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LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF RANDOM WALKS
IN RANDOM SCENERY

FRANCOISE PENE

ABsTRACT. We study the asymptotic behaviour of additive functionals of random walks in
random scenery. We establish bounds for the moments of the local time of the Kesten and Spitzer
process. These bounds combined with a previous moment convergence result (and an ergodicity
result) imply the convergence in distribution of additive observables (with a normalization in

n%) When the sum of the observable is null, the previous limit vanishes and we prove the
convergence in the sense of moments (with a normalization in n%).

1. INTRODUCTION

1.1. Description of the model and of some earlier results. We consider two independent
sequences (Xj)g>1 (the increments of the random walk) and (&,)ycz (the random scenery) of
independent identically distributed Z-valued random variables. We assume in this paper that
X is centered and admits finite moments of all orders, and that its support generates the group
Z. We define the random walk (Sy,)n>0 as follows

n
So:=0 and S5, := ZXi for all n > 1.
i=1
We assume that &g is centered, that its support generates the group Z, and that it admits a finite
second moment O'g := E[¢2] > 0. The random walk in random scenery (RWRS) is the process
defined as follows

n—1
Zni=Y €5 = > &Naly). 1)
k=0 YEL
where we set N, (y) = #{k = 0,...,n—1 : Sy = y} for the local time of S at position y
before time n. This process first studied by Borodin [7] and Kesten and Spitzer [32] describes
the evolution of the total amount won until time n by a particle moving with respect to the
random walk S, starting with a null amount at time 0 and wining the amount & at each time
the particle hits the position ¢ € Z. This process is a natural example of (strongly) stationary
process with long time dependence. Due to the first works by Borodin [7] and by Kesten and

Spitzer [32], we know that (n_%Z\_ntJ)t converges in distribution, as n goes to infinity, to the
so-called Kesten and Spitzer process (0¢As,t > 0), where A is defined by

+oo

At = / Lt(x) dﬁx N (2)
—0o0

with (Bz)zer @ Brownian motion and (L(z),t > 0, € R) a jointly continuous in ¢ and x

version of the local time process of a standard Brownian motion (By)s>0, where ((Bt), (Bs)s) is
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the limit in distribution of nfé((SLmJ)t, (05_1 zlgflj &k)s) as n — +o0o0. Observe that A is the
continuous time analog of the random walk in random scenery. To be convinced of this fact, one
may compare the right hand side of (1) with (2). The process A is a classical and nice example
of a (strongly) stationary process, self-similar with dependent (strongly) stationary increments
and exhibiting long time dependence.

In [7], Borodin established the convergence in distribution of Z,, when X and £ have second
order moments. Kesten and Spitzer established in [32] a functional limit theorem when the
distributions of X and ¢ belong to the domain of attraction of stable distributions with respective
parameters a # 1 and § € (0,2]. Limit theorems have been extended by Bolthausen [6] (for
the case a = = 2 for random walks of dimension d = 2), by Deligiannidis and Utev [19]
(o =d € {1,2}, p =2, providing some correction to [6]) and by Castell, Guillotin-Plantard and
the author [12] (when o < d and (8 < 2), completing the picture for the convergence in the sense
of distribution and for the functional limit theorem (except in the case « <1 and g = 1). Since
the seminal works by Borodin and by Kesten and Spitzer, random walks in random scenery and
the Kesten and Spitzer process A have been the object of various studies (let us mention for
example [33, 50, 29, 3, 27, 25, 28, 2]).

Random walks in random scenery are related to other models, such as the Matheron and de
Marsily Model [39] of transport in porous media, the transience of which has been established
by Campanino and Petritis [11] and which has many generalizations (e.g. [26, 20, 23, 10, 9]),
and such as the Lorentz-Lévy process (see [40] for a short presentation of some models linked to
random walks in random scenery).

Random walks in random scenery constitute also a model of interest in the context of dynam-
ical systems. They correspond indeed to Birkhoff sums of a transformation called the 7,7~!
transformation appearing in [49, p. 682, Problem 2| where it was asked whether this Kolmogorov
automorphism is Bernoulli or not. In [30], Kalikow answered negatively this question by proving
that this transformation is not even loosely Bernoulli.

1.2. Main results. Before stating our main results, let us introduce some additional notations.
Let d € N be the greatest common divisor of the set {x € Z, P({, — & = z) > 0} and « € Z such
that P(§y = a) > 0. This means that the random variables &, take almost surely their values
in o 4+ dZ and that d is largest positive integer satisfying this property. Since the support of £
generates the group Z, necessarily « and d are coprime. Recall that the quantity d can be also
simply characterized using the common characteristic function ¢ of the &t

In the present paper we are interested in the asymptotic behaviour of additive functionals of
the RWRS (Z,,),>1 that is of quantities of the following form:

k=1

where f :Z — R is absolutely summable. This quantity is strongly related to the local time N,
of the RWRS Z, which is defined by

No(a)=#{k=1,...n : Zy =a}.
Indeed if f = 1¢, then Z,, = N, (0) and if f = 19— 11, then Z,, = N,,(0) — A, (1). In the general
case, Z, can be rewritten

Zp = Z fla)Np(a).

a€Z

2im€ 2iTa

Indeed d > 1 is such that {u : |p¢(u)| =1} = (27/d)Z and a.s. ¢ @ =e @ which is a primitive d-th root
of the unity.
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The asymptotic behaviour of (N, (0)), has been studied by Castell, Guillotin-Plantard, Schapira
and the author in [14, Corollary 6], in which it has been proved that the moments of (n_%./\/'n(()))nzl
converge to those of the local time £1(0) at position 0 and until time 1 of the process A. The
proof of this result was based on a multitime local limit theorem [14, Theorem 5| extending a
local limit theorem contained in [13] and on the finiteness of the moments of £1(0) (which was
a delicate question). We complete this previous work by establishing in Section 2 the following
bounds for the moments of £;(0).

Theorem 1. For any no > 0, there exists a > 0 and C > 0 such that

3m m (m) %4'70 5
(Cm)*F < E[(£:(0))"] = O (%) <O (mmGeom)) |

Even if it uses some ideas that already existed in [14], the proof of Theorem 1 (given in
Section 2) is different in many aspects. It requires indeed much more precise estimates which
changes in the approach of the control of the moments. The proof of Theorem 1 relies on several
auxiliary results. We summarize quickly its strategy. We will prove (see (9) coming from [14]
and (10)) that

m—1 m—1
E[(£1(0))"] = Wn/o [T (tesr —tx) iE [H (d( L+ Wk)) ] dty...dty,,

(2708)2 Jocti<..<tm<1 (g 0
where we set Wy, := Vect(L(M), . ,L(k)) and L+ .= (Lt — Lty )/ (g1 — tk)% (normalized so
that |L m)|L2 has the same distribution as |L1|r2(g)). We will prove, in Lemma 7, that

m—1
3m
4

de,C >0, m! / H (tge1 — tk)_% dty...dty, ~ c(Cm) 4 |
0<t1 <. <tm<1 1.

as m — 400 and, in Lemma 6, that

(E DLHZ;(R)Dm <E ”ﬁl (d(L(kH) k )

where d(,-) is the distance associated with the L?-norm on L?(R) and where Vj is the set of
linear subspaces of L?(R) of dimension at most k. Theorem 1 will then follow from the next
self-interesting estimate on the local time L; of the Brownian motion B up to time 1.

< H (Sup E|(d Ll,V))_lD RNE)

k=0 VeV

Theorem 2.

sup E [(d (L1, V))_l} = koo , ask — 4o00. 4)
VeV

Now we use the following classical argument for positive random variables. The upper bound
provided by Theorem 1 allows us to prove that the Carleman’s criterion is satisfied for £+/L1(0)
where £ is a centered Rademacher distribution independent of £1(0) and of Z, indeed:

S ENL1(0)M I e Y mTE T =00,

m>1 m>1

for every nmo € (0,2). This enables us to deduce from [14, Corollary 6| that nsE N, (0)

converges in distribution to £y /o, 1£1(0) and so that

n_i./\/'n(()) — Uglﬁl(O) , asmn— 400, (5)

where — means convergence in distribution. This convergence in distribution is extended to
more general observables.
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Theorem 3. Let f:Z — R be such that ), |f(a)] < oo. Then ni S0=o £(Zy) converges in
distribution and in the sense of moments to ) ., f(a)aglﬁl(O).

The proof of the moments convergence in Theorem 3 is a straigthforward adaptation of [14]
and is given in Appendix B. Due to Theorem 1 and to the above argument that lead to (5), the
convergence in distribution in Theorem 3 is a consequence of the moments convergence. Another
strategy to prove the convergence in distribution in Theorem 3 consists in seing this result as a
direct consequence of (5) combined with Proposition 13 stating the ergodicity of the dynamical
System ((2, T, i) corresponding to

fk((Xm-H)mGZv (fm)ng, ZO) = ((Xk’+m+1)m627 (&n-{-Sk)mEZa Zk) .

This dynamical system preserves the infinite measure g := ]P’?}% ® IP’?)Z ® Az, where Az is the

counting measure on Z. Actually, thanks to (5) and to the recurrence ergodicity of (Q, T i), we
prove the following stronger version of the convergence in distribution of Theorem 3.

Theorem 4. For any pi-integrable function f: Q— R,

n—1 g~
~ ~ ) Jafd
n_iZfoTkaﬁl(O), asn — 400,
k=0 ¢

£
where ﬂg means convergence in distribution with respect to any probability measure absolutely
continuous with respect to .

Theorem 3 can be seen as weak law of large numbers, with a non constant limit. When
> acz f(a) =0, the limit given by Theorem 3 vanishes, but then the next result provides a limit
theorem for Z,, = Zz;é f(Zy) with another normalization. This second result corresponds to a
central limit theorem for additive functionals of RWRS. Let us indicate that, contrarily to the
moments convergence in Theorem 3, the next result is not an easy adaptation of [14], even if its
proof (given in Section 4) uses the same initial idea (computation of moments using the local
limit theorem) and, at the begining, some estimates established in [13, 14]. Indeed, important
technical difficulties arise from the cancellations coming from the fact that » ., f(a) = 0.

Theorem 5. Assume moreover that there exists some k € (0,1] such that & admits a moment
of order 2+ k. Let f : Z — R be such that ) ., (1 + |a|)|f(a)| < co and that )" ., f(a) = 0.
Then

d—1
DD Ha)fOP(Zpray = a—b)| < .

LET |0'=0 a,bcZ?

0.2
Moreover all the moments of (nfé Zz;é f(Zk)) converges to those of 4/ U—gﬁl(O)N, where N

is a standard Gaussian random variable independent of £1(0) and where

o= > fa)f(O)P(Zy =a—b). (6)

k€Z a,bcZ?

In particular, for any a € 7Z, (n‘é(/\/n(a) —./\/}L(O))> converges in the sense of moments to

n

O'2 -
S LUOWN, with 0f 4 = Ypeg [2P(Z)) = 0) = P(Zjyy = a) — P(Zy = —a)].

Let us point out the similarity beween these results and the classical Law of Large Numbers
and Central Limit Theorem for sums of square integrable independent and identically distributed
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random variables. Indeed Theorems 3 and 5 establish convergence results of the respective
following forms

1 o 1 <

— Y Vi = I(V1)Y and ——> (Vi —IV)YY) = /ol YV 2

R Van k=1
as n — 400, with a, — 400, I an integral (with respect to the counting measure on Z) and Yk0
a reference random variable with integral 1 (e.g. Y;? = 1¢(Z), note that we cannot take V) =1
since it is not integrable with respect to the counting measure on Z).

