved below.

Now, using the d-block structure of F ′n,θ,m,s1,...,sm , It follows from (38) that

∑
(k,`)∈F ′n,θ,m,s1,...,sm

B(k,`) = O

nLMθ
n∑

n1,...,nm=nθ

(
m∏
i=1

n
− 3

4
i

) ∑
J ′∈{1,...,m} : #J ′≥(#J )/2

∏
j∈J ′

n
− 1

2
+η

j

 .

(59)

The above quantity is in

O

nLMθ
∑

J ′ : #J ′≥#(J )/2

n∑
n1,...,nm=nθ

(
m∏
i=1

n
− 3

4
i

) ∏
r∈J ′

n
− 1

2
−η

r


= O

 ∑
J ′ : #J ′≥#(J )/2

nLMθ+ 1
4

(m−d#(J )/2e)−( 1
4
−η)θd#(J )/2e


= O

(
nLMθ+ 1

4
(m−d#J /2e)− θ

4
d#J /2e+θJγ

)
,

where we used the fact that
∑n

r=1 r
− 3

4 = O
(
n

1
4

)
and that

∑
r≥nθ r

− 5
4 = O

(
n
θ
4

)
. Observe

moreover that M =
∑m

j=1(sj + 1) ≥ 2(m−#J ) + #J = 2m−#J , with equality if and only if

sj ∈ {0, 1} for all j = 1, ...,m. It follows that

∑
(k,`)∈Fn,θ,m,s1,...,sm

∣∣∣∣∣∣E
 m∏
j=1

(
f(Zkj )

sj∏
s=1

f(Zkj+`j,s)

)∣∣∣∣∣∣ = O
(
n
LMθ+M

8
−
[
M−(2m−#J )

8
+θ
(
d#J/2e

4
−#J η

)])

In particular this is in o(n
M
8 ) as soon as M > 2m−#J or J 6= ∅.
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This ends the proof of the �rst point of Corollary 22 (since, when M is odd, we cannot have
M = 2m−#J and J = ∅) and ensures that, for M even,

n−
M
8 E

( n∑
k=1

f(Zk)

)M = n−
M
8

∑
(k,`)∈

⋃M
p=0 Fn,Lpθ0,M/2,1,...,1

c(k,`)E

 m∏
j=1

(
f(Zkj )f(Zkj+`j,1)

) .
Assume from now on that θ = θ0 and that M is even, J = ∅ and M = 2m, which means that
sj = 1 for every j = 1, ...,m and let us estimate the following quantity

En,M,θ =
∑

(k,`)∈Fn,θ,M/2,1,...,1

c(k,`)E

 m∏
j=1

(
f(Zkj )f(Zkj+`j,1)

) .
Note that, when (k, `) ∈ Fn,θ,M/2,1,...,1, then c(k,`) = (2m)!

2#{j:`j=0} . Using this and applying Propo-

sition 15 combined with the dominated convergence theorem, we obtain that

n−
m
4 En,M,θ =

(2m)!

2m
n−

m
4

∑
0≤k1<...<km≤n:ki+1−ki>nθ

nLθ∑
`1,...,`m=0

2#{j:`j>0}E

 m∏
j=1

f(Zkj )f(Zkj+`j )


=

(2m)!

2m
n−m

∑
0≤k1<...<km≤n/d:ki+1−ki>nθ

n
3m
4

d−1∑
k′1,...,k

′
m=0

nLθ∑
`1,...,`m=0

2#{j:`j>0}E

 m∏
j=1

f(Zdkj+k′j )f(Zdkj+k′j+`j )

+ o(1)

=
(2m)!

2m

∫
0≤t1<...<tm≤1/d

dmσ2m
f E

[
detD−

1
2

d0t1,...,d0tm

]
(2πσ2

ξ )
m
2

dt1...dtm + o(1) .

Therefore

lim
n→+∞

n−
m
4 En,M,θ =

(2m)!

2m

∫
0≤s1<...<sm≤1

σ2m
f E

[
detD−

1
2

s1,...,sm

]
(2πσ2

ξ )
m
2

ds1...dsm

=
(2m)!σ2m

f

m!2m(2πσ2
ξ )

m
2

∫
[0,1]m

E
[
detD−

1
2

s1,...,sm

]
ds1...dsm .

It remains now to prove that we can neglect the contribution of the (k, `) ∈
⋃M
p=1 Fn,Lpθ0,M/2,1,...,1\

Fn,θ0,M/2,1,...,1. Fix some p = 1, ...,M . It follows from (38) that

n−
m
4

∑
(k,`)∈Fn,Lpθ0,M/2,1,...,1\Fn,θ0,M/2,1,...,1

c(k,`)E

 m∏
j=1

(
f(Zkj )f(Zkj+`j,1)

)
= O

n−m4 n∑
n1,...,nm−1=nL

pθ0

(
m−1∏
i=1

n
− 3

4
i

)
nθ0∑
nm=1

n
− 3

4
m nmL

p+1θ0

 = O
(
n−

1
4

+
θ0
4

+mLp+1θ0
)

= o(1) .

�

The last part of Theorem 5 corresponds to the particular case f = δ0 − δa. In this case

σ2
f = σ2

0,a =
∑
k∈Z

[
2P(Z|k| = 0)− P(Z|k| = a)− P(Z|k| = −a)

]
.
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Appendix A. Proofs of technical lemmas for Theorem 5

Recall the context. Let M ≥ 1, θ ∈ (0, 1), η ∈
(
0, 1

100

)
, L = κη

10M . Recall that nj =

kj − kj−1 (with convention k0 = 0). Assume nθ < nj < n and let `j,1, ..., `j,sj = 0, ..., bnLθc with∑m
j=1(1 + sj) = M .

Proof of Lemma 16. We start by writing

pk,`(a, b) =
1

(2π)M

∫
[−π,π]M

e−i
∑m
j=1[(aj−aj−1)θj+

∑sj
s=1(bj,s−aj)θ′j,s]ϕk,`(θ,θ

′) d(θ,θ′) . (60)

But, due to the de�nition of d, for any u, v ∈ Z, ϕξ(u + 2πv
d ) = (ϕξ(

2π
d ))vϕξ(u) and so, for any

u ∈ RM and v ∈ ZM ,

ϕk,`(u+
2π

d
v) = E

∏
y∈Z

ϕξ

 m∑
j=1

[(
uj +

2πvj
d

)
N ′j(y) +

sj∑
s=1

(
uj,s +

2πvj,s
d

)
N ′j,s(y)

]
= E

∏
y∈Z

(
ϕξ

(
2π

d

))∑m
j=1[vjN

′
j(y)+

∑sj
s=1 vj,sN

′
j,s(y)]

ϕξ

 m∑
j=1

[
ujN

′
j(y) +

sj∑
s=1

uj,sN
′
j,s(y)

]
=

(
ϕξ

(
2π

d

))∑m
j=1

[
vjnj+

∑sj
s=1 `j,svj,s

]
ϕk,`(u) .

and so

pk,`(a, b) =
1

(2π)M

∫
[−π

d
,π
d

]m×[−π,π]M−m

d−1∑
rj=0

e−i
∑m
j=1[(aj−aj−1)(θj+

2πrj
d

)+
∑sj
s=1(bj,s−aj)θ′j,s

(
ϕξ

(
2π

d

))∑m
j=1 rjnj

ϕk,`(θ,θ
′) d(θ,θ′) .

