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Zero-inflated Poisson regression model for a new class of flexible
link functions: A case study on healthcare utilization

Essoham ALI
University Gaston Berger, LERSTAD, Saint-Louis, Senegal

Abstract

Many disciplines produce count data that contain many zeros. Zero inflation count models
such as ZIP and ZIB have been widely used to model count data, in particular, to model
the latent structure in a ZIP regression model that allows a non-linear functional relation-
ship between covariates and the expected count outcome. A critical problem in modeling
the count response data is the appropriate choice of links functions. Commonly used link
functions such as logit link have fixed skewness but lack in flexibility to allow the data to
determine the degree of the skewness. To overcome this limitation, we propose a flexible
ZIP regression model that combines a generalized extreme value link function with the other
link functions. The maximum likelihood estimator is used in the estimation of the model.
Maximum likelihood estimation is effective in this model in a series of scenarios. Through
simulated data sets and analysis of the healthcare utilization, we show that the proposed
link function is quite flexible and performs better against link misspecification than standard
link functions.
Keywords: Flexibility; Excess of zeros; Generalized extreme value distribution;
Health-care demand; Simulations

1. Introduction

Statistical modelling is an important step of data analysis in many fields of scientific
research or decision-making purpose. To carry out this approach, one needs to specify a
probability distribution that accounts as accurate as possible the variability observed in
data. Given the plethora of discrete or continuous distributions available (e.g., Johnson et
al. , 2005), guidelines are needed to identify not randomly the one or two-parameter family of
distributions suited for modelling data on hand. The practice in this procedure is to consider
in addition certain phenomenon such as: over-/under-dispersion or zero inflation/deflation
for count data ( (e.g., Bonat et al. , 2018)) and, over-/under-variation or zero mass for
continuous data ( (e.g., Abid et al., 2020)).
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The Poisson dispersion phenomenon is well-known and very widely used in practice; see,
(e.g., Kokonendji, C.C. ) for a review of count (or discrete integer-valued) models. Various
models have been developed to address zero-inflation, such as zero-inflated (ZI) models which
mix a degenerate distribution at zero with a standard count model. Zero-inflated Poisson
(ZIP) regression model was proposed by Lambert (1992) and further developed by Dietz et
al. (2000), Lim et al. (2006) and Monod (2014), among many others. Recent variants of ZIP
regression include random-effects ZIP models (Hall (2000); Min and Agresti (2005)) and
semiparametric ZIP models Lam et al. (2006). A Zero-inflated negative binomial (ZINB)
regression model was proposed by Ridout et al. (2001), see also Moghimbeigi et al. (2008).

Thus,Hall (2000) introduced the zero-inflated binomial (ZIB) model, see also Hall and
Berenhaut (2002), Diop et al. (2011), and Diallo et al. (2017). Deng and Zhang (2015)
proposed a zero-one inflated binomial regression model for such data. In Nguyen et al.
(2019), authors proposed a Zero-inflated Poisson regression with right-censored data. The
usual way to model the response variable is to use a Generalized Linear Model (GLM),
where we model the latent probability of "success" by a linear function of covariates through
a link function McCullagh et al. (1989). The logit, probit and Student t link functions
are three of the common links used in GLM. However, the link functions mentioned above
are "symmetric" links in the sense that they assume that the latent probability of a given
response variable approaches 0 with the same rate as it approaches 1. Equivalently, the
probability density function that corresponds to the inverse cumulative distribution function
of the link function is symmetric. However, this may not be a reasonable assumption in
many cases. One commonly adopted asymmetric link function is the complementary loglog
(cloglog) link function. However, the cloglog link has a fixed negative skewness. As a result,
it lacks both the flexibility to let the data display how much skewness should be incorporated
and also the ability to allow positive skewness. In short, count data might often be better
modeled with flexible link functions that allow for both positive and negative skewness and
that allow the data to determine the amount of skewness required.

Many research works have been conducted which introduce flexibility into the link func-
tions. Aranda-Ordaz (1981) proposed two separate one-parameter models for additional
flexibility in the logistic model.Guerrero et al. (1982) used Box-Cox transformation on the
odds ratio to form a more flexible class of model. Jones (2004) proposed a family of flexible
distributions based on the distribution of order statistics. Stukel (1988) proposed a two-
parameter class of generalized logistic models. Stukel’s model approximates many standard
symmetric and asymmetric link functions quite well, but in a Bayesian framework, it may
result in improper posteriors when the usual improper uniform prior is used in regressions
Chen et al. (1999) . Recently, Wang et al. (2010) proposed the generalized extreme
value link function giving more flexible skewness controlled by the shape parameter. But
the standard logistic and probit links are not among the special cases of this family.

A critical problem in modeling the count response data is the appropriate choice of
links functions. To overcome this limitation, we propose a flexible Zero-Inflated Poisson
regression model that combines a generalized extreme value link function with the other
link functions. In the extreme value theory, the GEV distribution is used to model the
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tail of a distribution Coles S. G. (2004). Currently, the logistic regression model, with its
convenient interpretation and implementation, has been routinely employed to estimate and
predict.As in this work, we focus on the Poisson parameters we have chosen to vary several
link functions in order to see the flexibility of the GEV distribution with respect to the
others. In the GLM, Agresti, A. (2002), log-log and complementary log-log link functions
are used since they are asymmetric functions. In particular, the log-log link function is the
quantile function of the Gumbel random variable. The inverse function of the complementary
log-log is equal to one minus the cumulative distribution function of the Gumbel random
variable. Consequences of link misspecification have been studied by numerous authors
in the literature. In particular, for independent binary observations, Czado et al. (1992)
demonstrated that falsely assuming a logistic link leads to a substantial increase in the bias
and the mean squared error of the parameter estimates as well as the predicted probabilities,
both asymptotically and in finite samples. Moreover, these undesirable effects have greater
magnitude when the misspecification involves skewness than when it involves kurtosis (or
tail weight). Wu et al. (2002) showed also that under certain conditions there exist linear
relationships between the regression coefficients though the choice of links is important for
goodness of fit. To build an appropriate and extremely flexible model for the count data and
to overcome the constraint for the skewed generalized link models, we propose the cloglog,
probit and generalized extreme value (GEV) distribution as a link function. In this paper
we then suggest a new class of link functions to model count data, and apply it to healthcare
utilization data. This paper is organized as follows. In Section 2, we recall the defnition of
ZIP regression model, we describe the maximum likelihood estimation under different link
functions and we introduce some useful notations. In Section 3, we report the results of our
simulations. An application to a health-care utilization dataset is described in Section 4.
Some concluding remarks are given in Section 5.