The summation order in the expression (6) of oj% is important. Indeed recall that P(Z; = 0)

has order k1 and so is not summable. The sum > kez appearing in (6) is a priori non absolutely
convergent if d # 1. Indeed, considering for example that & is a centered Rademacher random
variable (i.e. P(§p =1) =P(§ = —1) = %) and that f = 19 — 14, then, for any k£ > 0,

Z f(a)f(O)P(Zjog = a —b) =P(Zjgp = 0= 0) + P(Zpopy = 1 — 1) = 2P(Z) = 0)
a,beZ?

and

Z f(a)f(O)P(Zjgpq1) = a—b) = =P(Zjgp11) = 0—1) =P(Zjgp11) = 1-0) = —P(|Zjgp11)| = 1) -
a,beZ?

But, UJ% corresponds to the following sum of an absolutely convergent series (in k):

d—1
or=> 1> > f@fOPZpiay =a-b)

keZ \'=0 a,bcZ?

Finally, let us point out that 0]20 defined in (6) corresponds to the Green-Kubo formula, well-

known to appear in central limit theorems for probability preserving dynamical systems (see
Remark 14 at the end of Section 3).

Let us indicate that results similar to Theorem 5 exist for one-dimensional random walks, that
is when the RWRS (Z,,),>1 is replaced by the RW (S,,),>1, with other normalizations and with
an exponential random variable instead of £1(0). Such results have been obtained by Dobrusin
[21], Kesten in [31] and by Csaki and Foéldes in [17, 18]. The idea used therein was to construct a
coupling using the fact that the times between successive return times of (Sy,),>1 to 0 are i.i.d.,
as well as the partial sum of the f(Sk) between these return times to 0 and that these random
variables have regularly varying tail distributions. This idea has been adapted to dynamical
contexts by Thomine [47, 48]. Still in dynamical contexts, another approach based on moments
has been developed in [41, 42] in parallel to the coupling method. This second method based
on local limit theorem is well tailored to treat non-markovian situations, such as RWRS. Indeed,
recall that the RWRS (Z,,)n>1 is (strongly) stationary but far to be not markovian (for example
it has been proved in [14] that Z,, 4, — Z, is more likely to be 0 if we know that Z,, = 0) and
even more intricate conditionally to the scenery (it has been proved in [25] that the RWRS does
not converge knowing the scenery). Luckily local limit theorem type estimates enables to prove
moments convergence. But unfortunately Theorem 1 is not enough to conclude the convergence
in distribution via Carleman’s criterion.

The paper is organized as follows. In Section 2, we prove Theorem 1 (bounds on moments of
the local time of the Kesten Spitzer process) and Theorem 2 (estimate on the distance in L?(R)
between the local time of a Brownian motion and a k-dimensional vector space). In Section 3, we
establish the recurrence ergodicity of the infinite measure preserving dynamical system (?2, T, m)
and obtain the convergence in distribution of Theorem 3 (Law of Large Numbers) as a byproduct
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of this recurrence ergodicity combined with (5). Section 3 is completed by Appendix B which
contains the proof of the moments convergence of Theorem 3. In Section 4 (completed with
Appendix A), we prove Theorem 5 (Central Limit Theorem).

2. UPPER BOUND FOR MOMENTS: PROOF OF THEOREM 1

This section is devoted to the study of the behaviour of E[(£1(0))™] as m — 4o0. It has been
proved in [14] that this quantity is finite, but the estimate established therein was not enough
to apply the Carleman criterion. The proof of Theorem 1 requires a much more delicate study,
even if it uses some estimates used in [14]. We start by establishing bounds for E[(£1(0))™].

Lemma 6.
m | m—1 5
E||L|;} m/ that — te) "1 dty..dtm < E[(L1(0)™] (7
(B 1117w ) ToTE e coper Lt =807 H it SELLOF] (O
and
m—1 m! m—1 5
E[(£1(0))™] < <sup E [(d (Ll,V))_lD 2m/ T (trsr—te) 2 dtr..dtn,
<o \Ve (2mog) 2 Jo<ti<.<tm<1 g

(8)
where d(f,g) = |f — glr2r) and where Vi is the set of linear subspaces of L?(R) of dimension at
most k.

Proof. Recall that it has been proved in [14, Theorem 3] that

!
E[(£:(0)"] = —2 / E[(det Dy, 1. )" 3] dtr.dbm (9)
(2mog) 2 Jo<ti<..<tm<1
with Dy, 1, := ([ L, (@) Ly, (2) dx)m:lw’m where (L¢())¢>0,zcr is the local time of the Brow-

nian motion B. Since det Dy, ;.. is a Gram determinant, we have the iterative relation

m

1 1
det thu_’t L= det th'._imd(Lth, Vect(Lyy ..., Ly,,)),

m

where d(f,g) = ||f — gllL2(r) and where Vect(Ly,, ..., Lt,,) is the sublinear space of L?(R) gener-
ated by Ly, ..., Lt,,. It follows that

m—1
detD;%“’tm = ] (d(Li,,, Vect(Liy, .., Le))) (10)
k=0
But, forany m > 1 and any 0 < t; < ... < tpmy1 < land any k=0,....m — 1,
E [d (Lip,,, Vect(Lyy, .. Ltk))_l‘ (Bs)sgtk}
= |d(Ly,, — Ly, Veek(Ly, Ltk))_1’ (By)sste|
) [d ((Ltyry — Lig)(Biy, + ), Veet(Liy (By, + ), ooy Ly (Biy, + .)))—1‘ (Bs)sgtk} .
Therefore
E{|Los = Lol pagmy | S B [d (Lo Veet(Lugs o L) ™| (Bo)sza (11)
and

E [d (Ltyrr Veet(Ley, --.,Ltk))’l‘ (Bs)sgtk} < sup B [d ((Ltysy = Lty ) (B, + -),v)*l} , (12)
k
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where Vj, is the set of linear subspaces of dimension at most k of L?(R) and where we used the
independence of (Ly, ., — Ly, )(By, + -) with respect to (Bs)s<t, and the fact that (L (B, +
)y ooy Lt (B, +-)) is measurable with respect to (Bs)s<t,. Thus, by induction and using the fact
that the increments of B are (strongly) stationary, it follows from (10) and (12) that

m—1

m—1 1 B
H E |:|Ltk+1 - LtkEQl(R)} <E [det Dt1,2...,tm} < H sup E [(d ((Ltk+1 - Ltk)(Btk + ')7V)) 1}
k=0 k=0 V' EVk

m—1

) kE[o oo [OERENNE (13)

with the convention ¢y = 0. Recall that (L, (z)),er has the same distribution (v/uLi(z/\/u))zer
and 5o (d(Ly, Vect(gy, ..., gr)))” has the same distribution as

almlflllk/R <\/5L1 <jﬁ> - i}%é]i(@)z dr = ua’lmlri;/n@ (Ll <\:/Eﬁ> - i}aégi(x))z dx
u? min L1 (y) —iaégi(\/ﬂy) 2 dy
I )
i=1

/ /
al,...,ap

3
= Uuz2

(d(Ly,Vect(hi, ..., hy)))?

setting a} := a;/+/u, and making the change of variable y = x/y/u, with h;(z) = g;(y/uz) and so
(13) becomes

m—1 m—1
3 _ -1 _3 _
[T (e =) B ILil ) | ) < B [detDtlfﬂtm] <[] (trr—te)~5 sup E[(d (L1, V)],
k=0 VeV
(14)

which ends the proof of the lemma. O

We first study the behaviour, as m — 400, of the integral appearing in Lemma 6.

Lemma 7.

m—1 1
3 m!T(5)™ 3m

m! / | | (thgr — tr) 2 dty..dty, = ——3— ~ ¢(Cm)t

0<t1 <o <tm<1 0 EERYCEY)

as m — +0oQ.
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Proof.
i 3
A1 H(tk+1 —t) "1 dty...dtpmy
0<t1<..<tm41<1 k=0
m—+1 3
= / :L’k 4 d:z:l...da:m+1
:L‘Z'>0:$1+...+.’Em+1<l k=1
1 3 " 3
= / 2, (1= Tpg1) 4 / H(ffk/(l — Tmt1)) 2 dxy..dTy, | dTmin
0 z; >0 21+ Frm<l—Tm41 k=1
L s m LSRN |
— / :L'mj_l (1 —zpy1) 4 / H wy, * duy...duy, | drmi
0 w; >0 U+ Fum <1 k=1
1 1 m
1 r(HrE+1)
(1= d = a,B 1) = - 4
where B(,-) nd I" stand respectively for Euler’s Beta and Gamma functions, and so, by induc-
tion, a,, = 11:( Ty proving the first point of the lemma. Moreover
Ml ~ (D(1/4))" m™ 2 (m + 4) "5 245 Yae= 5 H1

where we used the Stirling formulas m! = I'(m 4+ 1) and I'(z) ~ V2r2*"2e~*. This ends the
proof of the lemma. O

Observe that E [|L1\Z;(R)} > 0. Thus, the proof of Theorem 1 will be be deduced from the

two previous lemmas combined with Theorem 2, which can be rewritten as follows

Vo >0, 3C > 1, Vke N*, C'k2™ < sup E [(d(L1,V)))"'| < Ckzt™0 .  (15)
Vey,

Due to [44, Cor. (1.8) of Chap. VI, Theorem (2.1) of Chap. I|, L; is almost surely Holder

continuous of order % — 1o and its Holder constant admits moments of any order. The lower

bound of theorem 2 follows directly from this fact.

Proof of the lower bound of Theorem 2. We prove the lower bound of (15). Let 19 € (0, 5). Let
C1 be the Hélder constant of order —mo of L1. Let Vj be the linear subspace of L?(R) generated

by the set
k k
Lpm/k,(ma1) k), M= — CIRRRA D] 17,

and consider Zk € Vi, given by

[51-1

L= 30 () tpmey-

m=—|%]
Let Ky > 0. We will use the fact that

E[(@(21, Vi) ™| 2 B[00, V) ™ Lo, ity aup 13125ty
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Observe that, if supyo 1) | B] > k-l and ¢ < Ky, then

(%]*1 m+1

AL Vi <dLn L)’ = Y | 7 (Li(w) = Lu(m/k)) du

m

m=l%]" %
[£1-1
< 3 k! <Kok z+77°) (Kok z+"0)
-y y

Thus

E|(d (Lth))_l} >E [(d(Lth))_l Lici <Ko, suppy; \B\g%}}

—1
>E|(Kk—2tm) 1 -
= {C1<Ko, suppo 1) |1BI< G5}

1
> Ky 'k P (¢ < Ko, sup|B| < = | .
0.1] 3

O

The rest of this section is devoted to the proof of the upper bound of Theorem 2 (i.e. the
upper bound of (15)), which is much more delicate to establish. To this end, we will prove a
sequence of estimates. Let us first introduce the quantities used in this proof. We fix 9 > 0 and
d =% +mno > 1/2. Choose € € (0, 1) such that

1+ ¢

Fix a,b,n,v € (0 15) such that 0 < < § and small enough so that
(1 +7)( + <) b
—_— 1 1
5 +3 5 tg< (17)
and
(2d(1 —€g) — 1 —€0)(1 —2n) — 8y > 0. (18)
Let 6 > 0 such that (1 —27)0 > 1 and
b (141 +e) 1+7)(1+e) a b
1— - — =T PUETR g — R S A S P 1
and
(I—ep)(14+2d) <0[(2d(1 —eg) —1—€)(1 —2n) — 87 . (20)

The existence of such a 6 is ensured by (17) and (18). Fix then K such that ; b < K and

vo = [16/b]. We will also consider the following quantities which will depend on k: > 1. We set
= [0k] and M’ := M¢?. For x > M’, we also set:

l14e¢g

ro 1= (/M) Ok p— 5 AP0 AN, = (/M. (21)
Let V be a linear space generated by g1, ..., gx € L?(R). Observe that
B[ V)| = [ (@@ v) > a) do
0

=O0M)+ | P(d(L,V)) <z ') dx. (22)
v
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Lemma 8. Uniformly on x > M':
P (d(Ly,V)) <z')

<O ((z/M)?)+P (W = —v, ..., Vo, D ((Ll (mlé + ;))

n=1,....M
(23)

where W‘(/yo) = Span (( yo+(n+1)/zo gj(y’) dy,)ﬂ

yo-+n/zo T 1,...,k‘> c RM and where D is the

usual euclidean metric in RM .