Moreover, for any a ∈ Z, then
∑d−1

r=0 e
− 2iaπr

d

(
ϕξ
(

2π
d

))vr
= 0 except if e−

2iaπ
d

(
ϕξ
(

2π
d

))v
= 1 (i.e.

if vα− a ∈ dZ) and then this sum is equal to d. This ends the proof of Lemma 16. �

Proof of Lemma 17. Due to [14, Lemma 16], for any γ > 0, satis�es P(Ω
(j)
k ) = 1 − o(n−pj ) for

any p > 1 and so, since nj > nθ, it follows that for all p > 1, P(Ω
(j)
k ) = 1 − o(n−p). Moreover,

since θ′ ∈ (0, θ4), due to [14, Lemma 21],

∀p > 1, P

(
detDn1,...,nm < n−θ

′
m∏
i=1

n
3
2
i

)
= o(n−p) ,

uniformly on k as above. �

Proof of Lemma 18. Recall that F =
{
y ∈ Z : ∀(j, s), N ′j,s(y) = 0

}
. Due to (50), Lemma 18

follows from the following estimate

∃c > 0,

∫
{∃j,n

− 1
2 +η

j <|θj |}
E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk

 dθ = o
(
e−n

c)
, (61)

uniformly on k, ` as in Proposition 15. To this end, we follow and slightly adapt the proof
of [13, Proposition 10] as explained below. Observe that, up to conditioning with respect to
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(Sk+1 − Sk)k 6∈{kj−1,...,kj−1}, this will be a consequence of

∀j = 1, ...,m, ∀u ∈ R,
∫
n
− 1

2 +η

j <|θ|<π
d

E

∏
y∈F

∣∣ϕξ (u+ θN ′j(y)
)∣∣1Ωk

 dθ = o
(
e−n

c)
, (62)

uniformly on kj , `j,s as above. Recall that #(Z \ F) ≤
∑m

j=1

∑sj
s=1 `j,s ≤MnLθ. As in [13, after

Lemma 16], we observe that, for n large enough,∏
y∈F

∣∣ϕξ(u+ θN ′j(y))
∣∣ ≤ exp

(
−
σ2
ξ

4
n−

1
2

+4γ#

{
y : d

(
u+ θN ′j(y),

2π

d
Z
)
≥ n−

1
4

+2γ

})
, (63)

and that

d

(
u+ θN ′j(y),

2πZ
d

)
≥ n−

1
4

+2γ ⇐⇒ u

θ
+N ′j(y) ∈ I :=

⋃
k∈Z

Ik , (64)

where, for all k ∈ Z,

Ik :=

[
2kπ

dθ
+
n−

1
4

+2γ

θ
,
2(k + 1)π

dθ
− n−

1
4

+2γ

θ

]
.

In particular R \ I =
⋃
k∈Z Jk, where for all k ∈ Z,

Jk :=

(
2kπ

dθ
− n−

1
4

+2γ

θ
,
2kπ

dθ
+
n−

1
4

+2γ

θ

)
.

Let N± be two positive integers such that P(X1 = N+)P(X1 = −N−) > 0. Let C± =
(C±k )k=1,...,T ∈ ZT with T = N+ + N− and C+

k = N+ for k ≤ N− and C+
k = −N− other-

wise, and symetrically and C−k = −N− for k ≤ N+ and C−k = N+ otherwise. It has been proved
in [13] (see Lemma 15 therein combined with the estimate P(Dn) = 1 − o(e−cn) in Section 2.8
therein) that, for n large enough,

P(Ωk \ Ej) = o(e−cnj ) , (65)

with

Ej =

{
#{y ∈ Z : Cj(y) ≥ n

1
2
−2γ

j } ≥ 3N+N−n
1
2
−2γ

j

}
,

and where, for any y ∈ Z,

Cj(y) := #
{
k = 0, . . . ,

⌊nj
T

⌋
− 1 : Skj−1+kT − Skj−1

= y and (Xkj−1+kT , . . . , Xkj−1+(k+1)T−1) = C±
}
.

Now, on Ej , we de�ne Yi for i = 1, . . . ,

⌊
n

1
2
−2γ

j

⌋
, by

Y1 := min

{
y ∈ Z : Cj(y) ≥ n

1
2
−2γ

j

}
,

and

Yi+1 := min

{
y ≥ Yi + 3N−N+ : Cj(y) ≥ n

1
2
−2γ

j

}
for i ≥ 1.

For every i = 1, . . . ,

⌊
n

1
2
−2γ

j

⌋
, let t1i , . . . , t

⌊
n

1
2−2γ

j

⌋
i be the

⌊
n

1
2
−2γ

j

⌋
�rst times (which are multiples

of T ) when a peak of the form C± is based on the site Yi. We also de�ne N0
j (Yi + N+N−) as

the number of visits of (Skj−1+k − Skj−1
)k≥0 before time nj to Yi +N+N−, which do not occur
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during the time intervals [tui , t
u
i + T ], for u ≤

⌊
n

1
2
−2γ

j

⌋
. We proved in [13, Lemma 16] that, for

any H ≥ 0,

P
(u
θ

+N ′j(Yi +N+N−) ∈ I
∣∣En, N0

j (Yi +N+N−) = H
)

= P
(
H +

u

θ
+ bj ∈ I

)
, (66)

where bj is a random variable with binomial distribution B
(⌊

n
1
2
−2γ

j

⌋
; 1

2

)
and �nally we proved

in [13, Lemmas 17 and 18] (see in particular the last formula in the proof of Lemma 17) that

∀H ′ ∈ R, P
(
H ′ + bn ∈ I

)
≥ 1

3
.

Thus, conditionally to (Sk+1 − Sk)k 6∈{kj−1,...,kj−1}, Ej and ((N0
j (Yi + N+N−), i ≥ 1), the events

{uθ +Nj(Yi+N+N−) ∈ I}, i ≥ 1, are independent of each other, and all happen with probability
at least 1/3. We conclude that

P

Ej ∩
 #

{
i :

u

θ
+N ′j(Yi +N+N−) ∈ I

}
≤
n

1
2
−2γ

j

4


 ≤ P

Bj ≤ n
1
2
−2γ

j

4

 = o(e−c
′nj ) ,

(67)

where Bj has binomial distribution B
(⌊

n
1
2
−2γ

j

⌋
; 1

3

)
.