2. Notations and likelihood calculation

Let us first specify the notation used throughout this paper. Suppose Zi ∼ ZIP(λi, πi),
where πi is the probability of success for the ith observation and λi = eβ

>Xi . Let the
design matrix be Xi = (1, Xi2, . . . , Xip)

> and Wi = (1,Wi2, · · · ,Wiq)
> are random vectors

of predictors or covariates (both categorical and continuous covariates are allowed). The
covariates vectors (they may share common components or be distinct), with Xi1 = Wi1 =
1. β ∈ Rp, γ ∈ Rq are unknown parameter and > denotes the transpose operator. Let
Ji = 1{Zi=0}. We associate πi and Wi through a cumulative distribution function F as
follows:

πi = F (γ>Wi) (2.1)

where F is a cumulative distribution function and F−1 determines the link function.
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2.1. Susceptibility probability function with different links functions
2.1.1. Zero-inflated ZIP regression model

The ZIP model assumes that the response variable Zi (where the lower indice i indicates
the individual) is such that

Zi ∼
{

0 with probability πi,
P(λi) with probability 1− πi,

(2.2)

where P(λi) denotes Poisson distribution with parameter λi > 0. Obviously, the ZIP model
reduces to a standard Poisson distribution if πi = 0. In ZIP regression, the mixing probability
πi and parameter λi are usually modeled by logistic and log-linear models respectively, that
is:

F−1(πi) = logit(πi) = γ>Wi (2.3)

and

log(λi) = β>Xi, (2.4)

Suppose that we observe a sample of n independent copies (Zi,Xi,Wi), i = 1, . . . , n of
(Z,X,W). For i = 1, . . . , n, the log-likelihood of θ = (β>, γ>)> in the latent class ZIP
model (2.6)-(2.3)-(2.4) is :

`n(θ) =
n∑
i=1

{
Ji log

(
eγ

>Wi + e− exp(β>Xi)
)

+ (1− Ji)
[
Ziβ

>Xi − log (Zi!)
]

− log
(

1 + eγ
>Wi

)}
.

The maximum likelihood estimator of (β, γ) is obtained by maximizing this function. The
ML estimator is consistent and asymptotically normally distributed (see Czado and Min
(2005)).

2.1.2. ZIP-GEV regression model
A key component of the model given in (2.3)-(2.4) is the specification of the link function.

The commonly used logit link is specified as πi = F (γ>Wi), where F is a cumulative
distribution function (cdf) and F−1 determines the link function. The symmetry in the
normal distribution leads to the symmetry in the logit link. Wang et al. (2010) showed that
the symmetric link has an inferior performance when the data structure requires a skewed
response probability function. They proposed a link function based on the GEV distribution.
The distribution function of GEV (µ, σ, ξ) is given by:

G(x|µ, σ, ξ) =

 exp

[
−
{

1 + ξ (x−µ)
σ

}−1/ξ
+

]
, ξ 6= 0,

exp
{
− exp( (x−µ)

σ
)
}
, ξ = 0,

(2.5)
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where µ ∈ R, σ ∈ R+ and ξ ∈ R are, respectively, the location,scale and shape parameters,
and x+ = max(0, x). The shape of this distribution function is very flexible with the tail
behavior controlled by the shape parameter ξ. When ξ = 0, it is the Gumbel distribution
and decays exponentially. When ξ < 0, it reduces to the negative Weibull distribution with
a finite short upper endpoint. When ξ > 0, it becomes the Fréchet distribution with a heavy
tail behavior. The GEV link is the inverse of F which is assumed as

πi = F (Wi|ξ) = 1−GEV(−γ>Wi; ξ) =

 1− exp
{
−(1− ξγ>Wi)

−1/ξ
+

}
, ξ 6= 0,

1− exp
{
− exp( (x−µ)

σ
)
}
, ξ = 0,

(2.6)

where GEV(x; ξ) represents the cumulative probability at x for the GEV distribution
with parameters φ = (µ = 0, σ = 1, ξ). Note µ and σ are set to fixed constants for model
identifiability. Wang et al. (2010) showed that the GEV link model specified in (6) is
negatively skewed for ξ < log 2−1 and positively skewed for ξ > log 2−1. The link function
is approximately symmetric at ξ = log 2 − 1. The cloglog link, specified as F−1(πi) =
− log(− log(πi)) = γ>Wi, is a special case of the GEV link with ξ = 0.

The GEV regression model proposed by Calabrese et al. (2013) is defined by a link
function that corresponds to the inverse cumulative function of the GEV distribution, that
can be called GEV regression model or "gevit, in analogy with the "logit". The ZIP regression
model under the GEV link is then given by

gevit(πi) =
[− log(πi)]

−ξ − 1

ξ
= γ>Wi = γ1 +

q∑
j=1

γjWij (2.7)

log(λi) = β>Xi = β1 +

p∑
k=1

βkXik (2.8)

, β ∈ RP , γ ∈ Rq are unknown parameters and > denotes the transpose operator and
ξ ∈ R is the shape parameter for GEV distribution. According to (2.6)-(2.7)-(2.8), the
log-likelihood of θ = (β>, γ>)>

`GEVn (θ) =
n∑
i=1

{
Ji log

[
exp

[
−(1 + ξγ>Wi)

− 1
ξ

]
+ (1− exp

[
−(1 + ξγ>Wi)

− 1
ξ

]
)e− exp (β>Xi)

]
+(1− Ji)

[
Ziβ

>Xi − eβ
>Xi + log

(
1− exp

[
−(1 + ξγ>Wi)

− 1
ξ

])
− log (Zi!)

]}
.

The MLE θ̂n = (β̂>n , γ̂
>
n )> of θ is obtained by solving the score equation

∂`GEVn (θ)

∂θ
= 0, (2.9)

which can be achieved by nonlinear optimization
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2.1.3. ZIP-cloglog regression model
The asymmetric cloglog link is specified as

F−1(πi) = − log(− log(πi)) = γ>Wi. (2.10)

Assume that we observe n independent vectors (Z1,X1,W1), · · · , (Zn, Xn,Wn) from the
model (2.4)-(2.10), all defined on the probability space (Ω, C,P). The log-likelihood of θ =
(β>, γ>)> based on these observations is

`cloglogn (θ) =
n∑
i=1

Ji log
[
e− exp (−γ>Wi) + (1− e− exp (−γ>Wi))e− exp (β>Xi)

]
+

n∑
i=1

(1− Ji)
[
Ziβ

>Xi − eβ
>Xi + log

(
1− e− exp (−γ>Wi)

)
− log (Zi!)

]
,

=
n∑
i=1

`i(θ).

The maximum likelihood estimator θ̂n = (β̂>n , γ̂
>
n )> of θ is solution of the k− dimensional

score equation

˙̀
i(θ) =

∂`cloglogn (θ)

∂θ
= 0 (2.11)

where k = p+ q.

2.1.4. ZIP-probit regression
The zero-inflated Poisson model using the probit link function can be defined in the

same way as the ZIP model, where the probability of zero inflation is modelled by the probit
model. When risk factors are available, the mixing probability πi is usually modeled by a
probit model :

F−1(πi) = Φ(γ>Wi), (2.12)

where Φ is the distribution function of N (0, 1). According to (2.4)-(2.12) the log-
likelihood of θ = (β>, γ>)>

`probitn (θ) =
n∑
i=1

{
Ji log

[
Φ(γ>Wi) + (1− Φ(γ>Wi))e

− exp (β>Xi)
]

+(1− Ji)
[
Ziβ

>Xi − eβ
>Xi + log

(
1− Φ(γ>Wi)

)
− log (Zi!)

]}
.

The MLE θ̂n = (β̂>n , γ̂
>
n )> of θ is the solution of the k-dimensional score equation

∂`probitn (θ)

∂θ
= 0 (2.13)

Solving this (non-linear) equation is relatively straightforward using standard mathemat-
ical softwares
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Remark 1. A rigorous assessment of the asymptotic properties of θ̂n is presented in the
censored ZIP model Nguyen et al. (2019). In this paper, such properties can be expected in
the ZIP model regardless of the link function used to model the probability of susceptibility.
However, leaving aside the distribution theory, we propose to study these properties by means
of simulations.