Proof. We set

L — L 1 1
L1 (y) 1(2)!’ with u —

Ci:= sup e 2

y,2€R 1 y#z ly — 2[*

Since C; admits moments of every order, it follows that
P(d(L1,V) < 1/z) <P (d(L1,V)) < 1/z, C; < (z/M')) + O((x/M")7?),
Note that, if z > M’ then
oo = (/M) (DO NS T <

as soon as ¥ > M’, since a < 1 < (14)(1+¢o) and since M’ = M? with 1 < d, and so ry < 25"
Assume moreover that d(L;,V) < 1/x and C; < 27. Let a; such that d <L1, Z?Zl ajgj> <z b
Then, for every ¢ € Z, the following estimate holds true

[N

2
. M Zml_%—i-%—i-m k
a7t > Z/ Lily) =Y ajg;(y) | dy
j=1

_1
n=1"t% 8"'%
1
_1 2 2
M z$18+%+m -1 n k . N2y 2u\ 3
> 1 Ly lx,®+— ) — Za]g](y) dy | - (MTO(J:/M) 5 )
——y 8+% Lo 1
_1 -% 1
> /D ((L (exl Fy ”)) i >> — VM (/Mg
L0 n=1,....M

1+€g

1
Since 3+u = 12— and g = (z/ M)~ N A+e0) pp=—5 M/ =17 we conclude that VM (x/M')ré u

1+e€o
x~ 1 and so

P(d(L1,V)) < 1/z, C; <x7)

_1 o8 _1
<P (Vﬁ = —vg,...,v0, D <<L1 (ﬁxl 8 4+ ;)) ,W‘(f ! 8)> < 2x_1r0 2) .
0 n

Recall that vg = [16/b]. Set

Eow =D (960/950 Y’(y)dy> W <227 g

.....

_1
7W\(/€x1 8)> <22 b

1

0

2

) |
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Lemma 9. The following estimate holds true uniformly on x > M:

P(d(L1,V)) <z™!) <O ((x/M)7?) + sprP(EO,W) , (24)

where supy, means the supremum over the set of linear subspaces W of RM of dimension at most
1

k and where Y' is a squared Bessel process of dimension 0 starting from z; *

1
Proof. We adapt the proof of [14, Lemma 9]. Setting €’ := x; ® and T}, := min{s > 0 : |B,| = u}
for the first hitting time of {£u} by the Brownian motion B, we observe that
P(Type > 1) =P ( sup |B,| < U0€/> = O(e—co(voe/)—Q) =0 ((x/M/)—bvo/8> -0 ((:E/M’)_Q) )

s€[0,1]
(25)
(using e.g. [43, Proposition 8.4, page 52|). Moreover, due to [44, Exercise 4.12, Chapter VI, p
265], for every n =0, ...,v9 — 1,

P <LT(n+1)E/(BTM/) —Lr ,(Br,,) < (6/)2|(Bu)u§TnE/) <P(Lr,(0) < ()?) <€

and so, due to the strong Markov property,

P (V?’L = Oa < V0 — 17 LT<n+1)E/ (BTM/> - LTne/ (BTnE/) < (6,)2) < (6/)1)() )

and this, combined with (25), ensures that there exists Cp > 0 such that P(V¢ = —vy, ..., vo, L1(le’) <

(€')?) < Co(¢')* and so
P(Vf = —0, ..., V0, tg(xl) > 1) < C()(:IJ/M/)beO/g <0 (x/M/),Q , (26)

setting to(x1) :=inf{s > 0 : Lg(fx; ® ) > x, 4} Moreover, for any ¢ = 1, ..., v9, we have

. n (b, %) -
supP | t(z1) <1, D| ( Ly ( bz ® + . , Wy < 2z \/xq
1% 0//)n
-5, N (4961 ) -1
< SupIED (tg(xl) < 1, D <<Lfe(331) <£:L‘1 + 33)) W > < 2z \/SU()>
1% 0//)n

_1
< Sblva <D <<Lte(ac1) (&51 "+ Z))) ,W> < 2$_1\/$0> , (27)
o) 8 o) 8 5
setting W‘(/ygl )= I/V‘(/271 ) + ((Ltg(xl) — L) (€x18 + g())) . Due to the second Ray-Knight

1
theorem (see [44, Theorem 2.3, page 456]), (Ly,(z,)(fx; ® + y))y>0 has the same distribution as
Y’. The lemma follows from (26) and (27). O

Recall that 4a — b > 0. Set

71/4
E, = { sup |Y'(s) — 1/4| < — 2 } .

s<M/xzo
Lemma 10. For every K > (4a — b)™!, the following estimate holds true uniformly on x > M :

P(E)=1-0 ((x/M’)_K(4a_b)> . (28)
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Proof. Using the Burkholder-Davis-Gundy inequality, combined with the fact that Y’ is domi-
1

nated by the square of a Brownian motion starting from z; 1, we observe that

_1/
P :P[ sup |Y'(s) — 2y /Y > ]

s<M/zo 2
Mo AK
< O o3K 8K / Y’ (u) du
0
M/xo
< Ol 22 (M g1 / E [Y'(w)*] du (29)
0

with Cf = 285 Cy, and so
2K a1 (M -1/8
b < Cieat (/)" [ [ 4 8] du
0

< Cle ot (M /o) 25K ( + (M/20))
< O (af (M /o)™ + 2% (M [20)*")
with C% = 2857 and
ol (8 20) K = (/b KD,
since 2o = (z/M')*M and x; = (x/M’)°. O
Lemma 11. Uniformly on x > M’,

sup P (Eow N Ey) SC’"k(x/M’)[ 4
w

b UMb (1) [1— UED(be0) _a_t]

" M(1—Zo)k+(1+eo)(i—2n)M+2nMM/<1725())(]{7(17277)]\4)
Proof. Observe that

1/4
E07W NE C {(Y’(n/xo))n:L € By ( 71/4, $12 ) NnWw, } (30)

_ —1/4 —1/4
where B ( 1/4, xlz ) is the ball (for the supremum norm) of radius xlz and centered on

_1
(mf1/4, s xf1/4), and where W, is the e = 22~ !r, 2-neighbourhood of W for the metric D. Note
that

(14)(1+eg) 1+eg 1teg _
B Vo (i

= 2(x/M") (31)
and 11
R, = YMaz l(x/M')l—%—wM%M’l‘H% >1, (32)
€
—1/4
uniformly in z > M’ since 7 +m < 1. Observe that By <x1 1/4, e M. )HW is contained

in B <w1_1/4,\/]\7x1_1/4> N W, where B, (xl_l/4, \/Mxl_l/ ) is the euclidean ball centered on
(xf1/4, vy 71/4) with radius \ﬁxfl/zl.

Let zo, 2, € Bs (xl 1/4,\/Mx 1/4) N W, and z; € W N Ba(zo,¢), 21 € W N Ba(z),e). Then
21 € By <21,3\/M:1:1_1/4>. Due to [45, Theorem 3, pages 157|, there exists ¢ > 0 such that
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W N By (zl, 3VM 931_1/ 4) is contained in the union of at most (¢R.)* euclidean balls of radius ¢

1
in W. Thus W, N Ba <x1 Y Ma:l_l/4> is contained in the union of at most (cR.)* euclidean

—1/4
1

balls of radius 2¢. We conclude that B <x11/ 4, 2) N W, is contained in the union of at most

—1/4

(¢R)* euclidean balls of radius 4 centered at a point contained in Bag <x1_1/ 4, xlz > NW,. It
follows from this combined with (30) that

P[Eow NEq] < (cRx)k sup P ((Y’(n/xo))n:17,__7M € 82(2,45)) . (33)
—1/4
2€Bx <:v1_1/4,zl2>
. 71/4 1'_1/4 /
Notethatifz € B (2 ", 5 and (Y'(n/xo))n=1,..m € Ba(z,4¢), then max,—o,.. amr—1 |2n+1—

1
1 R
x < wl; and there exist at most nM indices n’ that |Y'(n'/z¢) — 27| > 4e/+/nM, and so at
least (1 —2n)M indices n = {0, ..., M — 1} such that

1
() = b (5257) =
xg x0
_1
with zp = z; *. Due to [44, after Corollary 1.4, page 441], the distribution of Y'((n + 1)/x0)
knowing Y’'(n/x¢) = y is the sum of a Dirac mass at 0 and of a measure with density

2 (02) = Lo (-2 1 o),

where I is the modified Bessel function of index 1 which satisfies I1(z) = O(e*//z), as z — o0,
(see [35, (5.10.22) or (5.11.10)]). So

Gy (Y, 2) = O (l’éw% eXp (‘W)) =0 (xéx%)

Y

) < /vl

1
uniformly on y, z € [3614, 2, 4] . We will use the expression xp, 1 and € given in (21) and (31).

Thus by using the Markov property (and (M(1+);,(277M), < M?"M) " we get by induction, that,
when z > M,

sup P ((Y'(n/w0))n=1,..m € Ba(z,4¢))

Lo 1/4
263w<x11/4712>

_(1_G+0+ep) _a_b 1+e 4, ldeg (1-2m)M
< MM <C’(:c/M’) (1) e e )

Recalling that M = O(k), the previous estimate combined with (33) and (32) ensures that

supP (Eow N Ey) <C"*(x/M")
%%

(1—eg)k | (I+eg)(1—2m)M _lteo\(n_(1_
M 4O + = 1 L +277MM/<1 2 )(k (1=2n)M) (34)

which ends the proof of the lemma. Il
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Proof of the upper bound of Theorem 2. Formula (15) follows from (22) and Lemmas 9, 10 and
11. We will use the fact that

vQ > 1, / (2/M')~2 dz = O(M). (35)
]v !/
Thanks to this, the error terms in Lemmas 9 and 10 gives directly a term in O(M') = O(k?).

Let us detail the term coming from Lemma 11. We first observe that the exponent of (x/M’) is
strictly smaller than -1 for k large enough. Indeed this exponent is

[ IERS) PRI FRES. L ESO R

which is smaller than

where we used the fact that M = [0k] > 6k. The fact that this quantity is strictly smaller than
-1 for any k large enough comes from our conditions (17) and (19). It follows from this combined
with (35) and Lemma 11 that

+o0
/ sup P (E()’W NE N EQ) dx
w

!/

< C,,kM(1fzo)k+(1+€o>(i*2n)M+2n]\/[M,1+<17250)(k—(1—217)M)

(1—eg)(1+2d)M + (14+eg—2d(1—e€g))(1—2n)M
46 4

nk 4 rd+ +2nM
<C""M K

where we used the fact that M’ = M? and that k < [0k]/6 = M/6. Finally, we notice that
1+ e —2d(1—¢€) <0 (due to (16)) and that (20) ensures that

(1 —e€o)(1+2d) N (1+ €0 —2d(1 —€p))(1 — 2n)
46 4

+2n<0

and conclude that

+oo
/ sup P (EQW NEN Eg) dr = O(l) .
/ w

3. LAW OF LARGE NUMBERS: PROOF OF THEOREM 3

We complete the sequence (X,,)p>1 into a bi-infinite sequence (X, )nez of i.i.d. random vari-
ables. Theorem 3 could be proved by an adaptation of the proof of |14, Corollary 6] (combined
with Theorem 1). We use here another approach enabling the study of more general additive
functionals. Recall that (&m,4.5, )mez is the scenery seen from the particle at time k.

Proposition 12. Let f: 7% x 7% x 7. — R be a measurable function such that

Z |E[J?((Xn+1)nela (§n)nez, 0)]] < 00

LEL
Then

ZZ;(% f( (Xm-‘rk-f—l)mEZa (£m+5k)m€Zv Zk-i—m)
Nu(0) n>0

converges almost surely to I(f) := 3, E[f((Xn)nez, (€n)nez, £)].
In particular, this combined with (5) ensures that
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(TL 1 Z f m+k+1 meZs (§m+5k)m€27 Zk))

n>0

converges in distribution to I(f)aé_lﬁl(O).