But if #{y ∈ Z : N ′j(z) ∈ I} ≥ n
1
2
−2γ

j /4, then, by (63) and (64) there exists a constant c′′ > 0,
such that, for any n large enough,∏

y∈F
|ϕξ(u+ θN ′j(y))| ≤ exp

(
−c′′n

1
2
−2γ

j n
− 1

2
+4γ

j

)
,

since #(Z \ F)� n
1
2
−2γ

j /4. This, combined with (65) and (67), ends the proof of (62) and so of
Lemma 18. �

Proof of Lemma 19. We have to estimate B
k,`,I

(2)
k ,Ωk

uniformly on k, ` as in Proposition 15,

where I
(2)
k = Vk × [−π, π]M−m and where Vk is the set of θ ∈ Rm such that for all j = 1, ...,m,

|θj | < n
− 1

2
+η

j and such that there exists some j0 = 1, ...,m satisfying n
− 1

2
−η

j0
< |θj0 |. Let ε0 > 0

be such that

∀u ∈ [−ε0, ε0], |ϕξ(u)| ≤ e−
σ2
ξu

2

4 . (68)

We de�ne the events Hk = Ωk ∩ {∀y ∈ Z, |
∑m

j=1 θjN
′
j(y)| ≤ ε0/2} and

H ′k :=

#

y ∈ Z :

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣ ∈
[ε0

4
,
ε0

2

] > n
1
4

 .

Due to [14, Lemma 21 and last formula of p. 2446],

∃c′ > 0, P
(
Ωk \ (Hk ∪H ′k)

)
= O

 m∏
j=1

n
− 3

4
j

 ,

uniformly on k as above and uniformly on θ ∈ Vk. Thus,

B
k,`,I

(2)
k ,Ωk\(Hk∪H′k)

= O

 m∏
j=1

n
− 5

4
+η

j

 , (69)
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where we used the fact that
∫
Vk
dθ ≤

∏m
j=1 n

− 1
2

+η

j . Moreover, for n large enough, it follows from

the de�nition of H ′k, from (51) and (68) that

B
k,`,I

(2)
k ,Ωk∩H′k)

= O

∫
Vk

E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk∩H′k

 dθ
 ≤ e−σ2

ξε
2
0n

1
4

64 . (70)

Finally, it remains to estimate B
k,`,I

(2)
k ,Ωk∩Hk

. To this end we write

∫
Vk

E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk∩Hk

 dθ
≤
∫
Vk

E

[
e−

σ2
ξ
4

∑
y∈F(

∑m
j=1 θjN

′
j(y))

2

1Ωk

]
dθ

≤
∫
V ′′k

 m∏
j=1

n
− 3

4
j

E

e−σ2
ξ
4

∑
y∈F

(∑m
j=1 θ

′′
j n
− 3

4
j N ′j(y)

)2

1Ωk

 dθ′′
≤

 m∏
j=1

n
− 3

4
j

E

[∫
(D̃′k)

1
2 V ′′k

(det D̃′k)−
1
2 e−

σ2
ξ |v|

2

4 1Ωk
dv

]
, (71)

with the successive changes of variable θ′′j = n
3
4
j θj and v = (D̃′k)

1
2θ′′, with

D̃′k =

(ninj)
− 3

4

∑
y∈F

N ′i(y)N ′j(y)


i,j

and V ′′k = Diag(n
3
4
i )Vk .

Note that V ′′k is the set of (θ′′1 , ..., θ
′′
m) such that |θ′′j | ≤ n

1
4

+η

j and such that there exists j0 = 1, ...,m

such that |θ′′j0 | ≥ n
1
4
−η

j0
.

Let us prove that, in the above formula, we can approximate the determinant of D̃′k by the one

of D̃k :=
(

(ninj)
− 3

4
∑

y∈ZN
′
i(y)N ′j(y)

)
i,j
. To this end, writing Σm for the set of permutations

of the set {1, ...,m} and κ(σ) for the signature of σ ∈ Σm, we observe that, on Ωk,∣∣∣det D̃′k − det D̃k

∣∣∣
=

 m∏
j=1

n
− 3

2
j

∣∣∣∣∣∣
∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈F

N ′j(y)N ′σ(j)(y)

− ∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈Z

N ′j(y)N ′σ(j)(y)

∣∣∣∣∣∣
≤

 m∏
j=1

n
− 3

2
j

 ∑
σ∈Σm

m∑
j=1

∑
z∈Z\F

N ′j(z)N
′
σ(j)(z)

∏
j′ 6=j

∑
y∈Z

N ′j′(y)N ′σ(j′)(y)


≤

 m∏
j=1

n
− 3

2
j

 ∑
σ∈Σm

m∑
j=1

#(Z \ F)n
1+2γ

2
j n

1+2γ
2

σ(j)

∏
j′ 6=j

√
Vj′Vσ(j′) ,
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where we used the Cauchy-Schwarz inequality together with the notations and estimates given
after Lemma 17. Using (45) and (51), it follows that, on Ωk,∣∣∣det D̃′k − det D̃k

∣∣∣�
 m∏
j=1

n
− 3

2
j

nLθ
m∑
j=1

n
1+2γ

2
j n

1+2γ
2

σ(j)

∏
j′ 6=j

n
3(1+2γ)

4
j′ n

3(1+2γ)
4

σ(j′)

� 1

2
nmγ−

θ
2

+Lθ � n−θ
′−(M+1)Lθ ≤ n−(M+1)Lθ

2
det D̃k ,

since θ′ ≤ θ
2−2MLθ < θ

2−mγ−MLθ and where we used the fact that det D̃k = detDk
∏m
j=1 n

− 3
2

j

together with the de�nition of Ωk. Therefore, on Ωk, det D̃′k ≥
1
2 det D̃k. Thus, due to (71),∫

Vk

E

∏
y∈F

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣1Ωk∩Hk

 dθ
≤ O

 m∏
j=1

n
− 3

4
j

E

[∫
(D̃′k)

1
2 V ′′k

(det D̃′k)−
1
21Ωk

e−
σ2
ξ |v|

2

4 dv

]
= O

 m∏
j=1

n
− 3

4
j

E

[
(det D̃k)−

1
21Ωk

∫
(D̃′k)

1
2 V ′′k

e−
σ2
ξ |v|

2

4 dv

] , (72)

By de�nition of V ′′k , for any v ∈ (D̃′k)
1
2V ′′k , |v|2 ≥ (λ̃′k)

1
2n( 1

4
−η)θ, where λ̃′k is the smallest

eigenvalue of D̃′k. Since all the eigenvalues of D̃′k are nonnegative (D̃′k being symmetric and

nonnegative), it follows that all the eigenvalues of D̃′k are smaller than trace(D̃′k) ≤
∑m

j=1
Vj

n
3
2
j

≤

mn3γ (on Ωk). Thus, on Ωk,

(λ̃′k)
1
2n( 1

4
−η)θ ≥

det(D̃′k)
1
2

(m
1
2n

3γ
2 )m−1

n( 1
4
−η)θ ≥ n( 1

4
−η)θ− θ

′
2
− 3γ(m−1)

2

2m
m−1

2

� n
θ
16 , (73)

since ηθ, θ
′

2 , and
3γ(m−1)

2 are all strictly smaller θ
16 . Hence

E

[
(det D̃k)−

1
21Ωk

∫
(D̃′k)

1
2 V ′′k

e−
σ2
ξ |v|

2

4 dv

]

≤ E
[
(det D̃k)−

1
21Ωk

] ∫
|v|2>n

θ
16

e−
σ2
ξ |v|

2

4 dv = O
(
n−p

)
,

for any p > 0. This combined with (69), (70) and (72) ends the proof of the lemma. It will be

worthwhile to note that the previous estimate also holds true when λ̃′k is replaced by the smallest

eigenvalue λ̃k of D̃k. �

Before proving Lemma 20, we state a useful coupling lemma allowing us to replace detDk by
a copy independent of (N ′j,s)j,s.