3. A simulation study

In this section, we compare, via simulations, the performance of four links functions
(2.4)-(2.7)-(2.10)-(2.12) used to model the probability of zero-inflated. We generate 2 co-
variates for our simulation study Xi = (1, Xi2, . . . , Xip)

> and Wi = (1,Wi2, · · · ,Wiq)
>,

where Xi1 = Wi1 = 1 and the Xi2, · · · , Xi6,Wi4,Wi5 are independently drawn from nor-
mal N (0, 1),binomial B(1, 0.3), normal N (1, 1.5), exponential E(1), uniform U(2, 5), normal
N (−1, 1) and binomial B(1, 0.5) distributions respectively. Linear predictors are allowed to
share common terms by letting Wi2 = Xi2 et Wi3 = Xi3. The regression parameter β is
chosen as β = (0.7, 0.1, 0.4, 0.85,−0.5, 0)> for all simulations. With the same value of β, we
carry out our studies under four scenarios based on four true models as follows

3.1. Simulation scenario
Scenario 1: The following ZIP regression model is used to simulate data :

log(λi(β)) = β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5 + β6Xi6,

logit(πi) = γ1Wi1 + γ2Wi2 + γ3Wi3 + γ4Wi4,+γ5Wi5,

The regression parameter γ is chosen as γ = (−0.9,−0.65,−0.2, 0.65, 0)>. In this setting,
the average proportion of zero-inflated data is 0.20.

Scenario 2: The count data are generated from the cloglog link model with F−1(πi) =
− log(− log(πi)) = γ>Wi. We consider two values for γ, namely : γ = (0.5,−0.60,−0.2, 0.75, 0)>

and γ = (0.25,−0.9, 0.60,−0.45, 0)>. With these values, the average proportion c of zero-
inflated data in the simulated data sets is 0.20 and 0.60 respectively.

Scenario 3: We simulate the data according to the ZIP-GEV model (2.7)-(2.8) defined
by:

log(λi(β)) = β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5 + β6Xi6,

gevit(ωi) = γ1Wi1 + γ2Wi2 + γ3Wi3 + γ4Wi4,+γ5Wi5,

The advantage of the GEV link model we are talking about here is that it integrates a
wide range of asymmetries with the shape parameter ξ. But in our simulations we choose
ξ = 0.5 belonging to Frechet’s domain. The regression parameter γ is chosen as:

• case 1: γ = (−0.95, 0.5,−0.4,−0.65, 0)>
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• case 2: γ = (0.8, 0.2, 0.4,−0.8, 0)>.

Using these values, in case 1 (respectively case 2), the average percentage of zero-infation in
the simulated data sets is 0.25 (respectively 0.75).

Scenario 4: In a second set of simulation scenarios, the data sets simulated from the
ZIP-probit model with F−1(πi) = Φ−1(γ>Wi).Two values for γ, namely : γ = (−0.5, 0, 0.65, 0.8, 0)>

and γ = (−0.1, 0.85, 0.9,−0.2, 0)>.The parameter vector γ ∈ R5 is chosen to yield various
average proportions of zero-inflation within each sample, namely : 0.20 and 0.60.

We consider the following sample sizes: n = 500; 2000. For each combination of the
simulation design parameters (sample size, proportions of zero-inflation),We simulate N =
1000 replications for each combination [sample size × proportion of zero-inflation]
of the design parameters. Simulations are conducted using the statistical software R R Core
Team (2018). We use the package maxLik Henningsen and Toomet (2011) to solve the score
equation (2.9)-(2.11)-(2.13) via a Newton-Raphson algorithm.

3.2. Results
For each configuration sample size× zero-inflation proportion of the simulation

design parameters, we calculate the average bias, standard deviation, average standard error
and root mean square error of the estimate over the N simulated samples. We also obtain
the empirical coverage probability and average length of 95%-level Wald confidence intervals
for the βj. The results are described in Table 1 (first scenario), Table 2 and Table 3 (second
scenario), Table 4 and Table 5 (third scenario), Table 6 and Table7 (fourth scenario) for
n = 500 and n = 2000 respectively.
Through simulations, we also assess the normal approximation by plotting estimated densi-
ties obtained from the N normalized estimates (β̂j,n−βj)/standard error(β̂j,n) j, k = 1, . . . , 6,
and by comparing with the density of the standard normal distribution. Standard errors are
obtained as the square roots of the diagonal elements of the estimated variance matrix for
ours models. Figures 1, 2 and 3 provide results for ZIP-GEV model (n = 500 ,25% of zero-
inflation), ZIP-cloglog (n = 500 and 20% of zero-inflation), and ZIP-probit model (n = 500
,30% of zero-inflation) . Plots for the other scenarios are similar and thus are not given.
From these results, it appears, as expected, that the bias, variability and length of confidence
intervals of all estimates decrease as the sample size increases. For fixed n, we observe that
performances of the β̂j,ns remain stable when the proportion of zero-inflation varies from
small to moderate values.

These observations illustrate the general fact that accurate estimation in a zeroinflated
regression model requires a balance between susceptible and non susceptible subpopulations
(that is, a sufficient amount of zero and non zero observations should be available to accu-
rately estimate the zero-inflation probabilities and count submodel). Also, empirical coverage
probabilities are close to the nominal level, which indicates that the normal approximation
of the distribution of the MLE is appropriate, even when the sample size is moderate. This
is confirmed by Figures 1 2 and 3.
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3.3. A comparison of the four models
In this section, we compare, through simulations, the performance of four models . We

obtain the EML in the four models, for the four scenarios. In the first scenario, our real model
is the ZIP where the probability of zero inflation is modeled by the logit link. The other
models ( ZIP-probit, ZIP-cloglog and ZIP-GEV ) misspecifies the susceptibility probability
πi. In the second scenario, the true model is the ZIP-cloglog . In the third scenario, the
true model is the ZIP-cloglog. In the fourth scenario, the true model is the ZIP-probit. In
all four cases, the γ estimates are assumed to be biased in the misspecified model. This is
confirmed by the simulation results. However, in all four scenarios, the interest is generally
on the β , which relates the covariates to the λi intensity of the account response. For this
reason, we provide results only for β. Moreover, since the proposed models adopt the same
specification for πi, a comparison of the β’s estimates of the four models is fair. The results
are described in Table 1 (Scenario 1), Table 2 and Table 3 (Scenario 2), Table 4 and Table
5 (Scenario 3), Table 6 and Table7 (Scenario 4).

It appears that in all four models, the estimate of β is quite robust to a misspecification
of the probability of susceptibility. That is, when the logit model is used to generate the data
(scenario 1), the β estimates in the ZIP-Probit and ZIP-GEV models are of good quality.
Referring to scenario 2 and scenario 3 described above, we validate the β estimates in the
ZIP-probit and ZIP-GEV models.

