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A Bayesian model has two parts. The first part is a family of sampling distributions that could have generated the data. The second part of a Bayesian model is a prior distribution over the sampling distributions.

Both the diagnostics used to check the model and the process of updating a failed model are widely thought to violate the standard foundations of Bayesianism. That is largely because models are checked before specifying the space of all candidate replacement models, which textbook presentations of Bayesian model averaging would require. However, that is not required under a broad class of utility functions that apply when approximate model truth is an important consideration, perhaps among other important considerations. From that class, a simple criterion for model checking emerges and suggests a coherent approach to updating Bayesian models found inadequate. The criterion only requires the specification of the prior distribution up to ratios of prior densities of the models considered until the time of the check. That criterion, while justified by Bayesian decision theory, may also be derived under possibility theory from a decisiontheoretic framework that generalizes the likelihood interpretation of possibility functions.

Introduction

A tale of two theories: possibility and probability

Like the protagonist in The Bourne Identity, possibility theory hides under many disguises. Functions isomorphic to the "possibility distributions" found in fuzzy logic include "ranking functions" in philosophy and "idempotent probability" and "max-plus probability" in algebra.

The fundamental difference between possibility theory and probability theory lies in disjunctions such as the proposition that proposition A or proposition B is true, in short, A or B. Assuming the two propositions are mutually exclusive, whereas the probability of A or B is the sum of the probability of A and the probability of B, the possibility of A or B is either the possibility of A or the possibility of B, whichever is greater.

Mathematical analogies between the theories are elegant, but how probabilities and possibilities describing a given system are related remains controversial. While [START_REF] Spohn | Defeasible normative reasoning[END_REF] insists that the theories are orthogonal, [START_REF] Spohn | The Laws of Belief: Ranking Theory and Its Philosophical Applications[END_REF] sketched a way to interpret possibility in terms of orders of magnitude of probability. Similarly, at the limit of large deviations, possibility specifies a rate of convergence of probability [START_REF] Puhalskii | Large Deviations and Idempotent Probability[END_REF].

Alternatively, possibility has been interpreted as the upper limit of an imprecise probability function (Dubois and Prade, 2012, Sec. 1.3).

What those transformations between probability and possibility have in common is the use of possibility to describe an aspect of approximate probabilities idealized by a limit. This paper instead presents a broadly applicable framework in which the two theories are operationally equivalent in the sense that they lead to the same decisions.

Specifically, the action that maximizes the probabilistic expectation value of the utility also maximizes the possibilistic expectation value of utility functions that satisfy a general condition. That condition prefers models to the extent that they may be useful if approximately true. Under that condition, possibility is effectively an equivalence class of probabilities or probability densities defined up to a constant factor.

That interpretation empowers Bayesian inference to overcome the criticism that using prior and posterior distributions requires an explicit statement of the space of hypotheses or models. It also raises a question. 1

Does Bayesianism need possibility theory?

Before answering that, a little notation will clarify how Bayes's theorem applies to catch-all hypotheses without specifying their details and to model revision without specifying the entire space of possible models.

Let ϑ denote the parameter of interest. In standard Bayesian hypothesis testing, a null hypothesis H 0 about ϑ is rejected if its posterior probability is below some threshold. By Bayes's theorem, that posterior probability is

p (H 0 | x ) = p (H 0 ) f (x | H 0 ) p (H 0 ) f (x | H 0 ) + p (H 1 ) f (x | H 1 ) , ( 1 
)
where x is the observed sample of data, p (H 0 ) and p (H 1 ) are the prior probabilities of the null and alternative hypotheses, and f (x | H 0 ) and f (x | H 1 ) are the probability densities of x under the null and alternative hypotheses. Typically, both f (x | H 0 ) and f (x | H 1 ) are likelihoods integrated over all unknown parameter values. For example, if the null hypothesis is that ϑ = 0, then f (x | H 0 ) is the likelihood integrated over any nuisance parameters conditional on ϑ = 0, and f