Up to enlarging the probability space if necessary, we considerX ′ = (X ′k)k≥1 an independent copy
of the increments X = (Xk)k≥0 of the random walk S. We then de�ne the random walk S′′ as
follows: S′′m =

∑m
k=1X

′′
k with X ′′k = Xk if kj−1 + `j−1 ≤ k < kj and X

′′
k = X ′k if kj ≤ k < kj + `j ,

with `j := maxs=1,...,sj `j,s. We de�ne Ω′′k, N
′′
j and D′′k for the space as we have de�ned Ωk, N

′
j ,

Dk (up to replace S by S′′).
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Lemma 23. There exists Ω′k ⊂ Ωk ∩ Ω′′k such that

∀p > 0, P
(
(Ωk ∩ Ω′′k) \ Ω′k

)
= O(n−p) (74)

and such that, on Ω′k,∣∣∣(detDk)−
1
2 − (detD′′k)−

1
2

∣∣∣ ≤ n− θ8−Lθ(detD
− 3

2
k + (detD′′k)−

3
2 ) .

Moreover

E
[
((detDk)−

1
2 − (detD′′k)−

1
2 )1Ω′k

]
≤ n−

θ
8
−Lθ

m∏
j=1

n
− 9

4
j . (75)

Proof of Lemma 23. Observe that

S′′kj − Skj = hj =
∑
j′<j

(
S′kj′+`j′ − S

′
kj′
− (Skj′+`j′ − Skj′ )

)
and, on Ωk ∩ Ω′′k,

|N ′j(z)−N ′′j (z)| = |N ′j(z)−N ′j(z + hj)| ≤ n
1
4

+ γ
2

j |hj |
1
2 ,

for all z ∈ Z \
⋃kj−1+`j
m=kj−1

{Sm, S′′m}.
We will prove that detDk is close enough to detD′′k = det(

∑
y∈ZN

′′
i (y)N ′′j (y)). Due to the

Markov inequality,

∀p > 0, P
(
|S`j | > h

)
≤ O

` p2j
hp

 = O
(
n−γ

′p
)
,

where we set h = nγ
′+ κθη

20M ≥ nγ′`
1
2
j . Thus we set

Ω′k := Ωk ∩ Ω′′k ∩ {∀j = 1, ...,m, |hj | ≤ h}
and we observe that P ((Ωk ∩ Ω′′k) \ Ω′k) = O(n−p) for all p > 0. Moreover, on Ω′k,

|N ′j(z)−N ′′j (z)| ≤ 2`j + n
1
4

+ γ
2

j h
1
2 ≤ 3n

1
4

+ γ
2

j n
γ′
2

+ κθη
40M .

Moreover

V ′′j :=
∑
y∈Z

(N ′′j (y))2 ≤
∑
y∈Z

(N ′j(y))2 + 2`3j ≤ n
3
2

+3γ

j .

This allows us to observe that, on Ω′k,∣∣detDk − detD′′k
∣∣

=

∣∣∣∣∣∣
∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈Z

N ′j(y)(N ′σ(j)(y)

− ∑
σ∈Σm

(−1)κ(σ)
m∏
j=1

∑
y∈Z

N ′′j (y)N ′′σ(j)(y)

∣∣∣∣∣∣
≤
∑
σ∈Σm

m∑
j=1

∑
z∈Z

[N ′j(z)N
′
σ(j)(z)−N

′′
j (z)N ′′σ(j)(z)]

∏
j′ 6=j

max

∑
y∈Z

N ′j′(y)N ′σ(j′)(y),
∑
y∈Z

N ′′j′(y)N ′′σ(j′)(y)


≤ 3n

γ′
2

+ κθη
40M

∑
σ∈Σm

m∑
j=1

[
V

1
2
j n

1
2

+γ

σ(j) + (V ′′σ(j))
1
2n

1
2

+γ

j

] ∏
j′ 6=j

max
(
Vj′Vσ(j′), V

′′
j′V
′′
σ(j′)

) 1
2

≤ 3n
γ′
2

+ κθη
40Mm!

m∏
j′=1

n
3
2

+3γ

j′

m∑
j=1

n
− 1

4
− γ

2
j �

m∏
j′=1

n
3
2
j′

m∑
j=1

n
− 1

8
j n−Lθ ,
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since Lθ + 3mγ − θ
4 + γ′

2 < − θ
8 − Lθ, and so, on Ω′k,∣∣∣(detDk)−

1
2 − (detD′′k)−

1
2

∣∣∣ ≤ n− θ8−Lθ(detD
− 3

2
k + (detD′′k)−

3
2 ) .

We conclude thanks to [14, Lemma 21] which ensures that E
[
(detDk)−

3
21Ωk

]
= O

(∏m
j=1 n

− 9
4

j

)
.

�

The proof of Lemma 20 will also use the following result. Recall that we set J = {j =
1, ...,m : sj = 0} and that J ′ ⊂ J .

Lemma 24. Under the assumptions of Lemma 20,∑
k′j=0,...,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

=
dm

(2π)M

∫
I

(3)
k

E
[
1Ωk

F (θ,θ′)G(θ,θ′)
]
d(θ,θ′) ,

with k′ ∈ Zm such that k′j = 0 for all j 6∈ J ′, and with

G(θ,θ′) :=
∏
j 6∈J ′

 ∑
aj∈αkj+dZ

∑
bj,s,...,bj,sj∈Z

f(aj)

( sj∏
v=1

f(bj,v)

)
eiaj(θj+1−θj)−i

∑sj
s=1(bj,s−aj)θ′j,s


×

∏
y∈Z\S′

ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y))

) ,

with S ′ =
⋃
j∈J ′ S ′j, S ′j := {Skj , ..., Skj+d−1}, so that {Skj , ..., Skj+d−1} and, uniformly on k, `

and on Ωk, F (θ,θ′) = O
(∑

J ′′⊂J ′
∏
j∈J ′\J ′′(|θj |+ |θj+1|)1⋂

j∈J ′′ Bj )
)
with Bj = 1S′j∩

⋃
j′∈J ′′\{j} S′j′ 6=∅

.

If
∑

a∈Z f(b + dZ) = 0 for all b ∈ Z (true if d = 1), then F (θ,θ′) = O
(∏

j∈J ′(|θj |+ |θj+1|)
)

(with convention θm+1 = 0).

