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We first provide the necessary results to prove the Artin-Schreier1 Theorem in characteristic p ̸ = 0 Definition. Let G be a group and K be a field then a group homomorphism σ : G → K * (where the codomain is the multiplicative group of the field) is also known as a character.

Example of a Character. Consider K < L as proper field extensions such L = K(α) for some α ∈ L\K. Then any σ ∈ Aut(L/K) that permutes the zeros of the minimal polynomial of α (while fixing any element in K). If this σ is restricted to L * it becomes a character L * → L * .

Theorem (Dedekind Independence of Character Theorem). For a fixed group G and a field K and any finite number of distinct characters σ i : G → K * , with say i = 1, . . . , n, we have the following

n ∑ i=1 a i σ i ≡ 0 ⇔ a i = 0 ∀i = 1, . . . , n
where a i ∈ K and the equality in the left means that the function is a zero function (i.e. taking all g ∈ G to 0 ∈ K).

Proof. We prove by the following steps:

y 1 Start with induction on n, for n = 1 the result is trivial.

y 2 Let g be such that σ 1 (g) ̸ = σ 2 (g) and consider ∑ a i σ i (gx) = 0 and ∑ a i σ 1 (g)σ i (x) = 0 y 3 Cancel one summand by showing a 2 = 0 and eventually show all a i = 0

One can prove by induction. Let a 1 σ 1 ≡ 0 then since σ 1 does not map to 0 ∈ K one must have a 1 = 0. Suppose now that for any linear combination of n -1 characters (n ∈ N) one has linear independence as described in the Theorem. Suppose now that ∑ n i=1 a i σ i ≡ 0 for some a i ∈ K and characters σ i : G → K * with i = 1, . . . , n. Since the characters are mutually different there is a g ∈ G such that σ 1 (g) ̸ = σ 2 (g). For all x ∈ G, one has σ 1 (g)

∑ n i=1 a i σ i (x) = 0 and ∑ n i=1 a i σ i (g)σ i (x) = 0. Subtracting the two gives n ∑ i=2 a i (σ i (g) -σ 1 (g))σ i (x) = 0 ∀x ∈ G
By induction hypothesis this would mean that in particular a 2 (σ 2 (g) -σ 1 (g)) = 0 in K. Since the right factor is not 0, we get a 2 = 0. Looking at the original sum we have

n ∑ i=1 a i σ i = a 1 σ 1 + n ∑ i=3 a i σ i ≡ 0
but this is a sum of a linear combination of n -1 characters and, by induction hypothesis, this implies that each of the other a i (i = 1, 3, 4, . . . , n) is 0. Now we are ready to state and prove the first Artin-Schreier Theorem:

Theorem (Artin-Schreier Theorem for Characteristic p ̸ = 0). Let K ≤ L be a Galois extension of fields and suppose that char L = p and that |Aut(L/K)| = p then there is an α ∈ L such that K(α) = L and α is the zero of an irreducible polynomial in K[T ] of the form T n -T -a for some a ∈ K.

Proof. Clearly the field extension is proper (because the automorphism group has an order greater than 1). Consider now a generator σ of G := Aut(L/K) (G is cyclic!). We note that throughout when we write σ n for some n ∈ N we mean n-times composition of σ. We prove using the following steps:

y 1 Show that for x ∈ L\K one has z := ∑ p-1 i=0 σ i (x) is invariant under σ and is in K * . y 2 Set y := ∑ p-1 i=0 (p -1 -i)σ i (x) ∈ K and see that σ(y) = y + z y 3 Set α := y/z then α ̸ ∈ K because σ does not fix it (σ(α) = α + 1) y 4 By Fermat's little we can set f (T ) := T p -T = ∏ p-1 i=0 (T -i) and observe that it is additive, i.e. f (a + b) = f (a) + f (b) y 5 Show p-1 ∏ i=0 (T -σ i (α)) = T p -T + (-1) p p-1 ∏ i=0 (α + i) is in K[T ]
(the constant part is σ-invariant) and has p distinct zeros, including α, and is the minimum polynomial and so

K(α) = L
1 is because σ is a generator of G and the extension is Galois, so every invariant of σ belongs to K. In particular z cannot be 0 because of the Dedekind's independence of character Theorem.