(x | H 1 ) is, in addition, integrated over ϑ subject to ϑ = 0.
But what if, as routinely happens, neither hypothesis adequately fits the data? Cromwell's rule says some prior probability should always be reserved for that case [START_REF] Lindley | Understanding Uncertainty[END_REF]; otherwise, the Bayesian model would be updated in violation of Bayes's theorem. Accordingly, let H 2 denote the catch-all hypothesis that neither H 0 nor H 1 is close enough to the truth for practical purposes. Then

p (H 0 | x ) = p (H 0 ) f (x | H 0 ) p (H 0 ) f (x | H 0 ) + p (H 1 ) f (x | H 1 ) + p (H 2 ) f (x | H 2 ) , (2) 
where the prior probability of the catch-all hypothesis is p (H 2 ) = 1 -p (H 0 ) -p (H 1 ), and f (x | H 2 ) is the probability density of x conditional on H 2 .

To argue for inference based on possibility theory instead of probability theory, Spohn (2012, p. 441) posed this dilemma for Bayesian inference:

1. If p (H 2 ) is large enough that both H 0 nor H 1 could be rejected when warranted, then both p (H 2 )

and f (x | H 2 ) must be specified in order to compute p (H 0 | x ) using equation (2).

If p (H 2

) is negligible for the purpose of computing p (H 0 | x ) using equation (2), then, while equation

(1) could provide a good approximation, p (H 2 ) would have to be so small that the Bayesian model is in effect immune to criticism.

and H 1 when model checking finds them inadequate. This paper provides a rationale for a fully Bayesian version of that practice under conditions that allow an interpretation in terms of possibility theory.

Those conditions require that the hypothesis be selected by maximizing posterior expected utility with a utility function that gives no payoff when the selected hypothesis is a poor approximation. Idealizing approximate truth as truth, suppose that either the null hypothesis or the alternative hypothesis would pay 2 units if it were both selected and true but that H 2 would only pay 1 unit if true:

(payoff for selecting H chosen ) =                        2 if H 0 and H 0 = H chosen 2 if H 1 and H 1 = H chosen 1 if H 2 and H 2 = H chosen 0 otherwise .
Then, with H chosen as the chosen hypothesis, the posterior expected utility is

E (payoff for selecting H chosen | x ) =                2 p (H 0 | x ) if H chosen = H 0 2 p (H 1 | x ) if H chosen = H 1 p (H 2 | x ) if H chosen = H 2 .
The null hypothesis then would be selected if 2 p (H 0 | x ) were greater than both 2 p (H 1 | x ) and p (H 2 | x )

but would be rejected otherwise. That means it would be rejected if

p (H 0 | x ) ≤ max (p (H 1 | x ) , p (H 2 | x ) /2) ,
which, by Bayes's theorem, is equivalent to

p (H 0 ) f (x | H 0 ) ≤ max (p (H 1 ) f (x | H 1 ) , p (H 2 ) f (x | H 2 ) /2) .
Therefore, as long as

p (H 2 ) f (x | H 2 ) /2 is judged to be less than both p (H 0 ) f (x | H 0 ) and p (H 1 ) f (x | H 1 ), the null hypothesis is only rejected if p (H 0 ) f (x | H 0 ) ≤ p (H 1 ) f (x | H 1 ) , (3) 
which can be calculated without specifying p (H 2 ) or the family of catch-all distributions needed to calculate

f (x | H 2 )
. By avoiding the need to compute the denominator in equation ( 2), that passes through the horns of the above dilemma.

Although equation (3) was derived from Bayesian decision theory, it will be seen to also result from possibility theory. In fact, the probability mass function p need not be specified but only the ratio of prior probabilities of the null hypothesis and the alternative hypothesis, for equation ( 3) is equivalent to this condition on the Bayes factor:

f (x | H 1 ) f (x | H 0 ) ≥ p (H 0 ) p (H 1 ) . ( 4 
)
While that result was derived without possibility theory, its connection to that theory streamlines calculations. It also addresses the commonly made criticism that probability theory lacks the resources to handle catch-all hypotheses and, more generally, domains that are only partially specified.

