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Abstract

Biometric is an emerging technique for user authentication thanks to its ef-
ficiency compared to the traditional methods, such as passwords and access-
cards. However, most existing biometric authentication systems require the
cooperation of users and provide only a login time authentication. To ad-
dress these drawbacks, we propose in this paper a new, efficient continuous
authentication scheme based on the newly biometric trait that still under
development: prehensile movements. In this work, we model the movements
through Hidden Markov Model-Universal Background Model (HMM-UBM)
with continuous observations based on Gaussian Mixture Model (GMM). Un-
like the literature, the gravity signal is included. The results of the experi-
ments conducted on a public database HMOG and on a proprietary database,
collected under uncontrolled conditions, have shown that prehensile move-
ments are very promising. This new biometric feature will allow users to be
authenticated continuously, passively and in real time.
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1. Introduction

Internet of Things (IoT) is probably one of the most talked about tech-
nologies in this decade. Indeed, with the advent of IoT, several connected
devices (smartphones, smartwatches, connected glasses, etc.) invaded our
daily routine and contribute to the improvement of our daily life due to the
manifold applications they offer. However, even if IoT is widely perceived as
a revolutionary technology, security and privacy still the biggest obstacles to
its development with the general public. It is obvious that the user is con-
cerned about these intelligent objects that constantly transmit data about
how they are used and that contain private information. Therefore, user data
privacy has become a crucial issue to address. Traditionally, these devices
were secured with passwords and PINs that can be easily stolen, forgotten
or attacked. More recently, biometric authentication has become a primary
focus of academic research and industry adoption/implementation to pro-
vide users enhanced security and authentications [1]. Indeed, physiological
biometrics, such as fingerprint, iris and face, emerge the industrial devices.
However, this type of authentication method is vulnerable to spoofing at-
tacks. By the way, if an attacker succeeds to get the physiological templates
(e.g., facial, fingerprint, etc.) of a given user, it will be infeasible to update
the security system since we can not modify such biometric data. Further-
more, it provides only a login time authentication and any future change of
the user identity will go undetected [2].

Continuous authentication is a way to mitigate this limitation by con-
stantly verifying the user identity and locking the system once a change of
the user identity is detected. As such, it is necessary for the system to pe-
riodically collect some identifying information about the user. The more
frequently, such information is collected the faster a potential intruder can
be detected [2]. By the way, physiological biometrics require the user in-
tervention either to scan the fingerprint, iris, face or another, which makes
continuous and real-time authentication a hard task. To overcome these im-
pediments, human behavior is studied to achieve continuous authentication.
Indeed, research works on the subject are numerous, whether it concerns
touch gesture behavior, like in [3], mouse gesture dynamics [4], gait pattern
[5] or many other behavioral traits. However, all these biometric features
require the collaboration of the user to perform authentication (walking, in-
teracting with the mouse, etc.). Recently, Neverova et al. [6] proposed the

2



use of human kinematic1, using the mobile inertial sensors, as a new biomet-
ric trait that allows to authenticate a user only by the way he/she moves
and holds his/her device without explicit interaction. Although they confirm
that natural human kinematics convey sufficient information about mobile
user identity and can be used for authentication.

In this paper, investigating the feasibility of utilizing the human kinematic
extracted from smartphone sensors for user authentication, we propose an
efficient continuous and real-time prehensile movement-based authentication
scheme. The latter is passive2 and allows the security of the user data while
putting him/her in a comfortable situation. The user does not intervene at
any time and unlike to physiological biometrics, it is harder for someone with
malicious intent to successfully capture a natural motion and provide the op-
tion of continuous authentication. In this work, unlike [6] which use neural
networks for feature extraction, we use a set of statistical features and use
Hidden Markov Model-Universal Background Model (HMM-UBM) approach
for classification. Using neural networks, we cannot easily determine which
variables are the most important contributors to a particular output. Hence,
the neural network model may contain a number of unimportant predictor
variables, in addition to the high cost of computation, storage and authenti-
cation delay compared to the statistical metrics. These criteria are important
in the context of connected devices, which must be highly optimized given
the limited device resources.

The contribution of this paper is quadruple:

1. The proposition of an unobtrusive approach for continuous and real-
time user authentication, which does not require any intervention from
the user and no additional hardware, and respects the limited resources
in the IoT context.