Our approach to prove Proposition 12 uses an ergodic point of view. Let us consider the
probability preserving dynamical system (€2, T, u) given by

Q=77 <27, T((wr)rez (Yn)rez) = (@rs)kez Whtao)hen)s 1 =P @PEL,

ie. T (x,y) = (ox,0%y), where we write o : ZZ — Z” for the usual shift transformation given
by o ((zk)kez) = (2k+1)kez-
This system is known to be ergodic (see [49, 30]). We set ®(x,y) := yo. With these notations,

Zy, corresponds to the Birkhoff sum )}~ (1) ®oT*. Consider the Z-extension (Q, T, i) over (Q, T, 11)
with step function ®. This system is given by

Q:=Qx7Z, n=pu® Az,

where Az = >, 0, is the counting measure on Z and with

T(.ZU, Y, E) = (T(:U> y)7£ + yO) :
In particular

k—1

Tk ((l‘m-l—l)mEZa (ym)mEZa E) - (xm—l-k—l—l)meZa (ym—kxo—&-...—&-xk,l)mGZa ¢+ Z Yzo+...4z;

j=0
Observe that N, (0) corresponds to the Birkhoff sum EZ;S ho o TF(x,y,0) with ho(z,y,l) =
10(¢), and the sum studied in Proposition 12 corresponds to Zz;é foT*(x,y,0), while I(f) =

Ja 1 g
Proposition 13. The system (ﬁ,f,ﬂ) is recurrent ergodic.

Proof. Since (Q,T, ) is ergodic and since ® is integrable and p-centered, we know (by [46,
Corollary 3.9] combined with the Birkhoff ergodic theorem) that P(Z, = 0 4.0.) = 1, thus that
(Q,T,7i) is recurrent (i.e. conservative). Now let us prove that this system is also ergodic. Let
g: Q— (0, 4+00) be a positive p-integrable function such that g(x,y, ) = go(¢) does not depend
on (x,y) € Q and with unit integral (g is a probability density function with respect to p). By
recurrence of (£~2, f, ), we know that

D goTh =00 (36)

k>1

pu-almost everywhere. Let K € N. Consider f : Q> Ra p-integrable function constant on
the K-cylinders of the first coordinate, i.e. such that f(z,y,€) = fo((%m)|m|<k> Y, ¢) does not
depend on (zx) k> K-

Since (Q,T, i) is recurrent, the Hopf-Hurewicz’s theorem (see e.g. [1, p. 56]) ensures that

Sy foT*k f

— =H =FE |-
nf=+oo S go T (f.9) gh [g

f] (37)
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p-almost everywhere, where 7 is the o- algebra of T-invariant events. Thus the ergodicity of
(Q T , i) will follow from the fact that H ) is p-almost everywhere constant for every f as
above (g can be fixed). Observe that, for k > K,

k—1
foT (z,y,0)=f (0’“% N yl’0+---+xm>

m=0

k-1
_ TR
= fo (ka, e Rk, 00T TRy 4 N ywo+...+zm>

m=0

does not depend on (zx)r<—1. Analogously, for k > K,

k
foT ™ (z,y.0) = f (a"“w, oI Ty (= Y y’”)

m=1

k
= fo (kaa N N DD y—$1—...—.1‘m>
m=1

does not depend on (z)r>0. Of course g o T* satisfies the same property. Thus, due to (36) and
(37), it follows that H(f,g)(x,y,¥) does not depend on x. Thus, Hy 4 (x,y,l) = H((]?)g)(y,f)

for p-almost every (x,y, /) € Q.

By T-invariance of H(y4), given two distinct points xo, xy € Z such that P(X; = z9)P(X; =
xy) > 0, the following equality holds true almost everywhere

(0)
H(f g)<

where we write o for the usual shift on Z% given by o((yx)rez) = (Yrs1)rez- It follows that,

y0) = H{p 0™y, 0+ yo) = HY) (0%, 0 + o),

for every ¢ € Z, H((f) )( () is g% *o-invariant almost everywhere. By ergodicity of g®0~%0,

we conclude that H (s g (x,y,¢) = H](clg) (¢) depends only on ¢ almost everywhere. Since it is

T-invariant, for every yo € Z such that P(§ = yo) > 0, H(l)(ﬁ) J([;(f + yo). Since the
support of yo generates the group Z, we conclude that H; ;) is pi-almost everywhere equal to a
constant. 0

Note that the system in infinite measure (Q,7T,%) describes the evolution in time m of
(Xmtkt1)kezs (€8, +k)k, Zm)- In comparison, the system corresponding to ((Xtk+1)ks Sm)
is also recurent ergodic, but the analogous system corresponding to ((Xitr+1)ks (§5,,+k)k> Sm)
is recurrent (since P(S,, = 04.0.) = 1) not ergodic (since the sets of the form {(z,y,¢) : (Yn—t)n €
Ap} are invariant).

Proof of Proposition 12. Since ((NZ,T , i) is recurrent ergodic, the Hopf ergodic theorem ensures

~ Gk N

that, for any f € L'(j1), the sequence (M) converges p-almost everywhere to
n>0
Jafdi _ . =
Tohodi I(f). Thus
S0 F( Xkt )mezs (Emt s )mezs Zhvm)  Sopzg foT* x
N, 0) - n—17 ~k(( m)mEZa(gm)mE%O)
'fl( Zk:O ho ] T nZO

converges almost surely to I (f), and we have proved the first part of the proposition. The second
part comes from the first part combined with (5) and the Slustky theorem. g
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Proof of Theorem 4. Proposition 12 states that n=i Ez;é FoTk converges in distribution, with
respect to p ® & < fi, to [z fdp 05151(0). Thus, Theorem 4 follows from Proposition 12
combined with [51, Theorem 1]. O

We end this section with an interpretation of U]% in terms of the famous Green-Kubo formula.

Remark 14. Assume the assumptions of Theorem 5. consider the function f: Q=7 given by
flx,y,0) := f(£). Then 0']% can be rewritten

7= [ FFoT"

keZ

4. PROOF OF THE CENTRAL LIMIT THEOREM: PROOF OF THEOREM 5

We start by stating key intermediate results. We recall that d and « have been introduced in
the beginning of Section 1.2.

Proposition 15. Assume the assumptions of Theorem 5. Let M € N* and n > 0. There exists
L € (0,1) such that for every 0 € (0,1) the following holds true with the notations nj := kj—k;_1,
with the convention kg = 0.

First,
m Sj 3
E H( (Zi; 1, Hf(zkj%é) ((Hn 4) ) , (38)
K;=0,...d—1, VjeJ Jj=1 s=1

uniformly over the k = (K1, ..., kn) and £ = ({js)j=1,. mss=1,..s; such that n > k; > kj 1 + n?
(with convention ko := 0) and £;5 € {0,...,|n"?|} with M = > jei(sj + 1), where we set
J={j=1,...,m :s5; =0} and k:; =01if7¢J, and with

=0 Z H n;%Jm

J'C{L,...om} #T' 24T /2 \jeJ'

Second, if s; =1 for all j, then

m dek 1 B , mo 3
E H (f(Zk])f(ZkJ+€J)) = m H .Akjjj +0|n L(M+1)6 H n; 1 ,
j=1 o) * j=1 J=1

_3
uniformly on k., £ as above, with Ey depending on k but not on £ and such that Ep = O <H;” 17y 4>

1

uniformly on k as above, and Eyp ~ n~TE [detD 2 tm} as kj/n — t; and n — +oo, with

Dy, ..., fR Ly (x Lt]( )dx); j—1,..m where L is the local time of the brownian motion B,
limit of( Int]/ /1)t as n goes to infinity, and where

A= Y (f(a)Hf(b)>P(Ze=b—a)-

a€ka+dZ, beZ s=1
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Third,
nlO]\/I
S S 0 g, = o),
kY ekl =0 L1, by =0 Jj=1

10

as (ki/n,....km/n) = (t1,...,tm) and n — +oc0.

Proof. The proof of Proposition 15 is based on several technical lemmas. For reader convenience,
the most technical points are proved in Appendix A. Let M > 1, 6 € (0,1) and n € (0, ﬁ).

Choose L = {gi7. Assume nf < n] <nandletl;y,....0;s, =0,.., || with Z;n:l(qusj) =M.
We set Ni(y) = #{s = 0,..,n; — 1 : Si,_ 1+S y} N; = sup, N; and R := #{y € Z :
Nj(y) > 0}. Analogously, we set N]’» =H#{s= ljs—1: Sg;+s = y}. The left hand side of

(38) can be written

Bk,@ = Z H ( 7 Hf 7,8 ) pk,ﬂ(aa b)a (39)

ab \j=1
where Za,b means the sum over (a,b) € ZM with @ = (ay, ..., a,,) and b = (bj,s)j=1,...mss=1,....8;>
with the convention ag = 0 and
pre(a,b) =P(Vj=1,..,m, Zy, = aj, Vs =1,...,85, Ly, 44, = bjs) -
An classical computation (detailed in Appendix A) ensures the following.
Lemma 16.

dm

pkl(a’b) — 1{Vi,ai:kia+d2}w *ZZJ 1[((1] aj— 1)9 +Zg l(bJ s CLJ) Js}(pke(g 0 )d(0791) )

[_57%]’"1 X [_7.1.771.}]Mfm

(40)
with @ = (0;)=1,..m and ' = (9;75)j:17..,,m;3:17,,,73j and

Vr.0(6,6') ng Z(GN’ ZH’N’ ) : (41)

YEZL j=1
For any event E and any I C [-Z, 2]™ x [—m, 7]M~™ we also set
m
ore(0,0 E)=E |1 [Jwe [ D (&-N’ Ze’ Nj ) , (42)
yeZ Jj=1
dm i S m ai1)0s 53 (b, Y
pkl(a7 b I, E) - 1{Vi,ai=kia+dl}w e—sz:1[(a,7—a]—1) i+ L1 (bj,s—ay) j’s}@k,é(aa 0/7 El) d(07 9/) ‘
T I

(43)
and

Beers=> (][] (f(aj) ﬁ f(bj,s)> Pre(a, b, I, E). (44)

ab \j=1 s=1

Let v < min(L#6, 2M) Let ¢’ € (0, 92—77) such that ¢/ < § — 2M LH. We consider the set

’ o 3 = j
Q= {det Dy >n? an} N ﬂ Qﬁj), (45)

i=1
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with

iy
: [N (y) — Ni(2)] +
J

7=0,...,n; y#2 ly — z‘%

S
R

Qg) = sup |ST+kj_1 - Sk'_1| < ]3 ) sup <n

and with Dy = (ZyEZ Ni(y)N; (y)) . The following lemma follows from [14] (see appendix A

4J
for details).

Lemma 17. For anyp > 1, P(Q) =1 —o(nP), and so B s M oo = 0(n7P).
ke [-5.5]7 9
Note that, on Qf,
l+,y
Ry <n? ', (46)
" N 1,2 1 1 )
N; = |NF =0l < E((ng)2 )z < nf 2, (47)
2
(ZZEZ NJ/(Z)> n? 3_n
Vi= 2 Nj(@) 2 = s =) (48)
z€Z J nj
2 <
Vi < Rj(N;)” <n; (49)
It will be useful to notice that
| 0e,e(0.6, E) <E |1g [] |ec | D 0N} () (50)
yeF j=1
with
F={y€Z:Y(js), Nj,(y)=0},
and that
m S
H#(Z\F) <3S 4y < Mnt? = o(n1). (51)

j=1 s=1

Using a straighforward adaptation of the proof of [13, Proposition 10|, we prove (see Appendix
A) that

Lemma 18.