For 2 we see the following (the last line is because the field has characteristic p and because the factor p -1

-(p -1) = 0) σ(y) = p-1 ∑ i=0 (p -1 -i)σ i+1 (x) = p-1 ∑ i=0 (p -1 -i)σ i+1 (x) p-1 ∑ i=0 (p -1 -(i + 1))σ i+1 (x) + z = p-2 ∑ i=1 (p -1 -i)σ i (x) + (-1)σ p (x) + z p-2 ∑ i=1 (p -1 -i)σ i (x) + (-1)x + z = p-2 ∑ i=1 (p -1 -i)σ i (x) + (p -1)x + z = p-2 ∑ i=0 (p -1 -i)σ i (x) + z = p-1 ∑ i=0 (p -1 -i)σ i (x) + z = y + z
Now, 3 is self-explanatory. For 4 , by using Fermat's little theorem, it is clear that T -i divides f (T ) for all i = 0, 1, . . . , p -1. Thus f (T ) is the product of all these linear factors. Since we have p linear factors forming a monic polynomial, this will be the only factors of f (T ). The additivity of f (T ) comes from the fact that in a field of characteristic p > 0, after taking binomial expansion, the following identity holds

(a + b) p = a p + b p ∀a, b
For 5 , by applying 3 i-times for any i = 1, . . . , p -1 we get σ i (α) = α + i so we have

g(T ) := p-1 ∏ i=0 (T -σ i (α)) = p-1 ∏ i=0 (T -α -i) = f (T -α) = f (T ) + f (-α) = T p -T + p-1 ∏ i=0 (-α -i) = T p -T + (-1) p p-1 ∏ i=0 (α + i)
We set a := (-1) p ∏ p-1 i=0 (α + i) and observe, by 3 and because the extension is Galois, that

σ(a) = (-1) p p-1 ∏ i=0 (α + i + 1) = (-1) p p-1 ∏ i=0 (α + i) = a ∈ K
We can now write g(T ) in the following way

g(T ) = f (T ) + (-1) p p-1 ∏ i=0 (α + i) = f (T ) + (-1) p p-1 ∏ i=0 (α -i) = p-1 ∏ i=0 (α -i) + (-1) p p-1 ∏ i=0 (α -i)
so if p is an odd prime we have

g(α) = g(α + 1) = • • • = g(α + p -1) = 0 If p is even (=2) then g(α) = g(α + 1) = • • • = g(α + p -1) = 2f (α) = 0
So α, α + 1, . . . , α + p -1 are p distinct zeros of the polynomial g(T ). These are the only zeros of g(T ) and they are all not in K (because their image under σ is a translation by 1, so not an invariant element). Apply now σ, σ 2 , . . . , σ p-1 (and the identity map) restricted to K(α) to the Dedekind's character independence theorem, we see that the roots are also linearly independent over K and so

p ≤ [K(α) : K] ≤ [L : K] In general, [L : K] ≤ |G| = p (even if L is not a Galois field extension of K as long as K is the G-invariant subfield of L.
This is also known as Artin's Theorem, see [Milne] Theorem 3.4). Thus [L : K] = p and so g(T ) is the minimal polynomial of α and L = K(α).

To continue we need a definition and some properties in algebraic number theory, namely the norm of finite field extensions Definition. Let K ≤ L be a finite field extension, then any α ∈ L defines a linear transformation

L → L
x → αx between K-vector spaces (the extended field L). This linear transformation has a square representative matrix (with entries all in K) which we we denote M α . Using the notation for representative matrix, we define a function

N L/K : L * → K * α → det(M α )
If the field extension is known we sometimes write N (α) instead of N L/K (α)

We note the following facts which we state without proof (the proof can be found in a nice expository paper by Keith Conrad [Con] ) Remark 1. Let K ≤ L be a finite field extension and let N := N L/K be the norm associated to it.

• N is multiplicative, i.e. N (αβ) = N (α)N (β) for all α, β ∈ L • If a ∈ K then N (a) = a [L:K] • Let α ∈ L and χ(T ) ∈ K[T ] be the characteristic polynomial of M α then N (α) = (-1) deg(χ(T )) χ(0) • If L = K(α) for some α ∈ K , then the minimal polynomial of α in K[T ] is the same as the characteristic polynomial of M α .
Norms are powerful tools to determine whether certain elements have roots in the field. For instance . . . Lemma 2. Let K be a field and suppose a ∈ K has no p-th root for some prime number p. Then x p -a ∈ K[x] is irreducible. Thus, by Abel's Irreducibility Lemma, x p -a is necessarily the minimal polynomial of all p-th roots of a.