Overview

A general decision-theoretic framework under possibility theory is developed in Section 2. The special case most relevant to statistics problems like that of Section 1.2 is derived from Bayesian decision theory in Section 3, culminating in a simple result for partially specified domains. Section 4 illustrates the methods with examples of applications to point estimation, hypothesis testing, and model updating after checking.

Probableness theory

The framework introduced in this section uses concepts from probability theory, possibility theory as it appears in the fuzzy logic literature, and idempotent probability theory. Basic definitions from those previous theories are reviewed here as needed.

Preliminary definitions

Any function poss on a set Ω is a possibility distribution if there is a ω ∈ Ω such that poss (ω) = 1 and if [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF]. The corresponding function Poss on the set of subsets of Ω is possibility measure if

0 ≤ poss (ω) ≤ 1 for all ω ∈ Ω (
Poss (F) = sup ω∈F poss (ω)
for all F ⊂ Ω (Dubois and Prade, 2012). The generic term possibility function encompasses both possibility distributions and possibility measures.

Following [START_REF] Puhalskii | Large Deviations and Idempotent Probability[END_REF], a conditional idempotent probability measure given some R ⊂ Ω such that

Poss (R) > 0 is a function Poss (•|R) on the set of subsets of Ω satisfying Poss (F|R) = Poss (F ∩ R) Poss (R)
for all F ⊂ Ω, with respect to Poss (•), a possibility measure on the set of subsets of Ω. The function

poss (•|R) on Ω defined by poss (ω|R) = Poss ({ω} |R) for all ω ∈ Ω is called the conditional idempotent probability distribution given an R ⊂ Ω such that Poss (R) > 0.
Both conditional idempotent probability measures and conditional idempotent probability distributions are considered conditional idempotent probability functions. That is also one of the many ways to define conditional possibility functions [START_REF] Lapointe | Revision of possibility distributions: A Bayesian inference pattern[END_REF].

The stated formulation, used for simplicity in this paper, applies without modification to any finite, non-empty Ω. If Ω is infinite, the domain of Poss (•) is a subset of the set of subsets of Ω that satisfies certain regularity conditions [START_REF] Puhalskii | Large Deviations and Idempotent Probability[END_REF]. A measurable function on the domain is called an idempotent variable [START_REF] Puhalskii | Large Deviations and Idempotent Probability[END_REF] in analogy with probability theory's concept of a random element.

In standard probability theory, a probability density function is a Radon-Nikodym derivative of a probability measure with respect to some dominating measure. For example, the probability density function with respect to a counting measure is a probability mass function.

Any possibility distribution π on a set Ω is a probableness distribution if there is a probability density function f such that π (ω) ∝ f (ω). The corresponding function Π on the set of subsets of Ω is probableness measure if

Π (F) = sup ω∈F π (ω)
for all F ⊂ Ω. It follows that Π is a possibility measure. A probableness function is either a probableness distribution or a probableness measure.

Conditional probableness functions are conditional idempotent probability functions with respect to a probableness measure. Thus, a conditional probableness measure given some

R ⊂ Ω such that Π (R) > 0 is a function Π (•|R) on the set of subsets of Ω satisfying Π (F|R) = Π (F ∩ R) Π (R)
for all F ⊂ Ω, with respect to Π (•), a probableness measure on the set of subsets of Ω. The function π (•|R)

on Ω defined by π (ω|R) = Π ({ω} |R) for all ω ∈ Ω is called the conditional probableness distribution given an R ⊂ Ω such that Π (R) > 0.

The probableness analog of Bayes's theorem

Let According to Bayes's theorem,

Ω = Φ × X ,
p (φ| x ) = p (φ) f (x |φ) E p (f (x |ϕ)) , (5) 
where E p (f (x |ϕ)) is the expectation value of f (x |ϕ) with respect to the prior probability density function

p; for example, if Φ is countable, then E p (f (x |ϕ)) = φ∈Φ p (φ) f (x |φ)
An analog of probability theory's equation ( 5) holds for probableness theory.