2. The data-set construction representing prehensile movements.

3. The integration of statistical metrics-based feature extraction from in-
ertial sensor signals.

1Kinematics is a branch of physics that describes the motion of bodies or systems of
bodies without considering the mass of each or the forces that caused the motion.

2A system that runs in the background and does not require any interaction from the
user (non-cooperative and non-intrusive)

3



4. The proposition of a user pattern-based on HMM-UBM with mixture
of Gaussian outputs.

We evaluated the proposed system on a proprietary database collected
under uncontrolled conditions and on part of HMOG database [13]. The
experimental results show that the proposed scheme is promising in terms
of accuracy and authentication delay, and confirm that the natural human
prehensile movement carries discriminant information and is therefore ap-
propriate as a basis for continuous and real-time human recognition task.
Indeed, prehensile movements are a new behavioral biometric trait (accord-
ing to our knowledge we are the only ones with Neverova et al. [6] that treat
this biometric trait) that could improve and facilitate the lives of users by
ensuring high security in a continuous and passive way.

The outline of the paper is as follows. Section 2 describes existing work in
the area of biometric authentication in mobile devices. In Section 3, we give
a detailed description of the proposed scheme. In Section 4, we present the
experimental results and discussion. Finally, Section 5 concludes the paper.

2. Related work

Nowadays, several IoT devices are equipped with inertial sensors. The
researchers take an interest in these sensors to use them for behavioral bio-
metric authentication that are implemented as a safe, dynamic and simple
solution to realize a continuous authentication and addressing the limitations
of physiological biometrics. Several works that use these sensors in their au-
thentication scheme are proposed in the literature. Salem et al. [7] use
keystroke dynamics as an authentication factor for user verification on touch
screen mobile devices. They analyse user’s input rhythm when he/she types
a password. Roy et al. [8] proposed a continuous authentication scheme for
touch interface based mobile devices. Sensors-touch, accelerometer and gy-
roscope data were used to model the user’s gesture patterns based on HMM
to model the tap and stroke patterns of a user. The authors of [9] used the
information collected from the accelerometer sensor and touchscreen of the
smartphone to authenticate its user. In [10], an authentication system based
on how a user holds his phone while signing on its touchscreen named Hold
& Sign was proposed. It takes into account micro-movements of a phone and
movements of the user’s finger during writing or signing on the touchscreen.
ShakeIn, a smartphone user authentication scheme which authenticates him
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by the way he/she shakes his phone, was proposed by Zhu et al. [11]. Data
collection was done using accelerometers and gyroscopes. Barra et al. [12],
explored the dynamic signals of arm movement produced by the gesture of
lifting the phone, to check if the person answering the phone is its legiti-
mate owner. The signals were captured from accelerometer, gyroscope and
GPS (Global Positioning System) during the action of answering the phone
in one of the following states: 1) standing; 2) sitting; 3) walking; 4) running.
Sitova et al. [13] proposed a continuous and unobtrusive user authentication
named HMOG (Hand Movement, Orientation, and Grasp) to authenticate
smartphone user. They used accelerometer, gyroscope, and magnetometer
to capture subtle hand micro-movements and orientation patterns generated
when a user taps on the screen.

However, all these proposed methods require the cooperation of users and
their interaction with the mobile object to authenticate themselves. In addi-
tion, the experiments are conducted under controlled laboratory conditions
and the results obtained do not reflect the real performance of these methods.

Neverova et al. [6] proposed a non-cooperative and non-intrusive method
for on-device authentication. According to the authors, they present the
first method for active biometric authentication with mobile inertial sensors.
They explore the capability of temporal deep neural networks to interpret
natural human kinematics and confirmed that natural human kinematics
convey necessary information about mobile user identity and can be used
for authentication. The system acheives 20.52% equal error rate (EER) and
the user is either authenticated or rejected after 30 seconds, we believe that
this period is large enough for an imposter to access personal data of the
legitimate user. The authors use neural networks for feature extraction which
is a black box, we cannot easily determine which variables are the most
important contributors to a particular output, so the neural network model
may contain a number of unimportant predictor variables. In addition to
the high cost of computation and memory compared to statistical metrics.
These two criteria are very important in the context of IoT, and they must
be minimized given the limited resource.
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3. The proposed scheme