Proof. We start by writing∑
k′j=0,...,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

=
dm

(2π)M

∫
I

(3)
k

E
[
1Ωk

F (θ,θ′)G(θ,θ′)
]
d(θ,θ′) , (76)

where we set

F (θ,θ′) :=
∑

k′j=0,...,d−1, ∀j∈J ′

∏
j∈J ′

 ∑
aj∈(kj+k′j)α+dZ

(
f(aj)e

−iaj(θj−θj+1)
)

×
∏
y∈S′

ϕξ

(
m∑
r=1

(
θrÑ

′
r,k′(y) +

sr∑
s=1

θ′r,sÑ
′
r,s(y))

))
,

with

Ñ ′r,k′(y) = #{u = kr−1 + k′r−1, ..., kr + k′r − 1 : Su = y} .

If we had
∑

a∈u+dZ f(a) = 0 for all u ∈ Z, the proof of Lemma 24 will be ended by noticing that∑
aj∈(kj+k′j)α+dZ

(
f(aj)e

−iaj(θj−θj+1)
)

=
∑

aj∈(kj+k′j)α+dZ

(
f(aj)

(
e−iaj(θj−θj+1) − 1

))
,
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which is inO (|θj |+ |θj+1|) since
∑

a∈Z |af(a)| <∞. Since we just assume here that
∑

a∈Z f(a) =
0, we need a more delicate approach. We rewrite F as follows

F (θ,θ′) :=
∑

k′j=0,...,d−1, ∀j∈J ′

∑
aj∈(kj+k′j)α+dZ∀j∈J ′

∏
j∈J ′

Hj,k′j
(θj − θj+1)

Ψ(k′)

with

Hj,k′j
(θ) :=

∑
aj∈(kj+k′j)α+dZ

(
f(aj)e

−iajθ
)
,

Ψ(k′) =
∏
y∈S′

ϕξ

(
m∑
r=1

(
θrÑ

′
r,k′(y) +

sr∑
s=1

θ′r,sÑ
′
r,s(y))

))
,

and with Ñ ′
r,k′

(y) = #{u = kr−1 + k′r−1, ..., kr + k′r − 1 : Su = y}. Note that Ñ ′
r,k′

(y) = N ′r(y)

except maybe if r ∈ J ′ and y ∈ S ′r or if r − 1 ∈ J ′ and y ∈ S ′r−1. We order the elements of J ′
as follows: j′1 < ... < j′J ′ and write

F (θ,θ′) = F0(θ,θ′) + F1(θ,θ′)

with

F1(θ,θ′) =
d−1∑
kj′1

=0

Hj′1,k
′
j′1

(0)
d−1∑

kj′2
,...,kj′

J′
=0

 ∏
j∈J ′\{1}

Hj,k′j
(θj − θj+1)

Ψ(k′)

and

F0(θ,θ′) =

d−1∑
kj′1

=0

(
Hj′1,k

′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0)

) d−1∑
kj′2

,...,kj′
J′

=0

 ∏
j∈J ′\{1}

Hj,k′j
(θj − θj+1)

Ψ(k′) .

Note that Hj′1,k
′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0) is in O(|θj |+ |θj+1|). Since
∑

a f(a) = 0, F1 satis�es

F1(θ,θ′) =
d−1∑
kj′1

=0

Hj′1,k
′
j′1

(0)
d−1∑

kj′2
,...,kj′

J′
=0

 ∏
j∈J ′\{j′1}

Hj,k′j
(θj − θj+1)

∆j′1
Ψ(k′)

with ∆jφ(k′) = φ(k′) − φ(k′j), where k
′
j ∈ Nm is such that (k′j)i = k′i for i 6= j, and (k′j)j = 0.

Proceding iteratively on J ′, we obtain

F (θ,θ′) =
∑

ε1,...,εJ′∈{0,1}

Fε1,...,εJ′ (θ,θ
′) , (77)

with

Fε1,...,εJ′ (θ,θ
′) =

 ∏
j′:εj′=0

(
Hj′1,k

′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0)

) ∏
j:εj=1

Hj,k′j
(0)

∆
εJ′
j′
J′
· · ·∆ε1

j′1
Ψ(k′) ,

with convention ∆0
j′ = Id. The �rst part will be easily dominated byO

(∏
j′:εj′=0(|θj′ |+ |θj′+1|)

)
.

Let us study the second part of the formula exploiting the fact that
∑

a∈Z f(a) = 0. The di�-

culty here is that k′ appears both in
(∏

j:εj=1Hj,k′j
(0)
)
and in ∆...ψ(k′). The value of (ε1, ..., εJ ′)

being �xed, we consider the set J ′′ of the j′ ∈ J ′ such that εj′ = 1. Observe that, if S ′j′ ∩S ′j = ∅,
then

∆j′∆jΨ(k′) =
(

∆j′ΨS′\S′j (k
′
j)
)(

∆jΨS′j (k̂
′
j)
)
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with

ΨS0(k′) =
∏
y∈S0

ϕξ

(
m∑
r=1

(
θrÑ

′
r,k′(y) +

sr∑
s=1

θ′r,sÑ
′
r,s(y))

))
,

and where we set k̂
′
j for the vector of Zm with j-th coordinate equal to k′j , all the other coordinates

being null. Let J ′′0 be the set of j ∈ J ′′ such that S ′j ∩
⋃
j′′∈S′′\{j} S ′j′′ = ∅. Then

∑
kj=0,...,d−1, ∀j∈J ′′0

 ∏
j∈J ′′0

Hj,k′j
(0)

∆
εJ′
j′
J′
· · ·∆ε1

j′1
Ψ(k′)

=
∏
j∈J ′′0

 d−1∑
k′j=0

Hj,k′j
(0)∆jΨS′j

(
k̂
′
j

)∆J ′′\J ′′0 Ψ(k′S′′0
)

with k′S′′0
∈ Nm such that (k′j)i = k′i for i 6∈ S ′′0 , the other coordinates being null, the notation

∆J ′′\J ′′0 standing for the composition of all the operators ∆j for j ∈ J ′′ \ J ′′0 . We conclude by

using (77) and by noticing that ∏
j′∈S\S′′

(
Hj′1,k

′
j′1

(θj′1 − θj′1+1)−Hj′1,k
′
j′1

(0)

) = O

 ∏
j′∈S\S′′

(|θj′ |+ |θj′+1|)

 ,

∏
j∈J ′′0

 d−1∑
k′j=0

Hj,k′j
(0)∆jΨS′j

(
k̂
′
j

) = O

 ∏
j′∈S\S′′

(|θj′ |+ |θj′+1|)


and that

j ∈ J ′′ \ J ′′0 =⇒ S ′j ∩
⋃

j′∈S′′0 \{j}

S ′j′ .

�

The following lemma will be useful to estimate the term F appearing in Lemma 24. It is not
needed when

∑
a∈Z f(b+ ad) = 0 for all b ∈ Z.

Lemma 25. For any J ′ ⊂ J ,

P

Ωk ∩
⋂
j∈J ′
Bj

 = O

 ∑
J ′′⊂J ′\{minJ ′}, J ′′≥#J ′/2

nJγ
∏
j∈J ′′

(kj − k−j )−
1
2

 ,

where k−j = max{ks ≤ kj , s ∈ J ′}.