Conversely, when the ZIP-probit and ZIP-GEV models are used to simulate the data
(Scenario 3 and Scenario 4), the β estimates in these models perform equally well and better
than the others proposed. We also observe that the estimates obtained from the ZIP-probit
and ZIP-GEV models behave almost systematically better than the estimates based on the
other models, even when the ZIP-logit or ZIP-cloglog is used to simulate the data.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias logit -0.0249 0.0046 0.0043 0.0083 -0.0072 -0.0005 -0.0250 0.0004 0.0038 0.0072 -0.0055 0.0000
cloglog 0.0008 0.0001 -0.0001 0.0003 -0.0004 -0.0004 -0.0007 0.0000 -0.0001 0.0000 0.0010 -0.0001
probit 0.0010 0.0002 -0.0001 0.0002 -0.0004 -0.0004 -0.0006 0.0000 -0.0001 0.0000 0.0010 -0.0001
GEV 0.0006 0.0002 0.0000 0.0003 -0.0004 -0.0004 -0.0008 0.0001 -0.0001 0.0000 0.0010 -0.0001

SD logit 0.0879 0.0198 0.0369 0.0134 0.0285 0.0214 0.0438 0.0096 0.0183 0.0063 0.0137 0.0106
cloglog 0.0865 0.0194 0.0364 0.0130 0.0277 0.0210 0.0429 0.0095 0.0180 0.0061 0.0134 0.0104
probit 0.0865 0.0194 0.0364 0.0130 0.0277 0.0210 0.0429 0.0095 0.0180 0.0061 0.0134 0.0104
GEV 0.0866 0.0195 0.0364 0.0130 0.0278 0.0210 0.0429 0.0095 0.0180 0.0061 0.0134 0.0104

SE logit 0.0897 0.0191 0.0379 0.0136 0.0285 0.0214 0.0435 0.0092 0.0183 0.0063 0.0137 0.0104
cloglog 0.0882 0.0189 0.0376 0.0133 0.0277 0.0212 0.0428 0.0091 0.0182 0.0062 0.0134 0.0103
probit 0.0882 0.0189 0.0376 0.0133 0.0277 0.0212 0.0428 0.0091 0.0182 0.0062 0.0134 0.0103
GEV 0.0882 0.0189 0.0376 0.0133 0.0277 0.0212 0.0428 0.0091 0.0182 0.0062 0.0134 0.0103

RMSE logit 0.1280 0.0279 0.0531 0.0208 0.0409 0.0302 0.0666 0.0139 0.0262 0.0115 0.0202 0.0148
cloglog 0.1236 0.0271 0.0523 0.0185 0.0392 0.0299 0.0606 0.0131 0.0256 0.0087 0.0190 0.0146
probit 0.1235 0.0271 0.0523 0.0185 0.0392 0.0298 0.0606 0.0131 0.0256 0.0087 0.0190 0.0146
GEV 0.1236 0.0271 0.0523 0.0186 0.0392 0.0299 0.0606 0.0132 0.0256 0.0087 0.0190 0.0146

CP logit 0.9460 0.9330 0.9500 0.9080 0.9430 0.9480 0.909 0.9070 0.9440 0.7970 0.9300 0.9340
cloglog 0.9510 0.9450 0.9530 0.9590 0.9450 0.9450 0.9570 0.9490 0.9530 0.9580 0.9450 0.937
probit 0.9510 0.9430 0.9530 0.9610 0.9450 0.9460 0.9570 0.9500 0.9540 0.9580 0.9450 0.9370
GEV 0.9490 0.9460 0.9510 0.9590 0.9450 0.9440 0.9570 0.94800 0.9530 0.9570 0.9450 0.9370

`(CI) logit 0.3504 0.0746 0.1482 0.0527 0.1111 0.0838 0.1702 0.0361 0.0717 0.0247 0.0538 0.0406
cloglog 0.3449 0.0739 0.1470 0.0515 0.1083 0.0828 0.1678 0.0358 0.0712 0.0242 0.0525 0.0402
probit 0.3449 0.0739 0.1470 0.0515 0.1083 0.0828 0.1678 0.0358 0.0712 0.0242 0.0525 0.0402
GEV 0.3450 0.0739 0.1470 0.0515 0.1083 0.0828 0.1678 0.0358 0.0712 0.0242 0.0525 0.0402

Table 1: Simulation results (data are simulated from the ZIP model (2.6)-(2.3)-(2.4), ZI proportion = 20%).
SD: empirical standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias cloglog -0.0031 0.0007 -0.0015 -0.0001 -0.0008 0.0009 0.0003 -0.0004 -0.0003 0.0000 0.0003 0 .0000
GEV -0.0036 0.0008 -0.0014 0.0000 -0.0009 0.0009 -0.0001 -0.0004 -0.0003 0.0001 0.0002 0.0000
logit -0.0503 0.0096 0.0065 0.0141 -0.0130 0.0001 -0.0434 0.0076 0.0072 0.0126 -0.0110 0.0000
probit -0.0024 0.0011 -0.0015 -0.0004 -0.0007 0.0009 0.0010 -0.0001 -0.0003 -0.0002 0.0004 0.0000

SD cloglog 0.0983 0.0203 0.0382 0.0141 0.0300 0.0236 0.0436 0.0099 0.0199 0.0066 0.0144 0.0104
GEV 0.0985 0.0204 0.0385 0.0142 0.0300 0.0236 0.0436 0.0099 0.0199 0.0066 0.0144 0.0104
logit 0.1028 0.0210 0.0390 0.0149 0.0314 0.0243 0.0455 0.0102 0.0202 0.0071 0.0152 0.0108
probit 0.0983 0.0203 0.0382 0.0141 0.0300 0.0236 0.0436 0.0099 0.0199 0.0066 0.0144 0.0104

SE cloglog 0.0944 0.0206 0.0399 0.0142 0.0296 0.0226 0.0456 0.0099 0.0193 0.0066 0.0143 0.0109
GEV 0.0944 0.0206 0.0399 0.0142 0.0296 0.0226 0.0455 0.0099 0.0193 0.0066 0.0143 0.0109
logit 0.0965 0.0209 0.0404 0.0147 0.0305 0.0230 0.0464 0.0100 0.0195 0.0068 0.0147 0.0111
probit 0.0945 0.0206 0.0399 0.0143 0.0296 0.0226 0.0456 0.0099 0.0193 0.0066 0.0143 0.0109

RMSE cloglog 0.1363 0.0289 0.0552 0.0200 0.0421 0.0327 0.0630 0.0140 0.0277 0.0093 0.0203 0.0151
GEV 0.1364 0.0289 0.0554 0.0201 0.0421 0.0327 0.0630 0.0140 0.0277 0.0093 0.0203 0.0151
logit 0.1497 0.0311 0.0565 0.0252 0.0457 0.0335 0.0782 0.0162 0.0290 0.0160 0.0238 0.0154
probit 0.1363 0.0289 0.0552 0.0201 0.0421 0.0327 0.0630 0.0140 0.0277 0.0093 0.0203 0.0150

CP cloglog 0.9340 0.9480 0.9610 0.9520 0.9440 0.9340 0.9610 0.9500 0.9470 0.9490 0.9480 0.9620
GEV 0.9320 0.9480 0.9590 0.9510 0.9440 0.9350 0.9600 0.9470 0.9450 0.9510 0.9490 0.9620
logit 0.9140 0.9160 0.9530 0.8310 0.9260 0.9300 0.8460 0.8680 0.9270 0.5290 0.8840 0.9590
probit 0.9360 0.9480 0.9590 0.9520 0.9420 0.9350 0.9620 0.9530 0.9450 0.9500 0.9500 0.9620