A malicious attacker may have several opportunities to violate a mo-
bile phone owner’s privacy. The device could be unprotected (no PIN, no
password, no biometric authentication) or the attacker could be someone who
knows the authentication secret (e.g., shoulder surfing, spoofing attack). The
aim of our work is to handle such situations by analyzing prehensile behav-
ior biometric of the user throughout the use of his/her smartphone. To this
end, we propose a new efficient and discrete authentication scheme based on
continuous HMM to continuously authenticate the user through its prehen-
sile movements which describe the combined movement of reaching, grasping
and manipulating objects. Since is quite hard to distinguish the intention
of making authentication to the general action, the proposed approach does
not support the operation of smartphone opening/closing. The proposed ap-
proach operates after unlocking the smartphone to provide an additional line
of defense, designed as a nonintrusive and passive security countermeasure.
The proposed system operates without user intervention and without addi-
tional hardware. The prehensile movements are measured only by the device
inertial sensors as behavioral trait.

The proposed scheme consists of the following modules:

1. Data acquisition module, where the prehensile movements are passively
collected from the inertial sensors by the user device.

2. Feature extraction module, where the inertial signals are pre-processed
and used to generate the biometric feature vectors.

3. Training module, where a model based on continuous HMM-UBM is
trained to characterize the device owner in a unique way.

4. User verification module, where the user identity is checked and the
user is either authenticated or not.

In Table 1, we present the important notations used in this paper, and in
the following subsections, we give the description of each module.

3.1. Data acquisition

This module allows to create the data-set, which describes how the user
moves and holds his/her device. The data-set is collected from signals ex-
tracted from the multiple 3-dimensional inertial sensors: the gyroscope that
measures the rotation rate along the device three axes in radians per second
(rad/s), the accelerometer that measures the proper acceleration in meter
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Table 1: Notations

Notation Description
−→
M,
−→
G,
−→
P Acceleration, angular velocity and gravity vectors

[M ], |M |,M−1 Diagonal, determinant and inverse of the matrix M
X,σX Mean and standard deviation of the sequence X

‖
−→
U ‖ Magnitude of vector

−→
U

Π Initial state distribution of HMM
A Transition probability matrix of HMM
B Multimodal mixture of Gaussian function
c Weight component of GMM
Σ Covariance matrix of GMM
µ Mean vector of GMM
dX Dimension of the sequence X
Θ Multidimensional Gaussian density function
λ GMM-HMM model

LLRX(Y ) Log-likelihood ratio with the sequence X of the user Y
P (X|λ) Probability that the sequence X is generated by the model λ

per second square (m/s2), and the gravity that measures the gravitational
component. The gravity is taken into account in the proposed work, un-
like authentication systems using inertial sensors, because we believe that
it contains important information about the user’s identity, such as his/her
force. In physics gravity is a linear acceleration that pulls us towards the
ground. In order to retrieve gravity data, the Android sensor API offers a
software sensor (an algorithm derived from a mathematical model which is
able to reconstruct state variables (whose measurement is technically diffi-
cult or relatively expensive) from variables that can be captured constantly
from common instruments [14]) that filters the raw data from the accelerom-
eter using the Kalman filter to show only gravity. The data-set should be
collected without any explicit intervention of the user. The collected data
should represent at the best the user natural behavior.

3.2. Signal pre-processing

Before the feature extraction phase, the raw data collected from the
accelerometer and gyroscope, which are sensitive to interference, are pre-
processed as follows:

1. First, to have a reliable authentication system and high recognition
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rates, we filter the noise caused by calibration imperfections from the
signal that represents the user’s movements. To mitigate such noise, an
obfuscation method has been proposed in [15], having the advantage
of independence from the calibration operation, which requires user
intervention. The obfuscation introduces additional noise to the sensor
readings to hide the natural errors. In this work, we consider a small
obfuscation value. After obfuscation process the accelerometer and

gyroscope outputs (
−→
M◦ and

−→
G ◦) can be expressed as follows:

−→
M◦ =

−→
O ◦ + [S◦]

−→
M (1)

and

−→
G ◦ =

−→
O ◦ + [S◦]

−→
G, (2)

where S◦ and O◦ are the obfuscation gain and offset3, respectively.