Proof. It is enough to study

P

Ωk ∩
⋂
j∈J ′

{
Skj+rj = Skm(j)+sj

}
for any m(j) ∈ J ′ \ {j}, rj , sj ∈ {0, ..., d− 1}. This probability is dominated by

P
(

Ωk ∩
{
∀j ∈ J ′, |Skj − Skm(j)

| ≤ nv
})

+ o(n−p) ,

for all p, v > 0. We partition the set J ′ by the equivalence relation generated by the relation
j ∼ mj . We write R(j) for the class of j and R for the set of these equivalence classes. Observe
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that the number of equivalent classes is at most b#J ′/2c. We order the set J ′ in j′1 < ... < j′J ′ .
We wish to estimate∑

Ar, r∈R
P
(

Ωk, ∀i = 1, ..., J ′ − 1, Skj′
i+1
−kj′

i

= AR(j′i+1) −AR(j′′i ) +O(nv)

)
,

where the sum is over (Ar)r∈R ∈ ZR such that AR(1) = 0, AR(j′i+1)−AR(j′i)
= O((kj′i+1

−kj′i)
1
2

+ γ
2 ).

Due to the local limit theorem and the independence of the increments of S, the above probability
is in ∑

Ar, r∈R

J ′−1∏
i=1

nv
(
O
(

(kj′i+1
− kj′i)

− 1
2

))
.

Now let us control the cardinal of the admissible (Ar, r ∈ R). To this end, consider the set J ′
of the smallest representants of R. Then the above quantity is smaller than

nJ
′(v+ γ

2
)
∏

j∈J ′\J ′
(kj − k−j )−

1
2 .

�

Proof of Lemma 20. All the estimates below are uniformly in k. For the �rst estimate, we have
to estimate the following integral∫

∀j,|θj |<n
− 1

2−η
j

∏
j 6∈J ′

 ∑
aj∈αkj+dZ

f(aj)e
iaj(θj+1−θj)

sj∏
s=1

∑
bj,s∈Z

(
f(bj,s)e

−i(bj,s−aj)θ′j,s
)

× E

1Ωk
F (θ,θ′)

∏
y∈Z\S′

Ay

 dθ , (78)

where we set

Ay := ϕξ

 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y)

) .

Let us study

Ek,`(θ,θ
′) :=

∏
y∈Z\S′

Ay −
∏

y∈Z\S′
By , (79)

with

By := exp

−σ2
ξ

2

 m∑
j=1

θjN
′
j(y)

2ϕξ

 m∑
j=1

sj∑
s=1

θ′j,sN
′
j,s(y)

 .

But, on Ωk, if |θj | ≤ n
− 1

2
−η

j for all j = 1, ...,m, and so

∀y ∈ Z,

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣ ≤
m∑
j=1

|θj |N∗j ≤
m∑
j=1

n
− η

2
j ≤ mn−

θη
2 < ε0 , (80)

as soon as n is large enough (uniformly on nj ∈ [nθ, n]). Thus |Ek,`(θ,θ′)| is dominated by∑
y∈Z
|Ay −By| e−

σ2
ξ
4

∑
z∈F\(S′∪{y})(

∑m
j=1 θjN

′
j(z))

2
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for n large enough. Now, on Ωk, according to (51),

∀y ∈ Z,
∑

z∈F\(S′∪{y})

 m∑
j=1

θjN
′
j(z)

2

≥
∑
z′∈Z

 m∑
j=1

θjN
′
j(z
′)

2

−M(d+ n
ηθ

10M )n−θη . (81)

It follows that

|Ek,`(θ,θ′)| ≤ (A+B) exp

−σ2
ξ

4

∑
z′∈Z

 m∑
j=1

θjN
′
j(z
′)

2

−O
(
n
− 9θ

10η

) , (82)

with

A :=
∑

y∈F\S′

∣∣∣∣∣∣ϕξ
 m∑
j=1

θjN
′
j(y)

− e−σ2
ξ
2 (
∑m
j=1 θjN

′
j(y))

2

∣∣∣∣∣∣ ≤
∑
y∈Z

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣
2

C ′n−
κθη

2 (83)

where we used the fact that∣∣∣∣∣ϕξ(u)− exp

(
−
σ2
ξ |u|2

2

)∣∣∣∣∣ ≤ |u|2+κ for all u ∈ R,

since ξ admits a moment of order 2 + κ and there exists C0 > 0 such that

B :=
∑
y∈Z\F

∣∣∣∣∣∣ϕξ
 m∑
j=1

(
θjN

′
j(y) +

sj∑
s=1

θ′j,sN
′
j,s(y)

)− e−σ2
ξ
2 (
∑m
j=1 θjN

′
j(y))

2

ϕξ

 m∑
j=1

sj∑
s=1

θ′j,sN
′
j,s(y)

∣∣∣∣∣∣
≤ C0

∑
y∈Z\F

∣∣∣∣∣∣
m∑
j=1

θjN
′
j(y)

∣∣∣∣∣∣ ≤ C0

m∑
j=1

sj∑
s=1

`j,sn
− θη

2 = O
(
n

θη
10M
− θη

2

)
= O

(
n−

θη
4

)
, (84)

since ϕξ and u 7→ e−
u2

2 are Lipschitz continuous. Recall that it has been proved in [14, Lemma
21] that

E
[
|detDk|−

1
21Ωk

]
= O

 m∏
j=1

n
− 3

4
j

 , (85)

uniformly on k.

Combining Lemmas 24 and (25), (82), (83), (84), (85) and using the change of variable v =

(Dk)
1
2θ with Dk =

(∑
y∈ZN

′
i(y)N ′j(y)

)
i,j
, it follows that there exists C1 > 0 such that∫

∀j,|θj |≤n
− 1

2−η
j

E
[∣∣F (θ,θ′)Ek,`(θ,θ

′)
∣∣1Ωk

]
d(θ,θ′)

≤ C1

∫
Rm

(
n−

κθη
2 |v|22 +O(n−

θη
4 )
)
e−

σ2
ξ |v|

2

4 dv∑
J0⊂J ′

∏
j∈J ′\J0

(
n
− 1

2
−η

j + n
− 1

2
−η

j+1

)
E
[
| detDk|−

1
21Ωk∩

⋂
j∈J0

Bj

]

= O

n−κθη4
 m∏
j=1

n
− 3

4
j

Ek(J ′)

 , (86)
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with

Ek(J ′) =
∑
J ′′⊂J ′

∏
j∈J ′\J ′′

(
n
− 1

2
−η

j + n
− 1

2
−η

j+1

) ∑
J0⊂J ′′\{minJ ′′}, J0≥#J ′′/2

nJγ+ θ′
2

∏
j∈J0

(kj − k−j )−
1
2


= O

 ∑
J ′′⊂J ′∪(J ′+1) : #J ′′≥#J ′/2

 ∏
j∈J ′′

n
− 1

2
+η

j

 .

where k−j = max{ks ≤ kj , s ∈ J ′′}. Combining this last estimate with (78) and Lemmas 24
and 25,