Bk,e,ffj),szk =o(e"), (52)
uniformly on k, £ as in Proposition 15, where1 I,(cl) is the set of (0,0") € [—%, g]m X [—m, m)M—m
such that there exists j =1,...,m so that nj_§+n <165

Lemma 19.

o

m
_ —3+n
Bier 0, =0 [In; ) (53)
j=1
uniformly on k, £ as in Proposition 15, where I,(f) is the set of (0,0') € [—%, %]m X [, m|M—m

_1 _1_
such that for all j = 1,...,m, |0;| < n; > and there exists j' ' =1,..., M such that nj,2 "< 16].
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It remains to estimate the integral over I,(:'), the set of (6,0) € [-Z,Z]™ x [, 7] ~™ such
that for all j = 1,..., \91<n 3,
Weset J:={j=1,.. 18 —O}:{j(l),...,j(J)}.

Lemma 20. Under the assumptions of Theorem & with Y ., f(b+ ad) =0 for all b € Z. Let
J' C J, then

KL 3 1
_ Ta —3
Z Bk+k',z,f,(f),ﬂk =0 H nj Z H n; ;
K};=0,...d~1, YjeJ’ j=1 J"CT'UT'+1):#T">T )2 \JeT"
(54)
uniformly on k, £ as in Proposition 15, and where we set k' = (K, ..., k!) with k,=04fj¢J"

Moreover, if s; =1 for all j (and J' =10), then,

m
d _1
Breiw a1 o0 = <\/ﬂag> > tasarE |(det D)7 Ho,

ai,....,am€EL

TS5 [f (0 + 2)] + 0 (w02 [ )

uniformly on k, £ as above, with

E[(detpk)*%lgk}zo j];[lnji :

uniformly on k as above, and

[RRES}

1
E |(det Dg)~31g, | ~ ™% E[detDt12 " } .
as kj/n — t; and n — +o0.

We can now complete the proof of Proposition 15. The two first points of Proposition 15 comes
from the upper bounds provided by Lemmas 16, 17, 18, 19 and 20, with Ey := E [(det Dk)_% lgk] )
It remains to prove the last point of Proposition 15. We assume that s; = 1 for all j and that
kj/n — t; and n — 4+o00. Recall that dy = min{n > 1 : n§y € dZ} = min{n > 1 : na € dZ}.
Observe that, for every a; € Z there is a unique &’ € {0, ..., do — 1} such that a; € (k; +k})a+dZ.
Thus

n101\1 n%
£;>0 2;>0
I S R i OB | (OO
Kk, =0 L1, lm, 1.l =0 aj,b;€Z j=1

Finally, due to the last point of Lemma 20 and to the next lemma, this quantity is equivalent to

o ot N Hfaj P (Zy, =b; —a;) ,

£yl >0 aj, b €Zj=1

as kj/n — t; and n — +oo. O
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Lemma 21. Under the assumptions® of Theorem 5,

d—1
SIS H@f0)P(Zoiea=b - a)| < o0

£>1 [0/=0a,be’Z

Proof. The proof of this lemma only uses estimates established in [13]. Since }_, |f(a)f(b)| < co
and using Lemma 16, we observe that

Z > @) fO)P(Zera=b~a)

=0a,beZ

d—1
S Y s@ig [ s TN w)| @)

V'=0 a€Z bea+(Ld+0")a+dZ YEL

Moreover, due to [13, Propositions 8,9,10], P(2;) = 1 — o(k~1=™) (due to [14, Lemma 16]), and
2 2
o2 (1N}, (1)

due the fact that |pe(tNK(y))| <e” 4 on Q when || < kf%Jr”, we have

/ e—z’t(bfa) E H Ve (tNed-{—é’ (y))
~5.4] ez

_ /|t ot B | T o Nt @) L | i+ 0l )
B | YEZ

= —it(b—a) E N 1 _1_770
Age—iﬂ, € yel_lz% (tNea(y)) 1a,, | dt + ol ),

using also the fact that #{y € Z : Nyi(y) # Noare(y)} < d. Tt follows that

Z Z fla P(Zp g =b—a)

=0a,beZ

B % /|t|§éi+n Z F(a)f(b) (67%(1)7&) B 1) E H e (ENea(y)) 1y, | dt| +o(e17™)

a,beZ yEeZ

<5 Z\ (b—a)|E e

ltj<e 3+

< CE mdm Fo(t1m).

2,2
ogt Vg

T 1g,,| dt+o(e7t ™)

1
since 3, ez f(a)f(b) =0, >_ 7 laf(a)] < oo and using the change of variable v = tV,%. Now,

due to (48), V,;'1q,, < 2 = O(¢~1=m) up to take 79 small enough, which ends the proof
of the lemma. O

20ur proof is valid in a more general context. The assumptions on f and S can be relaxed in Y acz laf(a)] < oo,

2aez f(@) = 0, and S]] 5 = O(V/n).
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Theorem 5 follows directly from the following corollary of Proposition 15 and Lemma 21, since
1

EN2N] = G0 and E[(£,(0))N] = Joa~ Té"”vdtl...dm (due to [14]).

Corollary 22. [A rewritting of Theorem 5]Under the assumptions of Theorem 5,

n 2N+1
E (Z f(Zk)) —o(n*57),
k=1

and

n 2N N
_ (2N)! on  0F 1
) <kzlf(zk)> =N Grgy ¥ S [ P | e

Proof. Since f is bounded, it is enough to prove the result for n = n’d. We start by writing

n M M
k=1 Jj=1

1<mi<..<mpy<n

M

where ¢y, is the number of (r1,...,7a7) € {1,...,n}™ such that ry,...,rpr and mq, ..., mys contain

the same values with same multiplicities.

Let 0y € (0, ﬁ) Given a sequence 1 < my < ... < myy < n with convention mg = 0, we
consider p € {0,..., M} such that no m; —mj_y (for j = 1,..., M) is in (nL""'00 pL"00] Set
0 = LPfy. We write ky = my and, inductively, if kj = my,(;), we set kjp1 = myj41) for the
smallest integer m, such that m, > k; +n’, s; = u(j + 1) — u(j) — 1 and then £ = My(j)+5-
Thus each m = (my,...,mps) with 1 <my < ... <mys < n can be represented by at least one

M M
(k,E) S U U U Fn,LPHmm,sl,...,sm ) (56)

p=0m=1s;>0: M=3"7", (1+s;)

with F, 9.m.s,.....sm the set of M-uple (k,£) of nonnegative integers with k = (k;)j=1,..m, £ =
(4,s)j=1,..,m;s=1,....s; such that, for all j =1,....,m, k; > k; 1 +n? (with convention ky = 0) and,
forall j=1,..,mandall s=1,...,5;,0</{; s < n’ and, with this representation,

m

M S5
j=1 s=1

j=1

We first study separately the following sums

Z Z C(ke)E H(f(ij)Hf(ijMj,s)) ,
j=1 =

(m,S)EG]\/[ (kr‘e)EFn,G,'m,sl,.A.,sm

with Gy the set of (m, s) withm € {1,..., M} and s = (s1, ..., 5») with s; > Oforall j =1,...,m
and such that M =77, (s; + 1).

Let us fix for the moment (m, s) € Gp;. With the notation (39), we wish to study

> E H(f(zkj>Hf<ij+ej,s>> = > Bre.  (58)
j=1 s=1 (k.,£)

(kve)an,G,m,sl,”qsm

EFn,O,m,sl,...,sm
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We say that (k,£) and (k’,£') belong to a same block if
Vr g T, ke =k, Yied, |kj/dl=|K/d), £=2¢.

A block is an equivalence class for this equivalence relation. We write F
of (k,£) such that their block is contained in Fj, g5, ...,

,0,m,S1,....,8m fOI' the set
We will see that the contribution

Sm*

of the sum over F, gms,...sm \ FT’Lems1 .5, 1s neglectable in (58). Indeed, observe that if
(k,£) € Frogmsi,....5m \F/L’g’mm’m’sm, then at least one of the following condition holds true

(2) [kj/d)d —kj—y <n’ < (lkj/d] +1)d —1—kjif j =1 ¢ T (or |k;/d]d — ([kj—1/d] +
1)d—d< ne < (U{/‘J/dj + 1)d— 1-— Uﬂ‘jfl/deIf] —1€ ..7)
(b) m € J and d|ky,/d| + max, by, s <n < d(|kj/d] + 1) + maxg lp,

Let us fix J” C J. Due to the first point of Lemma 20, the contribution to (58) of blocks having
a type (a) or (b) problem at indices J" is in

> of(Iln

(ki) jg7m L

Ao

1

-5+

2
Z H”j

J'e{l,..om}:#T'>#(T\T")/2i€T’

1
_7_1’_77
2
Z H n;

TJ'e{l,..m}: #T' >4#(T\T")/25€T’

n

m
o[ 3 ([
Jj=1

("J')jej” :n9

sl

The study of this quantity corresponds to (59) up to replace m par m — #J" and to delete
indices J”, which thus will be in o(n_%), as proved below.

Now, using the d-block structure of F) , It follows from (38) that

707m7817"'75m

S Bag-o[m 3 (ﬁnﬁ) SRR |

(k,L)eF’ n1,...,nm=nf \i=1 J'e{l,..om}: #T'>(#T)/25€T’

n,0,m,sq,...,Sm

(59)

The above quantity is in

O | ntMe Z i (ﬁn_i> H n;%—ﬁ
T #T' >#(T)/2n1,....;nm=nb \i=1
=0 Z P LMO+ 5 (m—[#(7)/21)—(§-n)0[#(T)/2]
T T >#(T)/2
10 (nLM9+i<m—r#J/2w>—%r#J/zueh) ’

NI
N

where we used the fact that > ;71 = O (n%> and that > o 0771 = O (n%> Observe
moreover that M =377 (s; + 1) > 2(m — #J) + #J = 2m — #J, with equality if and only if
s;j € {0,1} for all j =1,...,m. It follows that

m

> E|I (f(ij) ﬁﬂzwjﬂs)) _0 <nLM0+¥—[”f‘<22‘#“>+e((#z/ﬂ —#Jn)]>
s=1

(k’z)an,G,mA,sl,.“,sm Jj=1

M

In particular this is in o(ns ) as soon as M > 2m — #J or J # 0.



24

LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF RANDOM WALKS IN RANDOM SCENERY
)

This ends the proof of the first point of Corollary 22 (since, when M is odd, we cannot have

M =2m — #J and J = ) and ensures that, for M even
n M m

n"YE (Z f(Zk>> =n"% Z w0 B [T (f(Zk) f (Zky1e,0))

(k.£)eUpLy Fu,Lpog.01/2,1,...1

k=1
Assume from now on that 0 = 6y and that M is even, J = () and M = 2m, which means that
m and let us estimate the following quantity

J=1

sj =1 for every j =1, ..
m
En, Mo = > H f(Zrje;1))
(k)EF, 9,01/2,1,..., J=1
Note that, when (k,£) € Fy, g r/2,1,...,1, then ¢ g = 2#({3% Using this and applying Propo-
sition 15 combined with the dominated convergence theorem, we obtain that
'I’LLO m
> 2#UEPOE N TT £(Z0,) f(Ziyiay)

2m)! _m
(2m) 4 Z
b= j=1

0§k1<...<km§n:k’i+1—ki>n9 l1,..0m=0
1 nko m
j:4;>0
o#{i>01g H (Zae; 1) f (Zagy 1 10,) | + 0

Yy s _

(2m)! _
=m > nt
0<k1<..‘<km§n/d:ki+1 k'>n9 kll ..... k;,/'n:0€17""€nl:0
2
(2m)! dmafm]E [det Ddoil dOtm:|
2 0<t1<...<tm<1/d (27ra£) 2
Therefore
1
) _1
) L (2m)!/ afmIE [det 'Dsl?...,sm] . )
im n = — - s1...ds
n—s-+oo n,M,0 om 0<s1<..<sm<1 (271-0-?)7 1 m
(2m)'af _1
/ E |detDs,?. s,. | dsi...dsm,
[0,1]™

B m!2m(27ra£ )z

It remains now to prove that we can neglect the contribution of the (k, £€) € Up 1 Foirgo, 021,01\
M. 1t follows from (38) that

Fn,Ho,M/Z,l,...,l' Fix some p = 1,
m
C(k,E)E H (f(ij)f<ij+fj,1))

_m
4 2
, =1

(k)EF, Lpoy,my2,1,... 0\ Fn 00, M/2,1,...1

=0 n_% Z

n
|

. In this case

The last part of Theorem 5 corresponds to the particular case f = dg — 4,
=—a)] .