`(CI) cloglog 0.3691 0.0803 0.1560 0.0552 0.1154 0.0884 0.1784 0.0388 0.0756 0.0258 0.0559 0.0427
GEV 0.3691 0.0803 0.1560 0.0552 0.1154 0.0884 0.1784 0.0388 0.0756 0.0258 0.0559 0.0427
logit 0.3771 0.0815 0.1579 0.0569 0.1192 0.0898 0.1818 0.0392 0.0763 0.0265 0.0576 0.0433
probit 0.3694 0.0803 0.1560 0.0553 0.1155 0.0885 0.1785 0.0388 0.0756 0.0259 0.0560 0.0427

Table 2: Simulation results (data are simulated from the ZIP-cloglog model (2.6)-(2.4)-(2.10), ZI proportion = 30%).
SD: empirical standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias cloglog -0.0055 -0.0023 0.0022 0.0008 -0.0024 0.0013 0.0009 -0.0006 0.0001 0.0001 -0.0007 -0.0001
GEV -0.0069 -0.0023 0.0024 0.0012 -0.0027 0.0013 -0.0001 -0.0005 0.0007 0.0003 -0.0008 -0.0001
logit -0.2022 0.0472 0.0010 0.0575 -0.0487 0.0020 -0.1692 0.0416 -0.0002 0.0475 -0.0425 -0.0002
probit -0.0047 -0.0014 0.0015 0.0004 -0.0022 0.0013 0.0016 0.0003 0.0004 -0.0002 -0.0004 -0.0001

SD cloglog 0.1306 0.0293 0.0587 0.0200 0.0410 0.0320 0.0621 0.0138 0.0271 0.0093 0.0187 0.0147
GEV 0.1323 0.0294 0.0591 0.0205 0.0411 0.0320 0.0623 0.0138 0.0286 0.0093 0.0187 0.0147
logit 0.1599 0.0381 0.0686 0.0281 0.0489 0.0372 0.0767 0.0177 0.0327 0.0139 0.0226 0.0174
probit 0.1304 0.0293 0.0587 0.0200 0.0410 0.0320 0.0620 0.0138 0.0271 0.0093 0.0187 0.0147

SE cloglog 0.1308 0.0300 0.0593 0.0203 0.0407 0.0312 0.0619 0.0141 0.0278 0.0091 0.0194 0.0148
GEV 0.1308 0.0300 0.0593 0.0203 0.0406 0.0312 0.0619 0.0141 0.0278 0.0091 0.0194 0.0148
logit 0.1371 0.0314 0.0615 0.0212 0.0430 0.0324 0.0643 0.0146 0.0286 0.0094 0.0204 0.0152
probit 0.1309 0.0300 0.0593 0.0204 0.0407 0.0312 0.0619 0.0141 0.0278 0.0092 0.0194 0.0148

RMSE cloglog 0.1849 0.0420 0.0834 0.0286 0.0578 0.0447 0.0876 0.0197 0.0389 0.0130 0.0270 0.0208
GEV 0.1861 0.0421 0.0837 0.0289 0.0578 0.0447 0.0878 0.0197 0.0399 0.0131 0.0270 0.0208
logit 0.2919 0.0683 0.0921 0.0674 0.0813 0.0494 0.1966 0.0475 0.0434 0.0503 0.0522 0.0231
probit 0.1848 0.0419 0.0834 0.0286 0.0578 0.0447 0.0876 0.0197 0.0389 0.0130 0.0270 0.0208

CP cloglog 0.9520 0.9480 0.9530 0.9470 0.9520 0.9470 0.9470 0.9580 0.9570 0.9520 0.9610 0.9620
GEV 0.9530 0.9500 0.9480 0.9470 0.9520 0.9480 0.9460 0.9530 0.9550 0.9500 0.9620 0.9620
Logit 0.6630 0.6640 0.9210 0.2500 0.7830 0.9020 0.2700 0.2290 0.9130 0.0060 0.4530 0.9140
Probit 0.9560 0.9500 0.9530 0.9480 0.9510 0.9480 0.9480 0.9560 0.9590 0.9510 0.9620 0.9590

`(CI) cloglog 0.5102 0.1166 0.2309 0.0786 0.1582 0.1217 0.2421 0.0551 0.1089 0.0356 0.0760 0.0578
GEV 0.5101 0.1167 0.2309 0.0785 0.1581 0.1217 0.2421 0.0552 0.1089 0.0356 0.0760 0.0578
Logit 0.5344 0.1221 0.2391 0.0817 0.1672 0.1262 0.2516 0.0572 0.1120 0.0366 0.0799 0.0595
Probit 0.5105 0.1166 0.2309 0.0787 0.1583 0.1218 0.2423 0.0551 0.1089 0.0357 0.0761 0.0578

Table 3: Simulation results (data are simulated from the ZIP-cloglog model (2.6)-(2.4)-(2.10), ZI proportion = 60%).
SD: empirical standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias GEV -0.0009 -0.0012 -0.0000 -0.0003 0.0004 0.0002 -0.0014 0.0000 -0.0002 0.0000 0.0002 0.0003
logit -0.0346 -0.0026 0.0078 0.0102 -0.0086 0.0001 -0.0324 -0.0013 0.0066 0.0093 -0.0083 0.0004
cloglog -0.0004 -0.0012 -0.0000 -0.0004 0.0005 0.0002 -0.0011 -0.0001 -0.0002 0.0000 0.0002 0.0003
probit -0.0003 -0.0014 0.0002 -0.0005 0.0006 0.0002 -0.0006 -0.0003 0.0000 -0.0002 0.0003 0.0003

SD GEV 0.0902 0.0193 0.0373 0.0138 0.0283 0.0223 0.0439 0.0092 0.0183 0.0063 0.0139 0.0107
logit 0.0917 0.0196 0.0382 0.0143 0.0294 0.0227 0.0449 0.0094 0.0187 0.0067 0.0143 0.0109
cloglog 0.0902 0.0193 0.0373 0.0138 0.0283 0.0223 0.0439 0.0092 0.0183 0.0063 0.0139 0.0107
probit 0.0902 0.0192 0.0373 0.0138 0.0283 0.0223 0.0439 0.0092 0.0183 0.0064 0.0139 0.0107

SE GEV 0.0911 0.0193 0.0384 0.0137 0.0286 0.0219 0.0441 0.0093 0.0186 0.0064 0.0139 0.0106
logit 0.0929 0.0196 0.0388 0.0141 0.0294 0.0222 0.0449 0.0094 0.0187 0.0065 0.0142 0.0107
cloglog 0.0911 0.0193 0.0384 0.0137 0.0286 0.0219 0.0442 0.0093 0.0186 0.0064 0.0139 0.0106
probit 0.0912 0.0193 0.0384 0.0137 0.0286 0.0219 0.0442 0.0093 0.0186 0.0064 0.0139 0.0106

RMSE GEV 0.1282 0.0273 0.0535 0.0195 0.0402 0.0312 0.0623 0.0131 0.0261 0.0090 0.0196 0.0151
logit 0.1350 0.0278 0.0550 0.0226 0.0425 0.0318 0.0713 0.0133 0.0273 0.0132 0.0218 0.0153
cloglog 0.1282 0.0273 0.0535 0.0195 0.0402 0.0312 0.0623 0.0131 0.0260 0.0090 0.0196 0.0151
probit 0.1282 0.0273 0.0535 0.0195 0.0402 0.0313 0.0622 0.0131 0.0260 0.0090 0.0196 0.0151