Proof. We prove using the following steps y 1 By contradiction, let the minimal polynomial µ of some α = a 1/p properly divide x p -a y 2 Then show in K that a deg(µ) = N (α) p y 3 Use deg(µ) and p are coprime to find some a 1/p in K (some a c N (α) d ).

Suppose, by contradiction, that f (x) := x p -a is reducible. Let α be a p-th root of a in an extension field of K, then by hypothesis the minimal polynomial divides f (x) and their quotient is non-constant. Thus, the minimal polynomial has a degree n = [K(α) : K] which is strictly less than p. Consider the norm function N := N K(α)/K then we have

a n = N (a) = N (α p ) = (N (α)) p
Since N (α) ∈ K and the numbers n and p are coprime, there are c, d ∈ Z such that pc + dn = 1. Consider a c N (α) d ∈ K (we are in a field, so taking negative powers are allowed) and take its p-th power. We have

(a c N (α) d ) p = a pc + N (α) dp = a pc + a nd = a pc+nd = a
Thus a has a p-th root in K which is a contradiction.

Lemma (Kummer Extension Lemma).

Let K ≤ L be Galois field extensions and [L : K] = p for some prime number p. Suppose furthermore that K contains all the p-th root of unity. Then

L = K[α] for some α ∈ L such that α p ∈ K.
Proof. See §4.7 Lemma 3 p.253 of [Jac].

Finally we show a theorem published in 1927 also known as Artin-Schreier theorem that is more known in real algebra:

Theorem (Artin-Schreier Theorem for Characteristic 0). Let K < K be a proper field extension such that K is the algebraic closure of K and [L : K] < ∞ then • The characteristic of L is 0

• K = K[ √ -1] • K is a real closed field
Proof. We prove using the following steps y 1 Prove K is perfect by contradiction. Show that you can algebraically infinitely extend K by several p, p 2 , . . . roots of a certain element a ∈ K (without a p-th root) for some prime p and arrive to a contradiction y 2 Having shown K is perfect conclude that the extension K < K is a finite Galois extension. For 1 , assume otherwise (i.e. K is not perfect). A characterization (or definition) of a non-perfect field is that it has a prime characteristic p and that some elements of the field do not have a p-th root. So let a ∈ K be such that no p-th root is in K, where char K = p. Denote one p-th root of a as α in an extension field K(α) of K. We have p-degree field extension K < K(α) because, by Lemma 2, X p -a is the minimal polynomial of α over K. If α has a p-th root in K(α), say β, and if we consider the norm function N = N K(α)/K we get2 (see Remark 1)

N (α) = N (β p ) = N (β) p = N (α) = (-1) p (-a) = (-1) p+1 a
So a has a p-th root in K and this is a contradiction to our assumption. Thus, K(β) is a p 2 degree field extension K < K(β). Iterating this procedure would give us p, p 2 , p 3 , . . . degree field extensions of K. This is a contradiction to [ K : K] < ∞. Because K is an extension of the perfect field K, K is a separable extension (see p.27 of [Milne]). Clearly K is also a normal extension of K, because it is algebraic closed. Thus K is a Galois extension of K.

We start with 3 and choose a largest intermediate field L such that K ≤ L < K. Now Aut( K/K) is the automorphism group of a finite Galois extension, so by the Fundamental Theorem of Galois Theory (see [Milne] Theorem 3.16 p.29 or [Jac] p.239-240) and Cauchy's Theorem (see [Jac] p.80) [ K : L] must necessarily be a prime number. Now, for 3 a, assume that [ K : L] = char K = p. By Artin-Schreier for prime characteristic, there is an α ∈ K such that L(α) = K and α is the zero of an irreducible polynomial in L[T ] of the form T n -T + a for some a ∈ L. Now for 3 b. Because K is algebraically closed, the polynomial T p -T + aα p-1 has a root b ∈ K. Also, K is a vector space over L with basis 1, α, α 2 , . . . , α p-1 . So we may write

b = c 0 + c 1 α + c 2 α 2 + • • • + c p-1 α p-1 c i ∈ L
We know that b p -b + aα p-1 = 0 and substituting the equation for b gives

(c p 0 -c 0 ) + (c p 1 -a)α + • • • + (c p p-1 -c p-1 + a)α p-1 = 0
But this is a linear combination of the basis of L with coefficients in K that equates to 0, thus c p-1 ∈ K is a zero of the polynomial T p -T + a. This is a contradiction to irreducibility of T p -T + a (see the 'Factor Theorem' in [Jac] §2.11 Corollary 2 p.130).