Lemma 1. Suppose X and ϕ are idempotent variables such that X ((φ, x )) = x and ϕ ((φ, x )) = φ for all φ ∈ Φ and x ∈ X . If Π (•) is a probableness measure on measurable subsets of Φ×X such that Π (X = x ) > 0, and Π (•| X = x ) is a corresponding conditional probableness measure given that X = x , then

Π (ϕ = φ| X = x ) = Π (ϕ = φ) Π (X = x |ϕ = φ) Π (X = x ) . ( 6 
)
Further, the corresponding conditional probableness distribution of ϕ given that X = x is proportional to the posterior probability density function with respect to a prior probability density function that is proportional to the probableness distribution of ϕ defined by Π (•) and with respect to a conditional probability density of

x that is proportional to the probableness distribution of X conditional on ϕ = φ defined by Π (•|ϕ = φ).

Proof. All conditional probableness measures satisfy equation ( 6) since they are by definition conditional idempotent probability measures, which are known to satisfy it (e.g., [START_REF] Lapointe | Revision of possibility distributions: A Bayesian inference pattern[END_REF][START_REF] Fitzpatrick | Max plus decision processes in planning problems for unmanned air vehicle teams[END_REF]. That proves the first claim.

To prove the other claim, it is sufficient to prove that

Π (ϕ = φ| X = x ) ∝ p (φ| x ) , (7) 
where p (φ| x ) satisfies equation ( 5) for a prior probability density function such that

Π (ϕ = φ) ∝ p (φ) (8) 
and for a conditional probability density of x such that

Π (X = x |ϕ = φ) ∝ f (x |φ) . (9) 
Equations ( 8) and ( 9) imply that

Π (ϕ = φ) Π (X = x |ϕ = φ) ∝ p (φ) f (x |φ) ,
which, with equations ( 5) and ( 6), in turn implies equation ( 7).

The analogy justifies calling π (φ) := Π (ϕ = φ) and π (φ| x ) := Π (ϕ = φ| X = x ) the prior and posterior probableness of φ. Π (X = x |ϕ = φ) will be similarly abbreviated by (φ) since (•) := Π (X = x |ϕ = •) is a version of the likelihood function, defined as f (x |•) up to a positive constant factor, according to equation (9). Then equation ( 6) can be shortened to

π (φ| x ) ∝ π (φ) (φ) . ( 10 
)

Probableness decision theory

If η is a nonnegative-valued idempotent variable on Ω, its idempotent expectation with respect to a possibility distribution poss is , 2001). Consider an action space A and a nonnegative-valued utility function (a, φ) → u a (φ) on A ×Φ. Then, assuming measurability, the posterior idempotent expected utility with respect to a posterior

E poss (η) = sup ω∈Ω poss (ω) η (ω) (Puhalskii
probableness distribution π (•| x ) on Φ is E π (u a | x ) := E π(•| x ) (u a ) = sup ω∈Ω π (ω| x ) u a (ω) (11) 
for any a ∈ A. A Bacon action is a member of A that maximizes the posterior idempotent expected utility:

a (π | x ) = arg sup a∈A E π (u a | x ) . (12) 
It is so named to acknowledge the similarity of probableness to the "Baconian probability" of [START_REF] Cohen | The Probable and the Provable[END_REF], in analogy with a Bayes action, a member of A that maximizes the posterior expected utility used in Bayesian decision theory:

a (p | x ) = arg sup a∈A E p (u a | x ) = arg sup a∈A E p(•| x ) (u a ) (13) 
in the notation of Section 2.2.

As in Section 2.2, consider p (•) and p (•| x ), prior and posterior probability density functions defined on Φ, which in this section is also the action space. For simplicity, Section 3.1 presents the main results under the assumption that Φ is finite. Those results are then extended to other domains in Section 3.2.

Finite domains

Suppose that there is no payoff unless the action is correct. That means the nonnegative-valued utility function is on Φ × Φ and has the form

u φ (ϕ) =        u (φ) if φ = ϕ 0 if φ = ϕ , (14) 
where u (φ) > 0 is the amount of the payoff when φ is correct, and ϕ is a random variable since its value is unknown. In the simplest case, u (φ) = 1 for all φ ∈ Φ.