2. For each vector
−→
U ∈ {

−→
M,
−→
G,
−→
P }, which are orientation sensitive, the

magnitude ‖
−→
U ‖ is computed and added to the existing three dimen-

sions of each sensor as a fourth dimension. The magnitude has the
advantage of making the sensors data independent of device orienta-
tion.

‖
−→
U ‖ =

√
U2
x + U2

y + U2
z , (3)

3. Each projected component is then normalized as follows

U ′x =
Ux

‖
−→
U ‖

, U ′y =
Uy

‖
−→
U ‖

, U ′z =
Uz

‖
−→
U ‖

. (4)

4. Before feature extraction, for each component, the time series signal
should be segmented into a fixed-size sliding window. As the length of
the sliding window affects recognition accuracy, we have to do several
tests to choose the size that gives the optimal recognition rates. The
results are presented and discussed in section 4.

3Gain and offset are two measurement errors. The deviation from the ideal voltage is
the offset error. The deviation from the ideal over the full output range is known as the
gain error.
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3.3. Feature extraction

Feature extraction phase allows us to characterize each user and distin-
guish him from an impostor. For this purpose, we selected two different
settings from the time domain, namely the mean and standard deviation.
This approach does not require many computational resources, which is ex-
tremely important when using mobile devices [16]. For each window and for

each {x, y, z, ‖
−→
U ‖} dimensions, the mean X and the standard deviation σX

are computed in order to form the feature vectors. The parameter X is used
in each dimension representing the speed/angle of the motion of that sec-
tion on average [1]. The parameter σX represents both the variability of the
data-set and the probability distribution within each section. The resulting
vector is finally applied to the training module. At last, the feature vector is
of the form

{Xmx , σmx , Xmy , σmy , Xmz , σmz , X‖−→M‖, σ‖−→M‖, Xgx , σgx , Xgy , σgy , Xgz , σgz ,

X‖−→G‖, σ‖−→G‖, Xpx , σpx , Xpy , σpy , Xpz , σpz , X‖−→P ‖, σ‖−→P ‖, }

3.4. HMM-UBM system

In this section, we first present some basics of HMM, and then we present
how the HMM-UBM is used in our system for user authentication.

3.4.1. Hidden Markov Model (HMM)

An HMM is a collection of finite states connected by transitions. A
typical HMM is defined by n states S = {S1, S2, · · · , Sn}. A state at a
time t is denoted by qt and m, which is the number of distinct observation
symbols per state, expressed by V = {V1, V2, · · · , Vm}. The HMM is denoted
by λ = (Π, A,B). The parameter Π = {πi} represents the initial state
distribution, where

πi = P (q1 = Si), (5)

with

n∑
i=1

πi = 1. (6)
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The parameter A = {aij} represents a n×n transition probability matrix,
where

aij = P (qt = Sj|qt−1 = Si), i = 2..n, j = 2..n, (7)

and

n∑
j=1

aij = 1,∀i. (8)

The parameter B = {bj(k)} represents a m×n observation symbol prob-
ability matrix in the state j, where

bj(k) = P (Vk = t|qt = Sj), j = 1..n, k = 1..m (9)

and

m∑
k=1

bjk = 1,∀j. (10)

bj(k) is the probability of emitting Vk at the time t in the state Sj.

There are two types of HMM characterized by two sets of probabilities:
discrete and continuous. Those denominations are related to the outputs
given by a single HMM state. In the discrete HMM, a discrete output prob-
ability distribution defines the condition probability of emitting each output
symbol from a finite alphabet. In the case of continuous HMM, continu-
ous output probability density function defines the condition probability of
emitting each output symbol from a continuous random vector.

3.4.2. Our HMM-UBM based behavior model

When registering users for the first time, the user’s model training should
be done in a reasonable time as the registration is done in real time. However,
the HMM is a complex model and cannot be initialized with limited train-
ing data. Since we are dealing with short enrollment data, we adopted the
hidden Markov model-universal background model (HMM-UBM) approach.
The UBM is a single common model, which represents the whole population.
It is an off-line trained model using prehensile sequences from multiple per-
sons. In our work, the UBM, that we note λUBM , is a large HMM trained to
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represent the distribution of users’ prehensile movements features.