For 4 , we set q := [ K : L] (recall, by construction, that this is a prime number). K must contains all the q-th roots of unity because the q-cyclotomic polynomial (this divides x q -1) is of degree q -1 and has, as roots, all non-trivial q-th roots of unity and if this were not in L one has a field extension by adjoining a non-trivial q-th root and this must be equal to K (by the maximality of L) but this extension has degree at most q -1 and this is a contradiction. By the Kummer Extension Lemma, there is an α ∈ K\L such that α q ∈ L and that K = L[α]. Since char K ̸ = q, by Lemma 2, the polynomial T q -a ∈ L[T ], where a := α q , is irreducible and is the minimal polynomial of α (over L). Setting N = N K/L gives us (see Remark 1)

N (a) = N (α q ) = N (α) q = N (a) = (-1) q+1 a
If q were odd then T q -a has a zero N (α) ∈ L and is not irreducible, thus q = 2.

To prove 5 a, we show first that K = L[i] (where i ∈ K is a root of T 2 + 1, i.e. i = √ -1). If i ∈ L then we have (for N , α and a as in the proof above for 4 )

N (-a) = N ((iα) 2 ) = N (iα) 2 = -N (α) 2 = N (-a) = (-1) 2+1 (-a) = a
which implies that a has a square root in L (recall we proved q = 2), and this is contradiction. Thus i ̸ ∈ L and so K = L[i].

To prove 5 b one may show by contradiction that if L\K is non-empty thus K[i] is a proper field of K (i and K alone cannot span elements in L\K). The extension K/K[i] is finite and one may replace K by K[i] and prove everything from 1 to 5 a to arrive to a contradiction (L in this case already contains i and this is a contradiction). Finally for 5 c we first show that K is a real field. First we show that the sum of squares in K is also a square. It suffices to show that the sum of two square is a square. So let a, b ∈ K then we have a+ib = (c+id) 2 for some c, d ∈ K (because K[i] = K is algebraically closed) and by taking the conjugate of i we have a -ib = (c -id) 2 Thus we have shown

a 2 + b 2 = (c 2 + d 2 ) 2
i.e. the sum of two squares (thus all finite sum of squares) is a square in K. Now suppose that K is not real, because the sum of squares is a square in K, there exists a, b ∈ K * such that a 2 + b 2 = 0. This implies that (a/b) 2 = -1 in K. So -1 is a square in K (i.e. i ∈ K) and so this is a contradiction. Thus K is a real field and so of characteristic 0. The next proper algebraic extension of K is K[i] = K which is algebraically closed (and thus, not real). Thus, K must be real closed.

y 3

 3 Pick the largest proper subfield L < K such that K ≤ L. Show by contradiction that p ̸ = [ K : L], where p := char K. (a) Use Artin-Schreier to show that there is a α ∈ K such that K = L(α) and α has minimal polynomial T p -T + a ∈ L[T ] for some a ∈ L (b) Show that for a solution b ∈ K of T p -T + aα p-1 in K, we can expand b p from a linear combination of the canonical basis induced by α and show that an element of K satisfies T p -T + a. y 4 Show that [ K : L] = 2 (a) Look at the [ K : L]-th cyclotomic polynomial and show that K must contain all the [ K : L]-th root of unity. (b) Use Kummer Extension Lemma to show the final result. Show that K = L[β] for some β ∈ K and β is an element without square root in L. y 5 Prove that L = K and K is real closed. Show that L = K (c) Show that sum of squares in K are squares and conclude real closedness of K.

Emil Artin (1898-1962): Austrian algebraist and number theorist. Artinian rings are named after him. Otto Schreier: Austrian algebraist and group theorist. He migrated and worked in Hamburg Germany and later died of sepsis. Both these mathematician were educated from the University of Vienna.

Notice that (-1) p+1 ≡ 1 even for p = 2 because every element is the additive inverse of itself in a characteristic 2 field.