CP GEV 0.9440 0.9530 0.9610 0.9440 0.9470 0.9460 0.9450 0.9530 0.9580 0.9540 0.9500 0.9590
logit 0.9370 0.9470 0.9580 0.8860 0.9420 0.9470 0.9020 0.9470 0.9400 0.7080 0.9170 0.9490
cloglog 0.9440 0.9550 0.9620 0.9430 0.9460 0.9460 0.9440 0.9520 0.9580 0.9540 0.9500 0.9600
probit 0.9450 0.9560 0.9620 0.9430 0.9440 0.9450 0.9450 0.9530 0.9580 0.9520 0.9500 0.9600

`(CI) GEV 0.3560 0.0754 0.1503 0.0532 0.1115 0.0857 0.1729 0.0363 0.0727 0.0249 0.0542 0.0415
logit 0.3628 0.0763 0.1519 0.0548 0.1149 0.0868 0.1759 0.0367 0.0734 0.0255 0.0558 0.0420
cloglog 0.3561 0.0754 0.1503 0.0533 0.1116 0.0857 0.1729 0.0363 0.0727 0.0249 0.0543 0.0415
probit 0.3562 0.0754 0.1503 0.0533 0.1117 0.0857 0.1730 0.0363 0.0727 0.0249 0.0543 0.0415

Table 4: Simulation results (data are simulated from the ZIP-GEV model (2.7)-(2.8), ZI proportion = 25%). SD: empirical
standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence intervals.
`(CI): average length of confidence intervals.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias GEV -0.0123 -0.0021 -0.0009 0.0013 -0.0019 0.0022 0.0005 0.0002 -0.0015 -0.0004 -0.0009 0.0000
logit -0.3718 -0.0022 0.0291 0.1256 -0.1053 0.0022 -0.3075 0.0008 0.0238 0.0989 -0.0864 -0.0007
cloglog -0.0105 -0.0018 -0.0008 0.0009 -0.0015 0.0021 0.0019 0.0005 0.0004 -0.0007 -0.0007 0.0002
probit -0.0101 -0.0019 -0.0010 0.0008 -0.0014 0.0021 0.0023 0.0004 0.0002 -0.0008 -0.0006 0.0002

SD GEV 0.1685 0.0364 0.0788 0.0273 0.0541 0.0416 0.0814 0.0182 0.0559 0.0129 0.0261 0.0191
logit 0.2475 0.0496 0.1160 0.0503 0.0780 0.0590 0.1181 0.0231 0.0533 0.0250 0.0360 0.0274
cloglog 0.1664 0.0355 0.0781 0.0268 0.0534 0.0416 0.0780 0.0160 0.0357 0.0118 0.0253 0.0189
probit 0.1665 0.0355 0.0781 0.0268 0.0534 0.0416 0.0780 0.0160 0.0357 0.0118 0.0253 0.0189

SE GEV 0.1713 0.0361 0.0767 0.0277 0.0543 0.0412 0.0788 0.0166 0.0349 0.0120 0.0250 0.019
logit 0.1860 0.0388 0.0821 0.0293 0.0596 0.0443 0.0841 0.0175 0.0367 0.0125 0.0272 0.020
cloglog 0.1712 0.0361 0.0767 0.0277 0.0543 0.0412 0.0789 0.0166 0.0349 0.0120 0.0250 0.019
probit 0.1712 0.0361 0.0767 0.0277 0.0544 0.0412 0.0788 0.0166 0.0349 0.0120 0.0250 0.019

RMSE GEV 0.2405 0.0513 0.1100 0.0389 0.0767 0.0586 0.1133 0.0246 0.0659 0.0176 0.0361 0.0269
logit 0.4837 0.0630 0.1451 0.1384 0.1440 0.0738 0.3400 0.0290 0.0690 0.1028 0.0974 0.0339
cloglog 0.2390 0.0507 0.1095 0.0386 0.0762 0.0586 0.1109 0.0230 0.0499 0.0168 0.0356 0.0268
probit 0.2390 0.0507 0.1095 0.0386 0.0762 0.0586 0.1109 0.0230 0.0499 0.0168 0.0356 0.0268

CP GEV 0.9500 0.9550 0.9440 0.9580 0.9490 0.9510 0.9420 0.9560 0.9420 0.9520 0.9390 0.9470
logit 0.4790 0.8780 0.8180 0.0240 0.5680 0.8570 0.0910 0.8590 0.7870 0.0000 0.1640 0.854
cloglog 0.9520 0.9580 0.9450 0.9600 0.9500 0.9510 0.9480 0.9610 0.9490 0.9560 0.9440 0.9510
probit 0.9540 0.9580 0.9440 0.9600 0.9500 0.9520 0.9480 0.9610 0.9500 0.9560 0.9430 0.9510

`(CI) GEV 0.6661 0.1400 0.2980 0.1066 0.2107 0.1604 0.3083 0.0647 0.1366 0.0466 0.0978 0.0742
logit 0.7215 0.1500 0.3182 0.1129 0.2307 0.1719 0.3288 0.0682 0.1435 0.0485 0.1060 0.0782
cloglog 0.6660 0.1400 0.2980 0.1066 0.2108 0.1604 0.3084 0.0647 0.1366 0.0466 0.0979 0.0742
probit 0.6659 0.1400 0.2980 0.1066 0.2108 0.1604 0.3083 0.0647 0.1366 0.0466 0.0979 0.0742

Table 5: Simulation results (data are simulated from the ZIP-GEV model (2.7)-(2.8), ZI proportion = 75%). SD: empirical
standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence intervals.
`(CI): average length of confidence intervals.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias probit -0.0024 -0.0006 0.0013 0.0001 0.0012 0.0002 0.0014 0.0002 -0.0006 -0.0003 0.0001 -0.0001
logit -0.0252 0.0004 0.0004 0.0081 -0.0059 0.0001 -0.0202 0.0010 -0.0015 0.0069 -0.0064 -0.0001
GEV -0.0037 -0.0006 0.0015 0.0004 0.0011 0.0002 0.0006 0.0002 -0.0004 -0.0001 0.0001 -0.0001
cloglog -0.0032 -0.0006 0.0017 0.0003 0.0011 0.0002 0.0008 0.0002 -0.0004 -0.0001 0.0001 -0.0001

SD probit 0.0882 0.0196 0.0396 0.0138 0.0273 0.0213 0.0429 0.0088 0.0195 0.0063 0.0135 0.0103
logit 0.0904 0.0198 0.0403 0.0142 0.0282 0.0217 0.0435 0.0089 0.0198 0.0065 0.0139 0.0105
GEV 0.0886 0.0196 0.0399 0.0139 0.0273 0.0213 0.0430 0.0088 0.0195 0.0063 0.0135 0.0102
cloglog 0.0882 0.0196 0.0397 0.0138 0.0273 0.0213 0.0429 0.0088 0.0195 0.0063 0.0135 0.0102