In order to generate the user model, during the enrollment phase, we use
the UBM as a baseline and adapted it using Maximum-a-Posteriori (MAP)
approach to derive the user model. The obtained optimal model represents
the enrolled user. This adaptation allows a faster scoring method. Figure 1
summarizes the registration steps of a user. The user is then described by a
set of n distinct hidden states. The emission probability distribution of each
state of the HMM is modeled as a multimodal mixture of Gaussian (GMM).
In this case, B represents a multimodal mixture of Gaussian function of a
set of observation data such as

B = {bj(X), j = 1..n}, (11)

where

bj(X) =
m∑
k=1

cjkbjk(X) =
m∑
k=1

cjkΘ(X,µjk,Σjk). (12)

Θ is the multidimensional Gaussian density function such as

Θ(X,µjk,Σjk) =
1√

(2π)dX |Σjk|
e−

1
2

(X−µjk)T Σ−1
jk (X−µjk). (13)

The idea of using continuous HMM has been greatly influenced by the
successful application of HMM in gesture recognition. Moreover, for their
efficiency to model gestures as a continuous motion phenomenon on a se-
quential time series [17]. Furthermore, it is computationally inexpensive and
is sensitive to the temporal aspects of the human movement.

The continuous HMM with GMM outputs model of the proposed scheme,
is defined by λ = (Π, A, c, µ,Σ). In the training phase, the feature sequence is
considered as the observation sequence of GMM. Therefore, the parameters
of GMM are estimated by using the Expectation-Maximization (EM) algo-
rithm [18], which iteratively refines the GMM parameters. Afterwards, the
Baum-Welch algorithm [19] is executed to estimate the matrix A in such a
way that they can maximize the likelihood probability for the given training
data.
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Figure 1: Enrollment phase of the proposed system. First, in offline phase, prehensile
movement data are collected from inertial sensors including information from all users to
traine an Universal Background Model (UBM). In online phase, user model is generated
by adapting the UBM.

3.5. User verification module

The log-likelihood is calculated to determine if a segment of moves X is
produced by a hypothesized user Y . For verification, a constructed model
from a particular user is scored against the UBM model, which is trained
with a large amount of data, used to represent general user-independent
characteristics. The log-likelihood ratio (LLR) of the segment X is computed
as follows

LLRY (X) = log

(
P (X|λY )

)
− log

(
P (X|λUBM)

)
(14)

The result is compared with a predetermined threshold θ, which is defined
during the training phase according to the inter- and intra-user distance
distributions. The user Y is authenticated if and only if LLRY (X) ≥ θ.
Finally, we applied the zt-score normalization [20] to compensate for inter-
session and inter-person variations.

LLR(Y )X,ZTnorm =
LLRX(Y )− α(X|λUBM)

β(X|λUBM)
. (15)

where α and β are normalization statistics. A schematic diagram is given in
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Figure 2 which illustrates the user verification process.

Figure 2: Verification phase of the proposed system. First, prehensile movement sequence
(X) is collected from inertial sensors. Specific features, relevant for recognition, are ex-
tracted. The features vector is matched with both the UBM model, which represent the
negative class, and the claimed user model. Finally a matching decision is made.

The pseudo code 1, resumes all steps of our proposition.

13



4. Performance evaluation

In this section, we first give details about the collected data-set, then we
present and discuss the obtained results.

4.1. data-set collection

In our experiments, we have used a smartphone as a connected device.
In order to collect motion data, we have designed and implemented a re-
altime Android service. The service runs without any user interaction in
the background during the period between the unlocking to locking of the
phone screen. The data were acquired simultaneously from the accelerome-
ter, gyroscope and gravity sensors based on the coordinate system used by
the Android Sensor API (Application Programming Interface), illustrated in
Figure 3. We have set the sampling frequency to 50Hz. During the data
acquisition, 7 volunteers within an age ranging from 19 to 56 years used
our research smartphone, Sony Xperia P model. We collected the data us-
ing a single smartphone to ensure that the use of different phone models
would not impact the authentication results. The session time ranged be-
tween 15 to 25 minutes per volunteer. The data collection was done in
two days, the first day we collected data from 4 volunteers and the sec-
ond day we collected data from 3 volunteers. In our work, we did not im-
pose any tasks or interaction with the user’s smartphone. The volunteers
were free to manipulate the smartphone as they wished to be sure that the
collected data were representative of the natural and regular movements.
The collected data is available online https://figshare.com/articles/