O'ch = Ug’a = Z [2P(Z|k| = 0) — P(ZW = a) ]P)(ZW
kEZ
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APPENDIX A. PROOFS OF TECHNICAL LEMMAS FOR THEOREM 5

Recall the context. Let M > 1, 8 € (0,1), n € (0, ﬁ), L = 15i7- Recall that n; =
k;j — k;j—1 (with convention ko = 0). Assume n? < nj < n and let ¢, 1, woljs;, =0, |nt?] with

Z;n:l(l +s5) =M.

Proof of Lemma 16. We start by writing

Pre(a,b) e*iZ}L[(aj*aj71)9j+22i1(bj.,s*aj)%,s]@k,e(g’ 0')d(6,0'). (60)

(27T)M [—m,m]M

But, due to the definition of d, for any u,v € Z, pe(u+ 22%) = (pe(2F))"p¢(u) and so, for any
ueRM and v e ZM,

Pr.e(u + —'v E|]] e Z [(u] + 27%) )+ Z (U]s 27%8) N},s(y)]

YEL 7j=1

o ZJ 1[UJN (y)-i—zS 105, N J o y)] m sj
—E 11 (SD& <d>> wiNj(y) + Y ujsNj (y)
YEL j=1 s=1
2 Z;n:1 [anj'i_z:jzl gj,svj,s]
= | ¥¢ F @k,g(u) .
and so
1 d-1 . m 27r7‘j 85 ,
Pre(a,b) = (27r)M/ Z o~ 2 l(a=a; 1) 05+ =31+ 30,1y (bj.s—a;)0]

9 2 Ting
<s05 <§>) o,e(0,0)d(0,0') .

Moreover, for any a € Z, then Zf;(l] e~ T (cpg (2”)) = 0 except if e ((,05 (27”))1) =1 (i.e.
if vao — a € dZ) and then this sum is equal to d. This ends the proof of Lemma 16. U

Proof of Lemma 17. Due to [14, Lemma 16], for any v > 0, satisfies IP(QS)) =1- o(nj_p) for

any p > 1 and so, since n; > n?, it follows that for all p > 1, P(Q(])) =1—o(n"P). Moreover,
since 0 € (0, 9), due to [14, Lemma 21],

, 3
Vp > 1, IP’(detDnh, <n 0an>: Py,

uniformly on k as above. O

Proof of Lemma 18. Recall that F = {y €7Z :V(j,s), Nj,(y) = O}. Due to (50), Lemma 18
follows from the following estimate

Je > 0, / 1 H pe ZQ N’ 1Qk dl =o (6_”0) 7 (61)
(Fin; 27 "<0;]}

yeF

uniformly on k,£ as in Proposition 15. To this end, we follow and slightly adapt the proof
of [13, Proposition 10| as explained below. Observe that, up to conditioning with respect to
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(Ska1 — Sk)kzg{kj,l,...,kj—l}y this will be a consequence of

Vi=1,..m, Yuc€R, /1+77 E H ‘gc)g (u—i— QNJ/(y))‘ 1o, | dd =0 (67"6) ,  (62)
n 2 <|9|<% ye]_—

uniformly on kj, £; s as above. Recall that #(Z\ F) < 377", S lis < Mnt?. Asin [13, after
Lemma 16|, we observe that, for n large enough,

2
H ‘(pg(u+ GN]((y))‘ < exp <_ifn—§+4“/# {y :d (u—i— HN]’»(y), 2§Z> > n_}ﬁr?w}) , (63)

yeF

and that
/ 27TZ _l+2 u /
k€EZ
where, for all k € Z,
I 2k N nT1t2 2(k+ 1) n=1t2
T ae 0 ' df 0 |
In particular R\ Z = (J;cz Jk, where for all k € Z,
2%k nTItH 2kn  poaty
Jk = — s + .
de 0 de 0
Let N1 be two positive integers such that P(X; = N,)P(X; = —N_) > 0. Let C* =
(C)pe1,..,r € Z" with T = Ny + N_ and Cf = N for £ < N_ and Cf = —N_ other-
wise, and symetrically and C;; = —N_ for K < Ny and C;; = N, otherwise. It has been proved

in [13] (see Lemma 15 therein combined with the estimate P(D,) = 1 — o(e™“") in Section 2.8
therein) that, for n large enough,

P(Q \ &) = o(e™ ), (65)
with
1 9y -2y
&= {#{y €Z : Cjly) > n; } > 3N+N_n; } ,
and where, for any y € Z,
n;

Cj(y) = # {k —0,..., {?J —1 ¢ Sy ikt — Sty =y and (Xi, k7o X,y (pinyr1) = ci} .

1
Now, on &, we define Y; fori =1,..., {nf QWJ, by

. 19y
Yi:=minqy €Z : Cj(y) > n;} ,
and

1_
Y;;1 := min {y > Y, +3N_N; : Cj(y) > n} 27} for i > 1.

Sl

2 Y
» 32 1 {nj J
Foreveryz:l,...,{n]? J,Ietti,...,ti be the [n

of T) when a peak of the form C7 is based on the site Y;. We also define NJ-O(YZ- + NyN_) as
the number of visits of (Sk,_;+x — Sk,_; k>0 before time n; to Y; + Ny N_, which do not occur

-2 . . .
WJ first times (which are multiples
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1
during the time intervals [t}', ¢} 4+ T, for u < {n; 2WJ. We proved in [13, Lemma 16] that, for
any H >0,

U u
IP’(§+NJ‘(§G+N+N7)EI’51% NE(YHMNJ:H) =P(H+§+bj GI)’ (66)

1
where b; is a random variable with binomial distribution B ({n; 27J ; 5) and finally we proved

in [13, Lemmas 17 and 18| (see in particular the last formula in the proof of Lemma 17) that
1
VH'€eR, P(H +b,€I)> 3

Thus, conditionally to (Sgi1 — Sk)ke{kj,l,...7kj—1}a &; and ((N]O(K + NyN_),i > 1), the events
{§+N;(Yi+ Ny N_) € Z},i> 1, are independent of each other, and all happen with probability
at least 1/3. We conclude that

1_o 1_9
. u / n; ! nJQ ! —c'n;
Plgne #{i §+Nj(Yi+N+N_)€I}§ y <P|B< = o(e=™),

1_
where B; has binomial distribution B ({n; QWJ ; é)
1
But if #{y € Z : Nj(z) € I} > n;} 2q//4, then, by (63) and (64) there exists a constant ¢’ > 0,
such that, for any n large enough,

TT loe(u + N (1) < exp (—c " 2*4”) ,
yeF

1_
since #(Z\ F) < n} 2'Y/4. This, combined with (65) and (67), ends the proof of (62) and so of
Lemma 18. g

Proof of Lemma 19. We have to estimate B uniformly on k, £ as in Proposition 15,

ke, 1%
where I,(f) = Vi x [—m, 7}~ and where V4 is the set of @ € R™ such that for all j = 1,...,m,

_1 1
0] <n, ™ and such that there exists some jo = 1,...,m satisfying n; * "< 10),]- Let g9 > 0
be such that

22

&
Vu € [—eo, €0, [pe(u)] <em 7T (68)
We define the events Hy = 4 N {Vy € Z, | 337, 0;N(y)| < e9/2} and

L / €0 €o 1
Hl, = yez: ZGN e[z,ﬂ > ni
Due to [14, Lemma 21 and last formula of p. 2446],
LS
¢ >0, P(Q\ (HkUHy)) H 2

uniformly on k as above and uniformly on @ € V. Thus,

m
é
Bk,e,l,f),ﬂk\(HkuH’ - H o (69)
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_1
where we used the fact that ka do < H;”Zl n; 2%, Moreover, for n large enough, it follows from
the definition of Hj, from (51) and (68) that

0'252711
_7E%
Bk,z,l,f),ﬂmH,;) =0 /v H ve ZO N ( Logmy, | dO | <e 50 (70)
k yeF
Finally, it remains to estimate Bk,l,l,(f),QkﬁHk' To this end we write
m
/ E | IT e | 20N ) | |Launm, | a6
Vi yeF j=1
02
S/ E e~ Soer (S 0M0) 1, | g6
Vi
"g z,f ?
k/:/
3 _ 02|02
Hn i E / . (detDy)"ze T 1lg,dv| , (71)
!/ )?V,é/
3 -
with the successive changes of variable 67 = n{60; and v = (D;)%H” , with
- 3
Dy, = | (niny)~ Z Ni(y)N;(y and V} = Diag(n})Vj .

veF ij

1
Note that V} is the set of (0, ...,0,) such that |07 < n! " and such that there exists jo=1,...,m

such that [07 | > n4 -,

Let us prove that, in the above formula, we can approximate the determinant of ﬁ;c by the one
of Dy, == ((nmj)fg > ez N{(y)]\@’(y)) . To this end, writing ¥, for the set of permutations
Z?]
of the set {1,...,m} and »(o) for the signature of o € 3,,, we observe that, on Q,

‘det ﬁ;c — det ﬁk‘

m m

-\ S IDSAEECE | [ DI IANOE I SREIETE | [ D BRHRY
TEYm j=1 \yeF TEYm j=1 \y€eZ
(1) &% S men,o IS Vg, o
j=1 0€Xm j=1 2€Z\F J'#7 \y€eZ
< (1] & i#(zmnﬁ% neiy TLyViVoun

<.
Il
-

oEY, J=1 J'#3
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where we used the Cauchy-Schwarz inequality together with the notations and estimates given
after Lemma 17. Using (45) and (51), it follows that, on Q,

3 142y 1424 3(14+2y)  3(142v)
detDk detDk’<< Hn 2 LGZn 2 02. Hnj, 4 ng(j,“)
J'#i
1 0 , ) n—(M+1)L9 -
<< §nm’y—§+L9 << n—9 —(]\/[+1)L9 S # det ij

(NI

since 0/ < g—ZMLQ < g—mfy—MLG and where we used the fact that det Dy, = det Dy, H;”Zl nj_
together with the definition of Q. Therefore, on g, det ﬁ;c > %det Dy. Thus, due to (71),

/VE I lee | D 0N w) || Lapnm, | d6

yeF

m 3 r _ 2|v|2
<O Hnj *1E /~ . (det D;c)_%lgke dv]
j:l ( /)fvl!
mo B _ ) 5|,U|2
=0 |[[»*|E (detDk)an/~ ) dv| | , (72)
jale i ( ;e)gv//

By definition of V}/, for any v € (ﬁ’)%Vé’, |'v|2 > (X’ )l (1=m where /\;c is the smallest
eigenvalue of Dj. Since all the eigenvalues of D are nonnegative (D being symmetrlc and
nonnegative), it follows that all the eigenvalues of D;c are smaller than trace(D’ )<

§
n2

&v

mn®Y (on Q). Thus, on Q,

. (4 -4 ~ 2D
(RpinGmo > 98D oo, R T g (73)
(m%n%)m_l 2m 2

since 10, 2 5, and M are all strictly smaller %. Hence

~ 2|2
(det D)~ 21, / e dv]
vy
~ 1 ngF
E |(det Dg) 210, / ) dv =0 (n")

\v\2>n76

for any p > 0. This combined with (69), (70) and (72) ends the proof of the lemma. It will be
worthwhile to note that the previous estimate also holds true when X}, is replaced by the smallest
eigenvalue A\ of Dyg. O