SE probit 0.0888 0.0188 0.0394 0.0134 0.0279 0.0215 0.0432 0.0090 0.0190 0.0063 0.0136 0.0104
logit 0.0905 0.0191 0.0398 0.0139 0.0287 0.0218 0.0439 0.0091 0.0192 0.0064 0.0140 0.0105
GEV 0.0887 0.0188 0.0394 0.0134 0.0279 0.0215 0.0431 0.0090 0.0190 0.0063 0.0136 0.0104
cloglog 0.0887 0.0188 0.0394 0.0134 0.0279 0.0215 0.0431 0.0090 0.0190 0.0063 0.0136 0.0104

RMSE probit 0.1252 0.0272 0.0559 0.0192 0.0390 0.0302 0.0609 0.0126 0.0272 0.0089 0.0192 0.0146
logit 0.1303 0.0274 0.0566 0.0214 0.0406 0.0307 0.0650 0.0128 0.0276 0.0115 0.0207 0.0148
GEV 0.1254 0.0272 0.0561 0.0193 0.0390 0.0302 0.0609 0.0126 0.0272 0.0089 0.0192 0.0146
cloglog 0.1252 0.0272 0.0559 0.0192 0.0390 0.0302 0.0609 0.0126 0.0272 0.0089 0.0192 0.0146

CP probit 0.9490 0.9320 0.9530 0.9440 0.9480 0.9560 0.9580 0.9640 0.9430 0.9460 0.9530 0.9580
logit 0.9420 0.9320 0.9490 0.9000 0.9450 0.9550 0.9310 0.9610 0.9410 0.8050 0.9280 0.9520
GEV 0.9480 0.9320 0.9520 0.9420 0.9480 0.9560 0.9560 0.9630 0.9410 0.9470 0.9540 0.9580
cloglog 0.9490 0.9320 0.9530 0.9450 0.9480 0.9570 0.9550 0.9640 0.9430 0.9470 0.9540 0.9580

`(CI) probit 0.3472 0.0735 0.1539 0.0522 0.1089 0.0839 0.1690 0.0354 0.0745 0.0244 0.0533 0.0407
logit 0.3539 0.0744 0.1555 0.0538 0.1122 0.0851 0.1720 0.0357 0.0752 0.0251 0.0548 0.0412
GEV 0.3470 0.0735 0.1539 0.0521 0.1089 0.0839 0.1689 0.0354 0.0745 0.0244 0.0532 0.0407
cloglog 0.3471 0.0736 0.1539 0.0521 0.1089 0.0839 0.1690 0.0354 0.0745 0.0244 0.0532 0.0407

Table 6: Simulation results (data are simulated from the ZIP-Probit model (2.6)-(2.4)-(2.12), ZI proportion = 20%).
SD: empirical standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals.
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Sample size n = 500 Sample size n = 2000

β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n

bias probit -0.0003 -0.0014 0.0019 0.0004 -0.0022 -0.0004 0.0009 0.0001 -0.0012 -0.0001 -0.0013 0.0001
logit -0.2035 -0.0603 -0.0426 0.0649 -0.0576 -0.0018 -0.1848 -0.0489 -0.0374 0.0537 -0.0494 0.0001
GEV -0.0033 0.0002 0.0034 0.0013 -0.0027 -0.0002 -0.0012 0.0018 0.0003 0.0005 -0.0015 0.0001
cloglog -0.0017 0.0001 0.0034 0.0009 -0.0025 -0.0004 -0.0003 0.0015 0.0001 0.0003 -0.0015 0.0001

SD probit 0.1326 0.0340 0.0730 0.0214 0.0428 0.0329 0.0624 0.0155 0.0313 0.0099 0.0214 0.0156
logit 0.1664 0.0455 0.0915 0.0320 0.0524 0.0404 0.0796 0.0205 0.0400 0.0154 0.0264 0.0185
GEV 0.1334 0.0343 0.0730 0.0216 0.0431 0.0331 0.0625 0.0158 0.0314 0.0100 0.0214 0.0157
ploglog 0.1327 0.0341 0.0729 0.0215 0.0429 0.0330 0.0624 0.0156 0.0313 0.0100 0.0214 0.0156

SE probit 0.1393 0.0347 0.0723 0.0220 0.0442 0.0336 0.066 0.0162 0.0332 0.0098 0.0208 0.0158
logit 0.1468 0.0368 0.0769 0.0229 0.0472 0.0350 0.069 0.0170 0.0347 0.0102 0.0221 0.0163
GEV 0.1392 0.0348 0.0724 0.0219 0.0442 0.0336 0.066 0.0162 0.0332 0.0098 0.0208 0.0158
cloglog 0.1393 0.0348 0.0724 0.0219 0.0442 0.0336 0.066 0.0162 0.0332 0.0098 0.0208 0.0158

RMSE probit 0.1923 0.0486 0.1027 0.0307 0.0615 0.0470 0.0909 0.0224 0.0456 0.0140 0.0299 0.0222
logit 0.3011 0.0840 0.1269 0.0759 0.0910 0.0535 0.2127 0.0556 0.0648 0.0567 0.0602 0.0247
GEV 0.1928 0.0488 0.1028 0.0308 0.0618 0.0471 0.0909 0.0227 0.0457 0.0140 0.0299 0.0222
cloglog 0.1923 0.0487 0.1028 0.0307 0.0616 0.0470 0.0909 0.0225 0.0456 0.0140 0.0299 0.0222

CP probit 0.9580 0.9530 0.9550 0.9600 0.9570 0.9520 0.9680 0.9580 0.9620 0.9530 0.9450 0.9480
logit 0.7000 0.6180 0.8750 0.2250 0.7580 0.9120 0.2680 0.2280 0.7770 0.0000 0.4160 0.9160
GEV 0.9580 0.9470 0.9550 0.9560 0.9560 0.9550 0.9710 0.9540 0.9630 0.9500 0.9460 0.9480
cloglog 0.9580 0.9490 0.9540 0.9580 0.9570 0.9540 0.9680 0.9540 0.9620 0.9480 0.9480 0.9480

`(CI) probit 0.5433 0.1352 0.2804 0.0849 0.1719 0.1310 0.2585 0.0635 0.1297 0.0383 0.0815 0.0619
logit 0.5719 0.1429 0.2969 0.0886 0.1832 0.1365 0.2700 0.0664 0.1355 0.0396 0.0863 0.0639
GEV 0.5430 0.1353 0.2805 0.0847 0.1718 0.130 0.2584 0.0635 0.1298 0.0383 0.0814 0.0619
cloglog 0.5431 0.1353 0.2804 0.0848 0.1718 0.1310 0.2584 0.0635 0.1298 0.0383 0.0814 0.0619

Table 7: Simulation results (data are simulated from the ZIP-Probit model (2.6)-(2.4)-(2.12), ZI proportion = 60%).
SD: empirical standard deviation. SE: average standard error. CP: empirical coverage probability of 95%-level confidence
intervals. `(CI): average length of confidence intervals.
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4. Applications with real-life data

4.1. Data description and competing models
The data are obtained from the National Medical Expenditure Survey (NMES) which

was conducted in 1987 and 1988 to provide a comprehensive picture of how Americans use
and pay for health services. The NMES is based upon a representative, national probability
sample of the civilian, non-institutionalized population and individuals admitted to long-
term care facilities during 1987. Under the household survey of the NMES, more than 38000
individuals in 15000 households across the United States were interviewed quarterly about
their health insurance coverage, the services they used, and the cost and source of payments
of those services. These data were verified by cross-checking information provided by survey
respondents with providers of health-care services. In addition to health-care data, NMES
provides information on health status, employment, sociodemographic characteristics, and
economic status.