Prehensile_movements_when_handling_a_smartphone/11855709.
To preserve the volunteers’ privacy, we did not collect any information

that can be used to identify them. For each sensor, we collect 3-dimensional
values denoting the user motion. Figure 14 illustrates a sample of the data
collected by the 3-dimensional sensors: gyroscope, accelerometer and gravity
in x, y and z direction, composed of 500 points with a window of 1s for a
given user. For a given timestamp t, we get a vector of the form X(t) =
(mx,my,mz, gx, gy, gz, px, py, pz) ∈ R9, that we record in our database, as
illustrated in Figure 4. The parameters x, y and z denote the projections

of
−→
M ,
−→
G and

−→
P respectively, on the corresponding axes aligned with the

smartphone.
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The pseudo code of our proposition

1: Data collection from accelerometer
−→
M , gyroscope

−→
G and grav-

ity
−→
P in X, Y and Z directions; the collected data are of the form

{mx,my,mz, gx, gy, gz, px, py, pz} ∈ R9.
// Signal pre-processing

2: Add magnitude ‖
−→
U ‖ as a fourth dimension to all of these sensors.

3: Apply the process of obfuscation.

−→
M◦ =

−→
O ◦ + [S]

−→
M

and
−→
G ◦ =

−→
O ◦ + [S◦]

−→
G

4: Normalize each projected component, U ′x = Ux

‖
−→
U ‖
, U ′y = Uy

‖
−→
U ‖
, U ′z = Uz

‖
−→
U ‖
.

5: For each dimension X, Y, Z and magnitude, segment the collected signal
into fixed-size sliding window of size h.
// Feature extraction
6: For each window, compute separately the mean X and the standard
deviation σX ; the feature vector is of the form

{Xmx , σmx , Xmy , σmy , Xmz , σmz , X‖−→M‖, σ‖−→M‖, Xgx , σgx , Xgy , σgy , Xgz , σgz ,

X‖−→G‖, σ‖−→G‖, Xpx , σpx , Xpy , σpy , Xpz , σpz , X‖−→P ‖, σ‖−→P ‖, }

// Model learning
7: UBM learning offline.
8: UBM adaptation for user model construction, online.
// User verification
9: compute P (X|λY ).
10: compute P (X|λUBM).

11: compute LLRY (X) = log

(
P (X|λY )

)
− log

(
P (X|λUBM)

)
.

12: zt-score normalization
if LLRY (X) ≥ θ then

The user is the legitimate one.
else

The user is an imposter.
end if
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Figure 3: Coordinate system used by the Android Sensor API.

4.2. Experiments

For the evaluation, we have divided the collected data-set into two sub-
classes. 60% of the data were used for HMM-UBM training and the remaining
40% were used for the test phase. At the beginning of the development of
our system, we were confronted with the choice of the HMM state number
and the number of Gaussian mixtures per state. In order to set the optimal
values, we have tested different combinations of mixtures per state and states
per model. The obtained experimental results are presented in Figure5, in
which the optimal values are 3 states and 2 Gaussian mixtures.

Another important value to define, which could have an impact on the
performances of our system, is the size of the window used for feature ex-
traction. To decide the window-size to use and to show the contribution of
gravity data in the performance of our proposition, we tested it according to
these two parameters. Figure 6 shows the obtained variation of our scheme
in terms of Half Total Error Rate (HTER) in function of the window size
(the one used during the feature extraction module) in two cases, with and
without inclusion of the gravity sensor data. We note that the performance
results with gravity data inclusion are clearly better.
Indeed, HTER = 16.10 % is the lowest rate obtained when we consider
a window-size of 20 points, and taking into account gravity. We explain
this by the fact that the gravity reveals important information about the
smartphone user. The force with which the smartphone is worn is naturally
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Figure 4: An overview of the data-set structure

different from a user to another.
Based on these results, we set our system parameters to a 20 points

window and an HMM with three states and two Gaussian mixtures per state,
Figure 7 gives an overview of the chain. Our scheme is suitable for real-time
applications on smartphones since it requires only 42 kilobytes of memory to
save the UBM and the user models.