Before proving Lemma 20, we state a useful coupling lemma allowing us to replace det Dy by
a copy independent of (N} s) o
Up to enlarging the probability space if necessary, we consider X’ = (X} )x>1 an independent copy
of the increments X = (Xj)g>o of the random walk S. We then define the random walk S” as
follows: le = Z?:l X;CI with X;CI = Xy if k‘j,1 —|—£j71 <k< k‘j and X,/CI = )(;C if k‘j <k< ]{3]' —{—fj,
with £ := maxs=1,. s, £js. We define Q, NJ’-’ and Dy, for the space as we have defined Q, N/
Dy, (up to replace S by S”).
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Lemma 23. There exists Q) C Qp N Q. such that
Vp>0, P ((Qk N Q%) \Q;c) =0(nP) (74)
and such that, on Q,

_3
< n_%_w(det D, ? + (det DZ)_%) )

}(dewk) 3~ (det D})~3

Moreover

™9
E [((det Dy)" — (det Dg)*%n%] <n s nt. (75)
i=1

Proof of Lemma 23. Observe that
S],i{j - Skj = h] = Z (S];j’+£j’ - S’;j’ - (Skj’+€j' - Skj’)>
J'<j
and, on Qg N QY

INJ(2) = NJ/(2)] = [N}(z) = Nj(z+ )| < nt

for all z € Z\ Uy {Sm, St}
We will prove that det Dy, is close enough to det Dy = det(}_, .z N/ (y)N/ (y)). Due to the
Markov inequality,

p
02 N
>0, (IS >h) <0 (% :O(n W),

/K ;L
where we set h =n” + 5017 >n7 E;. Thus we set
i =UNQLN{Vi=1,..,m, |hj| <h}
and we observe that P ((Q N QL) \ Q) = O(n~P) for all p > 0. Moreover, on €,

kln

1,2 "/
|Nj,'(z)*NH( z)| <205 +n]4 2h2 <3n n2+4oM'

Moreover

Vj// Z N// <Z +2£3<n2+7.
YEL YEL

This allows us to observe that, on Q,

‘det Dy, — det Dy,

=3 TS MW@ | = S 0O T DS N NG @)

oEYm j=1 \y€eZ TEYm j=1 \y€eZ
< D D2 NNy (2) = N (NG ()] ][ mac | 3 NG () NGy (), D N (0)Ng 5y ()
o0€Xm J=1 2€Z Ve YyEL y€EZ
K 1 1, 1
<3n2+409M Z Z[ V2 § é’(j))% } Hmax (V Vo VI a(j)>2
TEL, j=1 J#]

3 1_
<3n2+40Mm| Hn,—i_vzn 4

wp
) ’:]3
H'MS
.oob—‘
|
g
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since LO +3my— 2 + 2 < —% — 6, and so, on €,
YT—3T3 g ) ; s

_3 -
(det Dk:)ié - (det Dg)fé < nfgfLe(det Dk 2 (det Dg)fg) .

: _9
We conclude thanks to |14, Lemma 21| which ensures that E [(det Dk)fg lgk} =0 <H;n:1 n; 4> .

O
The proof of Lemma 20 will also use the following result. Recall that we set J = {j =
1,...,m :s; =0} and that 7' C J.
Lemma 24. Under the assumptions of Lemma 20,
> B - [ g (10, F(6,6')G(6,6")] d(6.,6")
btk 010 0~ (2m)M T ; ),
K/ =0,....d—1, Vi€’ k
with k' € Z™ such that k=0 for all j ¢ J', and with
Go.0)=1[{ > > fl (Hf (bjo ) i (01 =07) i L (b= a0)05
J8T’ \aj€ak;+dLbjs,...,bj,s; €L
<L e (3 o0+ ) |
yEZ\S’ j=1
with &' = Ujej' S’ - = {Sk;, s Sk;4d—1}, s0 that {Sk;, ..., Sk;1a-1} and, uniformly on k, £

and on Q, F(6,6') = O (ZJ”CJ’ [Teang» (051 + 1050101, 0 Bﬂ) with B = 1§10 1y 15y S} #0°
If s f(b+dZ) =0 for all b € Z (true if d = 1), then F(6,0') = O (Hjej,(|ej| + |9j+1\))
(with convention 0,11 = 0).

Proof. We start by writing

— dm / / /
Z Bk-‘rkll,fl(f),ﬁk o (27-[-)M /I,(cg) E [1QkF(0’ 0 )G(oa 0 )} d(aa 0 ) ) (76)

k=0,....d—1, Vj€J'

where we set

F(6,0") = H Z (f(aj)e—iaj(9j—9j+1))

k=0,...d—1,Yj €T J€T" \aj€(kj+k))a+dZ
m
x [ e (Z (9@;7 +Ze’ N/ ( )) ,
yes’ 1
with
N () = #{u=ke 1+ Ky, ke + K — 1 Sy =y},
If we had ), c, 44z f(a) =0 for all u € Z, the proof of Lemma 24 will be ended by noticing that

> (flaperm@ i) = ST (flay) (O — 1))

(IjE(k?j'f'k;-)Oé'i‘dZ a; E(k’j-‘rk‘;)a-i-dz
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which is in O (|0;] + [0;41]) since > o7 |af(a)| < co. Since we just assume here that > ., f(a) =
0, we need a more delicate approach. We rewrite F' as follows

FO.0)= ) [T Hyw (65— 6510) | W(K)

k’—O, Ld=1,VjeT a;e(k +k’)a+dZVj€j’ JjeJ!

with A
Hy0):= Y (flape™?).
aj€(kj+k})a+dzZ
Lo (55 (050 5. )
yes’ r=1 ’

and with N, (y) = #{u = ky—1 + k.1, ...k, + k. —1 : S, = y}. Note that N’ ,(y) = N.(y)
except maybe if r € J'andy € Sl orif r —1 € J' and y € S_;. We order the elements of J’
as follows: ji < ... < j’, and write

F(0,0') = F,(6,0) + F1(0,9")

with
d—1
1(6,0') = Z > [T Hiw 05— 00) | WK
k? / =0 k‘jé,...,k]-f]/:o jEj/\{l}

and

d—1 d—1
Fo0,6) = Y- (Higag, O~ 1) = Higae, 0)) [T Hugl,—000) | 2.

k)jizo k]é’ '7kji],:0 JEJI\{I}
Note that Hﬁ’k;, (051 — O541) — HJ'M;/ (0) is in O(|6;] + |0j+1]). Since >~ , f(a) = 0, Fy satisfies

1
d—1
1(6,6") = Z ik, >, [T Hiw 05— 000) | 250K
k]i =0 kJé ..... kjf],:O ]E]’\{]i}

with Ajo(k') = ¢(K') — ¢(k}), where k; € N™ is such that (k}); = k; for i # j, and (k}); = 0.
Proceding iteratively on J’/, we obtain

F(O, 0/) - Z Fsl,...,e']/ (07 0/) ’ (77)
€1,...,¢ ;y€{0,1}
with
FEh...’eJ/(e’e/) — H < jl, (0 / 0]i+ ) H]iz ’ (0)) H eji . Afl\If(k,)
j’:ej/ZO g Jieg=1

with convention A?, = Id. The first part will be easily dominated by O (Hj,:€j,:0(]9j/| + 105141 ]))
Let us study the second part of the formula exploiting the fact that }° ., f(a) = 0. The diffi-

culty here is that k' appears both in (szej:l Hip (O)) and in A_t(k'). The value of (eq, ..., €57)
being fixed, we consider the set J” of the j' € J' such that e;; = 1. Observe that, if S}, NS; =0,

then
Ay AU = (850515 (K))) (8505 (R)))
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with
/ Nz / /
s, (k) H%(Ej(ean +§9N >>
yESo r=1

and where we set El for the vector of Z™ with j-th coordinate equal to k’ all the other coordinates
being null. Let Jy' be the set of j € J” such that S NUY,; resm g} ]// = (). Then

2 [T Hw0) | A5 A w (k)

k;=0,...,d—1, Vjej[;’ JjeTy

- 11 Z 08,0, (K;) | Agm g ¥ (KS)

jedy \kj=

with k'i%, € N such that (k}); = kj for i ¢ Sff, the other coordinates being null, the notation
A gm gv standing for the composition of all the operators A; for j € J"\ Jj'. We conclude by
using (77) and by noticing that

H <Hjiﬁk;1(9ﬂ_0’ 1) — HJL (0)>

o T (oyl+16551D)] .

JES\S" J1ES\S"
d—1 N
I | 3 #w@avs (5) | =0 1 651+ 65D
JET \y=0 J'E€S\S”

and that
jeIN\gG = sin |J S

g

The following lemma will be useful to estimate the term F' appearing in Lemma 24. It is not
needed when ., f(b+ad) =0 for all b € Z.
Lemma 25. For any J' C J,
Plown () B] =0 3 n ] =k |
jej/ j”CJ’\{min ‘_7/}’ j”z#j//Q jej//
where k; = max{ks; < k;, s € J'}.

Proof. 1t is enough to study
P ﬂ {Skﬁ’"j = Skm(j)ﬂj}
JjeJ'
for any m(j) € J'\ {4}, rj,s; € {0, ...,d — 1}. This probability is dominated by
P (Qk N {Vj eJ, |Skj - Skm(j)| < n”}) +o(n7P),

for all p,v > 0. We partition the set J’ by the equivalence relation generated by the relation
J ~mj. We write R(j) for the class of j and R for the set of these equivalence classes. Observe
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that the number of equivalent classes is at most [#J'/2]. We order the set J' in j] < ... < j/,.
We wish to estimate

P (Qk, Vi=1,.,J =1, Sg, -k, = Argr,) — Argr + O(n”)> ,
Ar, TER Tit !

. 1.y
where the sum is over (A,).cr € Z® such that Ary =0, A, ) ARy = (9((1{:ngrl —kjr) 213).
Due to the local limit theorem and the independence of the increments of S, the above probability
is in

J'—-1
5 T (0 (t %)
Ay, r€R =1

Now let us control the cardinal of the admissible (A4,, r € R). To this end, consider the set J’
of the smallest representants of R. Then the above quantity is smaller than

nJ/(qH_%) H (kj—kj_)_

JETNT’

D=

O

Proof of Lemma 20. All the estimates below are uniformly in k. For the first estimate, we have
to estimate the following integral

/9| I > sepeono]] S (b))

ji¢J’ \a;cak;+dZ s=1b; €7
xE |10,F(0,6") [ 2| 46, (78)
i yeZ\S'
where we set
Ay = ¢ Z(e Niy 29/ N; ( )
j=1
Let us study
Ere(0,60):= ] 2,— ] %y (79)
YET\S' yEZ\S'
with
2
O'g m
B, = exp - ZHjNJ'-(y) ZZG' N’
j=1 j=1 s=1

1
But, on Q, if |0;| <n; * Tforall j =1,...,m, and so

m m m
_n
Yy € Z, Zﬁj ZH|N* Z 2 < =7 <ep, (80)
=1 i=1 i=1
as soon as n is large enough (uniformly on n; € [n,n]). Thus |Eg¢(6,0")| is dominated by

22
Z 2y — By| e_T& eersroh (Zin GJ'N]"(Z))Z

YEZL
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for n large enough. Now, on Q, according to (51),
2 2
m m no
vy € Z, > SNz | =3 (YN | — M(d+nwmn 0. (81)
zeF\(S'U{y}) \Uu=1 Z’e€Z \j=1
It follows that
2
Ug - / !/ — 90
Bree(6,6))] < (A+B)exp | —— S oNi) | -0 (n wn) (82)
2'eZ \j=1
with
2
m Ug m ’ 2 m KGT]
A=Y o [ 0N | - e FERONO’| <SS oNI)| o (83)
yEF\S' J=1 yezZ |j=1
where we used the fact that
o2|ul?
e(u) —exp <—£‘2| < [ul*™ for all u € R,
since ¢ admits a moment of order 2 + k and there exists Cy > 0 such that
o2 m
(05004 .00 ) | e FE o 355000
yeZ\]—' j=1s=1
m m 5 [ 0 [ 2
< Y Z )] <Y i F =0 (nw—*) —0 (n—%’) , (84)
yEZ\F |j=1 j=1s=1

'lL2
since ¢ and u — e~z are Lipschitz continuous. Recall that it has been proved in [14, Lemma

21] that
no_3
E[|detDk|_%lgk} =0 Hnj4 ,

uniformly on k.