In that setting, the Bayes actions are the same as the Bacon actions, and the prior and posterior probability density functions, like the likelihood function, need only be specified up to a positive constant factor. Proof. By equation ( 13), the Bayes action (or the set of Bayes actions) is

a (p | x ) = arg sup φ∈Φ E p(•| x ) (u φ ) = arg sup φ∈Φ p (φ| x ) E p(•| x ) (u φ |ϕ = φ) = arg sup φ∈Φ p (φ| x ) u (φ) ,
which, by equation ( 5), is a (p | x ) = arg sup φ∈Φ p (φ) f (x |φ) u (φ). Analogously, by equations ( 11) and ( 12), the Bacon action (or the set of Bacon actions) is

a (π | x ) = arg sup a∈Φ E π(•| x ) (u a ) = arg sup a∈Φ sup φ∈Φ π (φ| x ) u a (φ) = arg sup φ∈Φ π (φ| x ) u φ (φ) = arg sup φ∈Φ π (φ| x ) u (φ) ,
which, by equation ( 10) (from Lemma 1), is a (π | x ) = arg sup φ∈Φ π (φ) (φ) u (φ). Putting that with the result for the Bayes action and making substitutions from equations ( 8) and ( 9) with (φ) = Π (X = x |ϕ = we have

a (p | x ) = arg sup φ∈Φ p (φ) f (x |φ) u (φ) = arg sup φ∈Φ π (φ) (φ) u (φ) = a (π | x ) .
(The sup function is used in Theorem 1 instead of max to prepare for the generalization in Section 3.2.)

In the case that p (φ) and u (φ) are constant, equation ( 14) reduces to

a (π | x ) = arg sup φ∈Φ f (x |φ) = arg sup φ∈Φ (φ) ,
which is used in many papers that interpret possibility functions in terms of likelihood functions (e.g., [START_REF] Dubois | A semantics for possibility theory based on likelihoods[END_REF]. For related interpretations of fuzzy sets, see [START_REF] Bickel | The strength of statistical evidence for composite hypotheses: Inference to the best explanation[END_REF] and [START_REF] Coletti | Fuzzy memberships as likelihood functions in a possibilistic framework[END_REF].

General domains

Suppose that there is no payoff unless the action is sufficiently close to the truth, where closeness is understood in terms of a metric ρ on the metric space Φ. That means the nonnegative-valued utility function is on

[0, ∞[ × Φ × Φ and has the form u ε,φ (ϕ) =        u (φ) if ρ (φ, ϕ) ≤ ε 0 if ρ (φ, ϕ) > ε , ( 16 
)
where ε is a sufficiently small nonnegative number, and u (•) is the function defined in Section 3.1.

Let ν denote a volume measure on a measure space (Φ, F) such that, for all sufficiently small ε ≥ 0, there

is a c (ε) > 0 such that ν (ρ (φ, •) ≤ ε) = c (ε) > 0 (17)
for all φ ∈ Φ. The probability density functions p (•) and p (•| x ) are Radon-Nikodym derivatives of the prior and posterior probability measures on (Φ, F) with respect to ν.

According to equation ( 13), the Bayes actions are those in

a ε (p | x ) = arg sup φ∈Φ E p(•| x ) (u ε,φ ) (18) 
for any ε ≥ 0. As ε approaches 0 from above, that set is assumed to converge to some non-empty set a 0 (p | x )

consisting of what are called the limiting Bayes actions:

a 0 (p | x ) = lim ε↓0 a ε (p | x ) .
Under those conditions, Theorem 1 is generalized as follows.

Theorem 2. For any utility function satisfying equation ( 16), the Bacon actions from the prior probableness distribution and the likelihood function on Φ that are specified by equations ( 8) and ( 9) for all φ ∈ Φ are identical to the limiting Bayes actions from p (•), which is assumed to satisfy p (φ) > 0 and p (φ| x ) > 0 for all φ ∈ Φ. Those actions are given by equation (15) with a 0 (p | x ) in place of a (p | x ).