In this paper we consider a subsample of individuals ages 66 and over (a total of 4406
observations) all of whom are covered by Medicare, a public insurance programme that
offers substantial protection against health care costs. Residents of the United States are
eligible for Medicare coverage at age 65. Some individuals start receiving Medicare benefits
a few months into their 65th year primarily because they fail to apply for coverage at the
appropriate time. Virtually all individuals who are 66 or older are covered by Medicare.

In addition, most individuals make a choice of supplemental private insurance coverage
shortly before or in their 65th year because the price of such insurance rises sharply with age
and coverage becomes more restrictive. The response variable is the number of visits to a
physician in an office setting (denoted by ofp in what follows). Available covariates include:
i) socio-economic variables: gender (1 for female, 0 for male), age (in years, divided by 10),
marital status, educational level (number of years of education), income, ii) various measures
of health condition: number of chronic conditions (cancer, arthritis, gallbladder problems
· · · ) and a variable indicating self-perceived health level (poor, average, excellent) and iii)
a binary variable indicating whether individual is covered by medicaid or not (medicaid is
a US health insurance for individuals with limited income and resources, we code it as 1 if
the individual is covered and 0 otherwise). Self-perceived health is recoded as two dummy
variables denoted by "health1" (1 if health is perceived as poor, 0 otherwise) and "health2"
(1 if health is perceived as excellent, 0 otherwise).

We fit the following four models : i) a ZIP regression model where λi and πi are specified
as in (2.3)-(2.4); ii) the ZIP model with cloglog link (denoted by ZIP-cloglog thereafter)where
πi is as in (2.10) , iii) the ZIP model with with probit link (denoted by ZIP-probit), where πi
is as in (2.12) and iv) the ZIP model with GEV link (denoted by ZIP-GEV),where πi is as in
(2.7). Selection of regressors for inclusion in πi requires some care. Indeed, it was previously
observed in various other zero-inflated models that including all available regressors in both
count and zero-inflation probabilities can yield lack of identification of model parameters.
See for example Diop et al. (2011) and Staub et al (2013), who suggest to solve this issue
by letting at least one of the covariates included in the count model to be excluded from
the zero-inflation model (or the converse). Such condition is not required in the ZIP model.
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Using the Wald testing, we identify five significant predictors : age, gender, educational level,
number of chronic conditions and medicaid status, that are included in πi.

Results for the fours competing models (ZIP, ZIP-cloglog , ZIP-probit and ZIP-GEV )
are displayed in Table 8. We report estimate, standard error and significance level of Wald
test for each parameter. For purpose of comparison, we also report AIC and BIC values for
the four models. ZIP-GEV appears as the best model in terms of both AIC . A closer look
at the results from the widely used logit link regression model in the healthcare utilization
research and our GEV regression model reveals some difference in the estimation of the
covariates effects. Gender, educational level and medicaid status are identified by ZIP-GEV
as the most influencing factors for being a permanent non-user, with medicaid recipients
being more likely to be permanent non-users. The four models identify the same subset of
influent factors for healthcare utilization, with similar parameter estimates.

From Table 8, we observe that in the overall population, significant determinants of
the decision to consult a non-physician when visiting in an office setting include health
status, age, gender, educational level and medicaid status. Patients with poor health will
favor office visits to a physician over office visits to a non-physician, which seems a natural
observation. Women and people with higher education have higher probability to consult
a non-physician, while medicaid recipients are more likely to visit physicians than non-
physicians. The probability of visiting a non-physician when consulting in an office setting
decreases with age. This may be due to several factors, such as decreasing mobility associated
with ageing (aged patients will tend to limit their consultations to those considered as the
most necessary, that is, to physician visits) and worsening of the health condition with ageing
(patients whose health declines are likely to favor visits to a physician).
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Figure 1: Density estimates of the (β̂j,n−βj)/standard error(β̂j,n), j = 1, . . . , 6 with n = 500
and 25% of zero-inflation. using the ZIP-GEV model
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Figure 2: Density estimates of the (β̂j,n−βj)/standard error(β̂j,n), j = 1, . . . , 6 with n = 500
and 20% of zero-inflation. using the ZIP-probit model
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Figure 3: Density estimates of the (β̂j,n−βj)/standard error(γ̂k,n), k = 1, . . . , 6 with n = 500
and 30% of zero-inflation. using the ZIP-cloglog model
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ZIP ZIP-cloglog ZIP-probit ZIP-GEV
parameter est s.e signif. est s.e signif. est s.e signif. est s.e signif.

β intercept 1.14 0.082 *** 0.0953 0.0801 0.9717 0.082 *** 1.6778 0.0827 ***
health1 0.2199 0.0172 *** 0.1327 0.0177 *** 0.1507 0.0178 *** 0.2037 0.0175 ***
health2 -0.2883 0.0321 *** -0.1600 0.0294 *** -0.3634 0.0324 *** -0.2196 0.0300 ***
chronic 0.1053 0.0047 *** 0.0778 0.0047 *** 0.098 0.0047 *** 0.0981 0.0046 ***
age 0.0759 0.0104 *** 0.2134 0.0101 *** 0.1069 0.0104 *** 0.0145 0.0106
gender 0.1544 0.0147 *** 0.2080 0.0146 *** 0.0554 0.0146 *** 0.0379 0.0144 **
marital status -0.0157 0.0145 0.0822 0.0144 *** -0.0017 0.0146 -0.0008 0.0019
medicaid -0.2314 0.0125 *** 0.0412 0.0087 *** -1.2315 0.0801 *** -1.8564 0.0450 ***

γ intercept -1.1479 0.419 ** -0.2993 0.1503 * 0.1404 0.3913 *** 0.2124 0.5279 ***
health1 -0.4416 0.3049 0.6684 0.0974 *** -1.0049 0.4719 * -0.8024 0.4908
gender -0.0465 0.2945 0.4303 0.1115 *** -1.3877 0.4375 ** -1.9849 0.4939 ***
marital status 2.3482 0.4095 *** -0.1539 0.1044 1.3452 0.3823 *** 1.8333 0.4916 ***
education -0.531 0.0365 *** -0.1642 0.0087 *** -1.1599 0.2616 *** -1.5664 0.5250 **

AIC -49683.08 -49097.52 -49709.5 -49860.05
BIC -9015.084 -8429.517 -9041.499 -9192.049

Table 8: : Health-care data analysis: estimates,standard errors and significance codes: *** significant at the 0.1% level,
** significant at the 1% level, * significant at the 5% level, . significant at the 10% level..
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5. Concluding Remarks

In this paper, we study the properties of MLE in ZIP regression models when the sus-
ceptibility probability function is modeled with different links functions. Our simulations
suggest that the MLE works well and that reliable statistical inferences about the parameters
of interest in the different models can be based on the normal approximation of the MLE
distribution. Maximum likelihood estimation is shown to perform well in this model, under
a range of scenarios. Moreover, in our analysis of health-care utilization, the proposed model
provides plausible explanations and interpretations and gives useful insight of the decision
of using or not available healthcare services. Several issues now require more attention, such
as estimation in the bivariate ZIP-GEV regression in various forms. Investigating the es-
timation of a flexible ZIP regression model that combines a generalized extreme value link
function with a Gaussian process is also desirable. All these issues will be tackled in future
works.
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