(85)

Combining Lemmas 24 and (25), (82), (83), (84), (85) and using the change of variable v =

(Dk)%e with Dy = <Zy€Z Ni’(y)NJ’»(y))ij, it follows that there exists C; > 0 such that

/ve|< 1 HFOG’E;MOO"le] (0,0
' n;

7¢

21)2
ga/ (w2 o+ 0t )) 5 aw
>, I ( Eh ”+n;+11 ) [‘detDkV 21Qkﬂﬂyejo }

JoCI" jeT\To

Nen Hn % ka(j/) ,
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with

aw)=2 1l (”j_%_”n]ff") > 45 | Ty — k)2

VA GVAN ISV AW FJoCT"\{min J"}, Jo>#T" /2 J€Jo

o ¥ 1"

j"Cj'U(j/+l):#j//2#j//2 jeg!

where k; = max{ks < kj, s € J"}. Combining this last estimate with (78) and Lemmas 24
and 25,

dm

Z BkJrk/,K,I,(f),Qk = W Z I{Vigj’,aiekia—i—dZ} e E [Il(a) IQ((L, b)le] d0'
k;=0,....d—1, VjeJ’ (a)¢7:(bj.s).s [—m,m]
oy Tr =3 ,
+0 | n 7 [ n; (T | (87)
j=1
with
o2
I(a) ;:/ ) H et 2j=(a5=a;j-1)0; F(0,0’)6_7§ Xyens (ZTL 0N )? 49
v, |0j‘§n;§7n jeT’
(72
= ( / \ F(0,0)e 7 (Tyea(Tih 05N w)?-Mdn; ) d9>
Vjvlejlgnj_j_n
_1 olvi3
= O [ det Dy ? sup F(0,0’)/ ez dv|, (88)
0V m

1
with the change of variable v = D760 and

In(a,b) = H (f(aj)Hf(bj,s)e—iZj,s(bj’s_aj)eg,s> H Pe Z(QQ,SNJ/',S(?/))

JgJ’ s=1 yeZ\S’ J»s

_o(T (f(aj)Hf(bj,s)> . (59
s=1

J¢J’
Since Y,z | f(a)] < oo, it follows from(85), (87), (88) and (89) that
m 3
_ / ~1
) By e1® .0, = © (7 | Iy
K/=0,....d—1, Yj€T' j=1

This ends the proof of the first point of Lemma 20.
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Assume now that s; = 1 for all j = 1,...,m (in particular J = (). Then

2
Il (a) B / _1_ 671’2?:1(%*%71)%6_75 Zyez\s/(zgnﬂ ejN]/'(y))Q de
Vjv ‘0]|Snj 27"

m 3 - m *% 1 Ug m i 7% / 2
— / e Ty a8 = T yen(S 0y TN W) g
J . "
j=1 vj,107 |<n
m 1 _3 2,12
3 ~ 1 -3 oglvlz
—_ ||7’L 1 /1 (detDk)_Ee_Z<Dk (n‘j (a’j_aj—l))jﬂ'u)e_ET d’l),
] ~ s
j=1 Dg U

1_
where Uy is the set of 8" = (67,...,67,) such that 07] < nj "for all j = 1,...,m and with
n 3
Dre = <(nmj)71 ZyeZ Nz/(y)N]/(y)> . Moreover

Z’J

L(a,b) = (2m)== | [[ (Fla) b)) | P | V5, D Njw)éy = bjn — a5 (N,);
j=1 YyEZ\S'’

m

= (2m)M-m flaj) | E | f aj—i_ZN_;,l(y)gy Laj+5,co N )€y=bjn} (N} 1)j
j=1 YyEL

Thus, it follows that, uniformly in k and on Qf,

dm d m m
(2m)M Z Ii(a) Ir(a,b) = (27r> j];[lf(aj)

bl’l,...,bmJEZ

~—t 3 o2|v)2
(D) </ I e e el O(n_p)>

E|f aj"‘ZNg/‘,l(y)fy (N} 1)j

YEZL

for all p > 0, as seen at the end of the proof of Lemma 19 (applied with 5k) and so

<2C7Z:)IM 2 Il(“”?(“’w_(;i) [T f(aj) | (det Di)~2
j=1

b1,1,..,bm,1€EZ

« (/m (1 Lo ((@,gé(nﬁ(aj - ajl))j,v>>2>> L O(n—p)>

xE | f|aj+ ) N & ||(N)]

YyEZL
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for all p. Due to (87), we obtain that

d m
Bka£7];3)7gk = (27_‘_) Z 1{Vi,ai:kia+dZ} (90)
ai,....,am€EL
_1 i V2T "
x B |(det D)~ 21q, [ [ fla)f | aj+ ) N ()& < . ) (91)
Jj=1 y€eZ 3
AT ~
+0 H i E[(detDk)—%(mmnj) 20 11Qk] , (92)
_ j

where ) is the smallest eigenvalue of Dy. For the last term, we use (73) (applied for Dy,), which
ensures that on Qg,

~ det 51{:
A > —————
k= (mnd'y)mfl

and so

w

. 3
(minnj)_%E (det D)~ 2N llgk} (mn®)™ ! (minn;)~2 Hn 4 [detDk) %19,c
J J

_3
where we used [14, Lemma 21| which ensures that E [(det Dg) % ] 1) uniformly in k.
This combined with (92) implies that
m 3 )
_ 1|, —(+nre
Byy 0, =0 Hn i (94)

d " oo
(\ﬁ 3) > LpakaranE | (et Do) 1o, [T F(a))f {aj+ Y N
0'5714 1

ai,...,am€EZ 7j=1 YyEZ
(95)
since L < min (2%, 21) and since L(M +1)0 < 3¢ — 3(m — 1).
The last step of the proof of the lemma consists in studying the following quantity
1 m
G :=E | (det Di) "2 1g, [] flap)f | a5+ D Nj )& | | - (96)
j=1 YEL
Due to Lemma 23,
m m 3
Gr =E | (det D) 21y [ £(ap)f | a;+ DN ), | | +0 | n 57 ] ;"
— vez j=1

=k [(det Dk)_%lﬂk] ]1_[1 f(a])E f aj + Z NJ/,S(y)éy + O n_%_Le H nj_% )

YyEL j=1
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where we used the fact that D}, has the same distribution as Dy, and is independent of N J' s This
combined with (95), (93), (74) and (75) ensures that

m
d _1
Bk,l,l,(cg),ﬁk - <\/§05> Z Livi, ai=kiotdzy E [(det Dy,) 219:«}

ay,...,am €L

m

[IF@)E[f (a; + Zg,)] + O | n PO T Ty
j=1

Jj=1

W

Moreover [14, Lemmas 21 and 23| ensure that

E[(dewk)—hgk}:o jl;[ln; :

W

and that
m _l
E [(det Dk)_%lgk} ~n TE [det Dtlf..,tm:|

as kj/n — t; and n — +oo. This ends the proof of the lemma. O

APPENDIX B. MOMENT CONVERGENCE IN THEOREM 3

Let f:Z — R besuch that ), |f(a)| < co. In this appendix we prove that all the moments
of =1 Zz;é J(Z}) converge to those of ) f(a)aglﬁl(O), as n — +00.

Due to Theorem 1, it is enough to prove the convergence of every moment. The key result is
the following proposition.

Proposition 26. For all a1, ...,ax € Z,

k
d _1 B
P (an =at,..., an = ak) ~ 1{\77)7 aienia+dZ} (\/%) ]E[det DT12,7Tk] n 3k‘/4’
1

as n — +oo and n;/n — T;, where Dy, 4, = (fR Ly, (x)Ly; () dx)i j=1,.. ) where L is the local
time of the brownian motion B, limit of (S|n)/v/n)t as n goes to infinity.
Moreover, for every k > 1 and every ¥ € (0,1), there ezists C = C(k,0) > 0, such that

k
P(Zn, = a1, ., Zygoiny, = a) < C [ ",
j=1

foralln>1, all ay,...,ax € Z and all ny,...,ny € [0, n].

Proof. The lemma has been proved for a; = 0 in [14, Theorem 5|. The proof in the general
case is the straighforward adaptation of [14, Section 5|. For completness, we explain the required
adaptations. The proof of the present result follows line by line the same proof with the adjonction
of a term e~ Li=1(a7a5-1)0; (with convention ap = 0) in the integrals appearing in [14, Lemma
15] (see Lemma 16 with M = m = k and s; = 0). Lemma 16 (definition of the good set) and
Propositions 18 and 19 (estimates of the integral of the absolute values) of [14] are unchanged.
The only difference in the proof concern [14, Proposition 17| and more specifically [14, Lemma 23|
for which the there is a multiplication by et 32j-1(a5=a;-1)9; in the integral. The only difference
in the proof of [14, Lemma 23] is that the quantity I,,, ., considered therein (n; corresponding
to |nT;] — [nTi—1]) is slightly modified with the multiplication in the integral by a quantity
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converging in probability to 1 (with the notations of the proof of [14, Lemma 23|. Indeed,

1
considering the real part of the integral, this quantity is COS(Z?ZO (aj —aj—1)(An2. ne7);) (with
the notations of [14, Lemma 23]) which is equal to 1 up to an error in O (min (1, . |7[?))
where fi,,, . n, is the smallest eigenvalue of A,, ., which is proved to converges to 0 in |14,
Lemma 23|, and so the asymptotic behaviour of I, ., is the same as when a; = 0. g

Proof of the convergence of moments in Theorem 3. Take ¥ < %. Note that the last point of the
lemma ensures that
—3/4
P(Zn, = a1, Zny gty =ae) <C | J] ma

i >n?

Let ag be such that aag € 1 + dZ. Then a; = q;a + d7Z is equivalent to ¢; € a;ag + dZ. Thus

n—1 n—1

E(S 2] | = 3 B fZl= Y fa)fa) S PZy =ar...
q=0

q1,--,q=0 ai,...,ax€Z q1,-,q,=0
- d—1 [5]1-1
= O(TLT) + Z Z f(al)f(ak) Z P(Zr1+q1d = Ay ..y ZTkJqud = ak)
r1,...,7k=0ay,...a €Z q1;---,q=0
- [Z]-1
=0 )+ D fla)flar) Y, P(Zaagigd = a1, Zagasiaud = )
at,...ay€Z q1,--,qk=0

with T the representant of x + dZ belonging to {0,...,d — 1}. It follows that

n—1
k
E|(DY f(Z)] | =omt)+ D flar)..f(ax)n"Hy
=0 ai,...,aL €L
k
=o(n4) + Z f(ar)...f(ax)n* Hy,
ai,...,ap€ZL
with
/ Zarag+|tin)d = O1s - Zagag+|ten)d = Ok) dtr...dly
[0,1/d]*

//c = /[0 L/t n T P (Zmﬂtmjd = az, .., Zmﬂtknjd = ak) 1mini,]~ [Ltin]—t;n]|>2n? dty...dty, .

Z,

9k

ak)
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Due to the dominated convergence theorem, we conclude that

n—1 k
E || f(Z)
q=0
k
=o(nt)+ni Y f(al)...f(ak)/ S E[detD, 2, dt..dt;
ai,...,a €L [0,1/d]* \/%0-5 e
k k : —k -1
— o(nf) +n % f(a) /[0 N (Vamog) " EldetD,; , Jdh...diy
ac .
= o(ng) it Z f(a)%_l) E[(£1(0))¥],
a€”Z
due to [14, Theorem 3]. O
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