Proof. For any sufficiently small value of ε, equation ( 18) implies that

a ε (p | x ) = arg sup φ∈Φ E p(•| x ) (u ε,φ ) c (ε) ,
where, by equation ( 16) and ϕ ∼ p

(•| x ), E p(•| x ) (u ε,φ ) = Prob (ρ (φ, ϕ) ≤ ε| x ) E p(•| x ) (u ε,φ |ρ (φ, ϕ) ≤ ε) . Since p (•| x ) is the Radon-Nikodym derivative of Prob (•| x )
with respect to ν, that with equation ( 17), gives

lim ε↓0 E p(•| x ) (u ε,φ ) c (ε) = lim ε↓0 Prob (ρ (φ, ϕ) ≤ ε| x ) ν (ρ (φ, •) ≤ ε) E p(•| x ) (u ε,φ (ϕ) |ρ (φ, ϕ) ≤ ε) = p (φ| x ) E p(•| x ) (u ε,φ (ϕ) |ϕ = φ) = p (φ| x ) u (φ) .
Therefore, the limiting Bayes actions are those in

a 0 (p | x ) = lim ε↓0 arg sup φ∈Φ E p(•| x ) (u ε,φ ) c (ε) = arg sup φ∈Φ p (φ| x ) u (φ) .
The rest of the proof is analogous to that of Theorem 1.

Partial domain specification

It follows from the above results that the likelihood function, prior probability density function, and utility function do not necessarily need to be specified on the entire domain right away. There is no need to state them on any subset of the domain until some φ in the that subset maximizes the product of the posterior probability density function and the utility.

Corollary 1. Let Φ stated and Φ unstated denote subsets of Φ such that Φ stated ∩ Φ unstated = ∅ and Φ = Φ stated ∪ Φ unstated . Under the conditions of either Theorem 1 or Theorem 2, if

sup φ∈Φ stated p (φ) f (x |φ) u (φ) > sup φ∈Φ unstated p (φ) f (x |φ) u (φ) ,
or, equivalently,

sup φ∈Φ stated p (φ| x ) u (φ) > sup φ∈Φ unstated p (φ| x ) u (φ) , (19) 
then the Bayes actions are given by a (p | x ) = arg sup

φ∈Φ stated p (φ| x ) u (φ) . ( 20 
)
4 Example applications to statistics problems

In applications, the above definitions may be modified by replacing their idealizations with approximations.

For example, the prior probability density function may be replaced with a uniform distribution or another improper density function. Further, the likelihood function may be replaced by a pseudo-likelihood function such as a profile likelihood function, an estimated likelihood function, a conditional likelihood function, a marginal likelihood function, or an integrated likelihood function.

The application to point estimation is the simplest example (Section 4.1). It is followed by two examples involving partially unspecified domains: those of catch-all hypotheses (Section 4.2) and updating Bayesian models after checking them (Section 4.3).

Point estimation and prediction

Suppose φ = θ, the parameter of interest, is in a parameter space Φ = Θ and that the nuisance parameters are eliminated by using a marginal likelihood function on Θ as θ → (θ) = f θ (x ), where x is the sample mean or another scalar summary of the sample that is modeled as an observation of a random variable having a probability density function f θ .

The goal is to estimate θ by a value a = θ that is not only close to θ but that would also accurately predict a future summary statistic Y when it is estimated by y θ , the value that minimizes expected prediction error y (Y ) according to θ:

E Y ∼f θ ( y (Y )) = y (y ) f θ (y ) dy y θ = arg inf y E Y ∼f θ ( y (Y )) .
The utility function to achieve that goal is equation ( 16) with

u (θ) = E Y ∼f θ -y(θ) (Y ) = sup y E Y ∼f θ (-y (Y )) ,
resulting in the estimate given by

θ (π | x ) = arg sup θ∈Θ sup y E Y ∼f θ (-y (Y )) = arg sup θ∈Θ p (θ) (θ) sup y E Y ∼f θ (-y (Y )) = arg sup θ∈Θ p (θ) (θ) -inf y E Y ∼f θ ( y (Y )) = arg inf θ∈Θ p (θ) (θ) inf y E Y ∼f θ ( y (Y ))
according to Theorem 2.