∑
k′j=0,...,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

=
dm

(2π)M

∑
(aj)j 6∈J ′ ,(bj,s)j,s

1{∀i 6∈J ′, ai∈kiα+dZ}

∫
[−π,π]M−m

E [I1(a) I2(a, b)1Ωk
] dθ′

+O

n−κθη4 m∏
j=1

n
− 3

4
j Ek(J ′)

 , (87)

with

I1(a) :=

∫
∀j, |θj |≤n

− 1
2−η

j

∏
j 6∈J ′

e−i
∑m
j=(aj−aj−1)θj

F (θ,θ′)e−
σ2
ξ
2

∑
y∈Z\S′ (

∑m
j=1 θjN

′
j(y))2

dθ

= O

(∫
∀j, |θj |≤n

− 1
2−η

j

F (θ,θ′)e−
σ2
ξ
2 (
∑
y∈Z(

∑m
j=1 θjN

′
j(y))2−Mdn−ηj ) dθ

)

= O

(
detD

− 1
2

k sup
θ∈Vk

F (θ,θ′)

∫
Rm

e−
σ2
ξ |v|

2
2

2 dv

)
, (88)

with the change of variable v = D
1
2
kθ and

I2(a, b) :=

∏
j 6∈J ′

(
f(aj)

sj∏
s=1

f(bj,s)e
−i
∑
j,s(bj,s−aj)θ′j,s

) ∏
y∈Z\S′

ϕξ

∑
j,s

(θ′j,sN
′
j,s(y))


= O

∏
j 6∈J ′

(
f(aj)

sj∏
s=1

f(bj,s)

) . (89)

Since
∑

a∈Z |f(a)| <∞, it follows from(85), (87), (88) and (89) that

∑
k′j=0,...,d−1, ∀j∈J ′

B
k+k′,`,I

(3)
k ,Ωk

= O

Ek(J ′)

 m∏
j=1

n
− 3

4
j

 .

This ends the proof of the �rst point of Lemma 20.
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Assume now that sj = 1 for all j = 1, ...,m (in particular J = ∅). Then

I1(a) =

∫
∀j, |θj |≤n

− 1
2−η

j

e−i
∑m
j=1(aj−aj−1)θje−

σ2
ξ
2

∑
y∈Z\S′ (

∑m
j=1 θjN

′
j(y))2

dθ

=

 m∏
j=1

n
− 3

4
j

∫
∀j,|θ′′j |≤n

1
4−η
j

e−i
∑m
j=1 n

− 3
4

j (aj−aj−1)θ′′j e−
σ2
ξ
2

∑
y∈Z(

∑m
j=1 θ

′′
j n
− 3

4
j N ′j(y))2

dθ′′

=

 m∏
j=1

n
− 3

4
j

∫
D̃

1
2
k Uk

(det D̃k)−
1
2 e−i〈D̃

− 1
2

k (n
− 3

4
j (aj−aj−1))j ,v〉e−

σ2
ξ |v|

2
2

2 dv ,

where Uk is the set of θ′′ = (θ′′1 , ..., θ
′′
m) such that |θ′′j | ≤ n

1
4
−η

j for all j = 1, ...,m and with

D̃k =
(

(ninj)
− 3

4
∑

y∈ZN
′
i(y)N ′j(y)

)
i,j
. Moreover

I2(a, b) = (2π)
∑m
j=1 sj

 m∏
j=1

(f(aj)f(bj,1))

P

∀j, ∑
y∈Z\S′

N ′j,1(y)ξy = bj,1 − aj

∣∣∣∣∣∣ (N ′j,1)j


= (2π)M−m

 m∏
j=1

f(aj)

E

f
aj +

∑
y∈Z

N ′j,1(y)ξy

1{aj+
∑
y∈ZN

′
j,1(y)ξy=bj,1}

∣∣∣∣∣∣ (N ′j,1)j

 .
Thus, it follows that, uniformly in k and on Ωk,

dm

(2π)M

∑
b1,1,...,bm,1∈Z

I1(a) I2(a, b) =

(
d

2π

)m m∏
j=1

f(aj)


(detDk)−

1
2

(∫
Rm

e−i〈D̃
− 1

2
k (n

− 3
4

j (aj−aj−1))j ,v〉e−
σ2
ξ |v|

2
2

2 dv +O(n−p)

)

E

f
aj +

∑
y∈Z

N ′j,1(y)ξy

∣∣∣∣∣∣ (N ′j,1)j


for all p > 0, as seen at the end of the proof of Lemma 19 (applied with D̃k) and so

dm

(2π)M

∑
b1,1,...,bm,1∈Z

I1(a) I2(a, b) =

(
d

2π

)m m∏
j=1

f(aj)

 (detDk)−
1
2

×

(∫
Rm

(
1 +O

((
〈D̃−

1
2

k (n
− 3

4
j (aj − aj−1))j ,v〉

)2
))

e−
σ2
ξ |v|

2
2

2 dv +O(n−p)

)

× E

f
aj +

∑
y∈Z

N ′j,s(y)ξy

∣∣∣∣∣∣ (N ′j,1)

 ,
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for all p. Due to (87), we obtain that

B
k,`,I

(3)
k ,Ωk

=

(
d

2π

)m ∑
a1,...,am∈Z

1{∀i, ai=kiα+dZ} (90)

× E

(detDk)−
1
21Ωk

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

(√2π

σξ

)m
(91)

+O

 m∏
j=1

n
− 3

4
j

n−
κθη

4 + E
[
(detDk)−

1
2 (min

j
nj)
− 3

2 λ̃−1
k 1Ωk

]
, (92)

where λ̃k is the smallest eigenvalue of D̃k. For the last term, we use (73) (applied for D̃k), which
ensures that on Ωk,

λ̃k ≥
det D̃k

(mn3γ)m−1

and so

(min
j
nj)
− 3

2E
[
(detDk)−

1
2λ−1
k 1Ωk

]
≤ (mn3γ)m−1(min

j
nj)
− 3

2

 m∏
j=1

n
− 3

4
j

E
[
(det D̃k)−

3
21Ωk

]

= O

 m∏
j=1

n
− 3

4
j

n−
3θ
2

+3(m−1)γ

 , (93)

where we used [14, Lemma 21] which ensures that E
[
(det D̃k)−

3
21Ωk

]
= O (1) uniformly in k.

This combined with (92) implies that

B
k,`,I

(3)
k ,Ωk

= O

 m∏
j=1

n
− 3

4
j

n−(M+1)Lθ

 (94)

+

(
d

√
2πσξn

3
4

)m ∑
a1,...,am∈Z

1{∀i, ai=kiα+dZ}E

(detDk)−
1
21Ωk

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

 ,
(95)

since L < min
(

3m
4M ,

κη
4

)
and since L(M + 1)θ < 3θ

2 − 3(m− 1)γ.