Example 1. Under a uniform prior density function and squared error loss, p (θ) is constant, and y (Y ) = (y -Y ) 2 . Then the estimated value of the parameter of interest is

θ (π | x ) = arg inf θ∈Θ (θ) inf y E Y ∼f θ (y -Y ) 2 = arg inf θ∈Θ (θ) E Y ∼f θ Y -E Y ∼f θ (Y ) 2 = arg inf θ∈Θ (θ) var Y ∼f θ (Y ) ,
where var Y ∼f θ (Y ) is the variance of Y conditional on θ.

Catch-all hypotheses

In a typical hypothesis testing problem, there is a null hypothesis H 0 and an alternative hypothesis H 1 about the value of a parameter of interest ϑ in a parameter space Θ. Other possibilities not specified may be gathered into a catch-all hypothesis or residual hypothesis H 2 , as in Section 1.2.

The hypothesis set Φ = {H 0 , H 1 , H 2 } is partitioned into those with specified priors and families of data distributions and the catch-all hypothesis, the details of which are left unspecified: Φ stated = {H 0 , H 1 } and

Φ unstated = {H 2 }. Let u (H chosen ) be the payoff under H chosen for any H chosen ∈ Φ. If max (p (H 0 ) f (x | H 0 ) u (H 0 ) , p (H 1 ) f (x | H 1 ) u (H 1 )) > p (H 2 ) f (x | H 2 ) u (H 2 ) ,
then the hypothesis that maximizes posterior expected loss is

H chosen (p | x ) =        H 0 if f (x | H 1) f (x | H 0 ) < p(H 0) u(H 0 ) p(H 1) u(H 1 ) H 1 if f (x | H 1) f (x | H 0 ) ≥ p(H 0) u(H 0 ) p(H 1) u(H 1 ) (21) 
according to Corollary 1. That generalizes the H 0 -rejection condition (4) and the conclusions of Section 1.2 to other hypothesis testing problems that may involve unspecified hypotheses such as catch-all hypotheses.

Bayesian model checking and Bayesian model updating

A scientist typically uses a model for data analysis until it fails some model check, sometimes using formal diagnostics. At that point, another model is adopted until it fails and is replaced. The scientist never specifies the whole space of models that might be adopted in the future, let alone a hyperprior distribution over them, as would be required by the Bayesian model averaging criticized by [START_REF] Gelman | Philosophy and the practice of Bayesian statistics[END_REF].

Rather, models are only specified as needed for inference or for comparison with other models.

That practice can be understood and improved in a Bayesian decision-theoretic framework. Let Φ be the sequence of Bayesian models (M 1 , M 2 , M 3 , . . . ) , where the i th model is a family f i,θ : θ ∈ Θ i of sampling distributions or other data distributions paired with a prior distribution p i on a parameter space Θ i over the data distributions: [START_REF] Hill | A general framework for model-based statistics[END_REF][START_REF] Bickel | Inference after checking multiple Bayesian models for data conflict and applications to mitigating the influence of rejected priors[END_REF]. The initial model M 1 is specified and used for inference and decision making until it is called into question, at which point it is compared to the next model, M 2 , which is not specified until then. If M 2 is adopted, it is used until it needs to be checked by comparison with a newly formulated model,

M i = p i , f i,θ : θ ∈ Θ i ( 
M 3 .
At each point in time, the tacit hyperprior distribution over Φ need only be specified up to ratios of prior probabilities of the models that have been formulated. There is never a need to assume any model in use is probably true or to qualify inference as conditional on the truth of a model.

This procedure formalizes the practice in the notation of Corollary 1:

1. Use these initial settings: 

p (M i ) f (x | M i ) u (M i ) (23) 

  where X is a set of samples or other observable elements, and Φ is a set of parameter values or other elements representing possible states of a system. Let f φ denote a probability density function on X . Then, for any observation x in X , f (x |φ) is the probability density of x conditional on ϕ = φ, where ϕ is a random variable with values in Φ. The marginal probability density function of ϕ is called the prior probability density function and is denoted by p. Similarly, the probability density function of ϕ conditional on X = x is called the posterior probability density function and is denoted by p (•| x ), where X is a random variable with values in X .

Theorem 1 .

 1 For any utility function satisfying equation (14), the Bacon actions from the prior probableness distribution and the likelihood function on Φ that are specified by equations (8) and (9) for all φ ∈ Φ are identical to the Bayes actions from p (•), where Φ is assumed to be a finite set such that p (φ) > 0 and p (φ| x ) > 0 for all φ ∈ Φ. Those actions are given by a(π | x ) = a (p | x ) = arg sup φ∈Φ p (φ) f (x |φ) u (φ) = arg sup φ∈Φ p (φ| x ) u (φ)(15) in the notation of Sections 2.2-2.3, where p (•) and p (•| x ) are any functions on Φ satisfying p (φ) ∝ p (φ) and p (φ| x ) ∝ p (φ| x ).

  (a) Specify M 1 , the first Bayesian model, by specifying its family of data distributions and its prior distribution.(b) Set Φ stated = {M 1 } and Φ unstated = {M 2 , M 3 , . . . } .(c) Let p (M i ) be a quantity proportional to the hyperprior probability of model M i , letf (x | M i ) = E ϑ∼p i f i,ϑ (x ) , and let u (M i ) = E ϑ∼p i (•| x ) (u i ), which is the posterior expected utility conditional on model M i with respect to utility function u i . As long asp (M 1 ) f (x | M 1 ) u (M 1 ) > max i=2,3,... p (M i ) f (x | M i ) u (M i ) (22)is judged to hold, use model M 1 for inference and decision making, as suggested by Corollary 1's selection of M 1 as the Bayes action.(d) Once condition (22) is called into question, specify the prior distribution and family of data distributions under M 2 , the model judged to be the most feasible of the models in Φ unstated in the sense that 2 = arg max i=2,3,...p (M i ) f (x | M i ) u (M i ) ,where x now includes whatever new information led to reconsidering condition(22).(e) If p (M 1 ) f (x | M 1 ) u (M 1 ) > p (M 2 ) f (x | M 2 ) u (M 2 ), then condition (22) is still satisfied. In that case, return to Step 1c. Otherwise, M 1 fails the model check and is replaced with M 2 according to Step 2.2. Keep the settings fromStep 1 with the exceptions given by these steps: (a) Set Φ stated = {M 1 , M 2 } and Φ unstated = {M 3 , M 4 , . . . } . i ) f (x | M i ) u (M i ) > max i=3,4,...
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is judged to hold, use the model that is the Bayes action given by Corollary 1: 23) is called into question, specify the prior distribution and family of data distributions under M 3 , the model judged to be the most feasible of the models in Φ unstated in the sense that

where x now includes whatever new information led to reconsidering condition ( 23). Example 2. According to [START_REF] Jefferys | Ockham's Razor and Bayesian Analysis[END_REF], it is typical for a scientist to start with the model that has the highest prior probability because it is the simplest model (cf. [START_REF] Bickel | An explanatory rationale for priors sharpened into Occam's razors[END_REF]. That model is called M 1 , and its most plausible rival is labeled M 2 . If neither model is judged to be more useful if true, then u (M 1 ) = u (M 2 ), and Step 1e says

which can be used given the ratio of priors p (M 1 ) / p (M 2 ) without further specifying the prior probability mass function p. That means M 1 will continue to be used instead of M 2 as long as the Bayes factor

, the prior probability of M 1 relative to the prior probability of M 2 ; compare equation ( 21). Corollary 1 thus gives normative decision-theoretic support for the practice of checking Bayesian models according to Bayes factors that compare them to other Bayesian models; previous arguments in favor of the practice are provided by [START_REF] Morey | The humble Bayesian: Model checking from a fully Bayesian perspective[END_REF].