The last step of the proof of the lemma consists in studying the following quantity

Gk :=E

(detDk)−
1
21Ωk

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

 . (96)

Due to Lemma 23,

Gk =E

(detD′′k)−
1
21Ω′k

m∏
j=1

f(aj)f

aj +
∑
y∈Z

N ′j,s(y)ξy

+O

n− θ8−Lθ m∏
j=1

n
− 3

4
j


= E

[
(detDk)−

1
21Ωk

] m∏
j=1

f(aj)E

f
aj +

∑
y∈Z

N ′j,s(y)ξy

+O

n− θ8−Lθ m∏
j=1

n
− 3

4
j

 ,
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where we used the fact that D′′k has the same distribution as Dk and is independent of N ′j,s. This

combined with (95), (93), (74) and (75) ensures that

B
k,`,I

(3)
k ,Ωk

=

(
d√

2πσξ

)m ∑
a1,...,am∈Z

1{∀i, ai=kiα+dZ}E
[
(detDk)−

1
21Ωk

]
m∏
j=1

f(aj)E
[
f
(
aj + Z`j

)]
+O

n−L(M+1)θ
m∏
j=1

n
− 3

4
j


Moreover [14, Lemmas 21 and 23] ensure that

E
[
(detDk)−

1
21Ωk

]
= O

 m∏
j=1

n
− 3

4
j

 ,

and that

E
[
(detDk)−

1
21Ωk

]
∼ n−

3m
4 E

[
detD−

1
2

t1,...,tm

]
as kj/n→ tj and n→ +∞. This ends the proof of the lemma. �

Appendix B. Moment convergence in Theorem 3

Let f : Z→ R be such that
∑

a∈Z |f(a)| <∞. In this appendix we prove that all the moments

of n−
1
4
∑n−1

k=0 f(Zk) converge to those of
∑

a∈Z f(a)σ−1
ξ L1(0), as n→ +∞.

Due to Theorem 1, it is enough to prove the convergence of every moment. The key result is
the following proposition.

Proposition 26. For all a1, ..., ak ∈ Z,

P (Zn1 = a1, . . . , Znk = ak) ∼ 1{∀i, ai∈niα+dZ}

(
d√

2πσξ

)k
E[detD−

1
2

T1,...,Tk
] n−3k/4 ,

as n → +∞ and ni/n → Ti, where Dt1,...,tk = (
∫
R Lti(x)Ltj (x) dx)i,j=1,...,k where L is the local

time of the brownian motion B, limit of (Sbntc/
√
n)t as n goes to in�nity.

Moreover, for every k ≥ 1 and every ϑ ∈ (0, 1), there exists C = C(k, θ) > 0, such that

P [Zn1 = a1, . . . , Zn1+···+nk = ak] ≤ C
k∏
j=1

n
−3/4
j ,

for all n ≥ 1, all a1, ..., ak ∈ Z and all n1, . . . , nk ∈ [nϑ, n].

Proof. The lemma has been proved for ai ≡ 0 in [14, Theorem 5]. The proof in the general
case is the straighforward adaptation of [14, Section 5]. For completness, we explain the required
adaptations. The proof of the present result follows line by line the same proof with the adjonction

of a term e−i
∑k
j=1(aj−aj−1)θj (with convention a0 = 0) in the integrals appearing in [14, Lemma

15] (see Lemma 16 with M = m = k and sj ≡ 0). Lemma 16 (de�nition of the good set) and
Propositions 18 and 19 (estimates of the integral of the absolute values) of [14] are unchanged.
The only di�erence in the proof concern [14, Proposition 17] and more speci�cally [14, Lemma 23]

for which the there is a multiplication by e−i
∑k
j=1(aj−aj−1)θj in the integral. The only di�erence

in the proof of [14, Lemma 23] is that the quantity In1,...,nk considered therein (ni corresponding
to bnTic − bnTi−1c) is slightly modi�ed with the multiplication in the integral by a quantity
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converging in probability to 1 (with the notations of the proof of [14, Lemma 23]. Indeed,

considering the real part of the integral, this quantity is cos(
∑k

j=0(aj − aj−1)(A
− 1

2
n1,...,nkr)j) (with

the notations of [14, Lemma 23]) which is equal to 1 up to an error in O
(
min

(
1, µ−1

n1,...,nk
|r|2
))

where µn1,...,nk is the smallest eigenvalue of An1,...,nk , which is proved to converges to 0 in [14,
Lemma 23], and so the asymptotic behaviour of In1,...,nk is the same as when aj ≡ 0. �

Proof of the convergence of moments in Theorem 3. Take ϑ < 1
4 . Note that the last point of the

lemma ensures that

P [Zn1 = a1, . . . Zn1+···+nk = ak] ≤ C

 ∏
i:ni>nϑ

ni

−3/4

.

Let α0 be such that αα0 ∈ 1 + dZ. Then ai = qiα+ dZ is equivalent to qi ∈ aiα0 + dZ. Thus

E


n−1∑
q=0

f(Zq)

k
 =

n−1∑
q1,...,qk=0

E [f(Zq1)...f(Zqk)] =
∑

a1,...,ak∈Z
f(a1)...f(ak)

n−1∑
q1,...,qk=0

P(Zq1 = a1, ..., Zqk = ak)

= O(n
k−1

4 ) +
d−1∑

r1,...,rk=0

∑
a1,...ak∈Z

f(a1)...f(ak)

bn
d
c−1∑

q1,...,qk=0

P(Zr1+q1d = a1, ..., Zrk+qkd = ak)

= O(n
k−1

4 ) +
∑

a1,...ak∈Z
f(a1)...f(ak)

bn
d
c−1∑

q1,...,qk=0

P(Za1α0+q1d = a1, ..., Zakα0+qkd = ak) ,

with x the representant of x+ dZ belonging to {0, ..., d− 1}. It follows that

E


n−1∑
q=0

f(Zq)

k
 = o(n

k
4 ) +

∑
a1,...,ak∈Z

f(a1)...f(ak)n
kHk

= o(n
k
4 ) +

∑
a1,...,ak∈Z

f(a1)...f(ak)n
kH ′k ,

with

Hk :=

∫
[0,1/d]k

P
(
Za1α0+bt1ncd = a1, ..., Zakα0+btkncd = ak

)
dt1...dtk

H ′k =

∫
[0,1/d]k

n
3k
4 P
(
Za1α0+bt1ncd = a1, ..., Zakα0+btkncd = ak

)
1mini,j |btinc−btjnc|>2nϑ dt1...dtk .
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Due to the dominated convergence theorem, we conclude that

E


n−1∑
q=0

f(Zq)

k


= o(n
k
4 ) + n

k
4

∑
a1,...,ak∈Z

f(a1)...f(ak)

∫
[0,1/d]k

(
d√

2πσξ

)k
E[detD−

1
2

t1d,...,tkd
]dt1...dtk

= o(n
k
4 ) + n

k
4

(∑
a∈Z

f(a)

)k ∫
[0,1]k

(√
2πσξ

)−k
E[detD−

1
2

t1d,...,tkd
]dt1...dtk

= o(n
k
4 ) + n

k
4

(∑
a∈Z

f(a)σ−1
ξ

)k
E[(L1(0))k] ,

due to [14, Theorem 3]. �
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