In our experiments, an objective evaluation of the prehensile movement
as biometric is performed by measuring the False Acceptance Rate (FAR),
False Rejection Rate (FRR) and Equal Error Rate (EER) performed by the
system. EER indicates that the proportion of FAR is equal to the proportion
of FRR. The lower the EER value, the higher the accuracy of the biometric
system. On a graph depicting the FAR versus the FRR the EER is the
intersection of both lines of the graph.

To investigate the feasibility of continuous authentication using only the
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Figure 5: Log-likelihood according to number of states and mixtures number per state

Figure 6: HTER according to the window size
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Figure 7: An overview of the HMM model used in our system, it consists of three states
and two Gaussian mixtures per state.

prehensile movements, we provided experiments on two different databases:
HMOG [13] and our database.

4.3. Experiments provided on HMOG dataset

HMOG (downloadable on: http://www.cs.wm.edu/ qyang/hmog.html)
is a public database. It contains the record of touch, sensor and key press
data invoked by 100 users during document reading, text production and
navigation on a map to locate a destination. For each of the 100 subjects,
24 sessions have been considered. For our experiments, we have selected
only accelerometer and gyroscope data as we are interested in authentication
using only initial sensors data. As the data was retrieved in 24 sessions we
have concatenated all the sessions to have only one session which includes
all activities (reading, writing and map navigation). The process of pre-
processing (data filtering, magnitude calculation, data normalization and
data segmentation into fixed-size sliding window) and feature extraction (as
described in Section 3.3) is the same as for our protocol. HMOG was collected
in constrained settings as a part of a lab study and its size is larger than our
dataset (the HMM-UBM training would be better) so we presume that the
ERRs would be better than the ones we get from our database. The result
of this experiment is shown in Figure 8. The EER = 14.8 %.

4.4. Experiments provided on our dataset

In this part we will present the results of the experiments applied on our
dataset. Figure 9 resumes the quantitative results achieved by the HMM-
UBM system trained with the raw data where the gravity data were included.
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Figure 8: FAR vs FRR performed by the trained systems using HMOG dataset.

Figure 9: FAR vs FRR performed by the trained systems using raw data including gravity
data.

As illustrated in Figure 9, the EER = 32.8%. Figure 10 shows the case
where HMMs were trained without using gravity data, we used only ac-
celerometer and gyroscope data, the results show an EER = 39.6%. As
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expected, using gravity data improves system performance by providing ad-
ditional information on the user’s strength.

Figure 10: FAR vs FRR performed by the trained systems using raw data without using
gravity data.

4.4.1. Influence of sensors data fusion

To improve the authentication rates, we also investigate the contribution
of combining the data of accelerometer, gyroscope and gravity by fusing the
corresponding captured data using a weighted sum. The results are reported
in figure 11 and 12. Looking at the obtained results, we notice that fusing the
sensors data together improves the system performance, whether it is when
gravity data is included or not. EER = 19.2% is the lowest rate obtained
when gravity data are used and fused with accelerometer and gyroscope data.
In the case where gravity data are not included, EER is significantly higher
is reaching 35.2%.

4.5. Discussion

In this section we depict the outcome of all the experiments. We tested
the performance of the proposed system on two databases: a public database
called HMOG [13] and a personal database [21], by measuring EERs. The
EER obtained on HMOG (shown in Figure 8) is equal to 14.8 %. We then
conducted a set of experiments on our database evaluating the impact of
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Figure 11: FAR vs FRR performed by the trained systems using the fusing data including
gravity data.

Figure 12: FAR vs FRR performed by the trained systems using fusing data without using
gravity data.

gravity data and sensor data fusion on the system performances to answer
two questions: Does gravity improve the system performances? Does the
fusion of accelerometer, gyrometer and gravity data improve the system per-
formances? To answer the first question, we can analyze the results obtained
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in Figures 9 and 10, which illustrate the EERs obtained with and without
the inclusion of gravity data, respectively. As shown in Figure 9, EER =
32.8% as opposed to EER = 39.6% obtained when excluding gravity in the
tests. Based on these results we can conclude that gravity enriches the au-
thentication model and improves recognition rates. With respect to sensor
data fusion (to answer the second question) we analyze the results obtained
in Figures 11 and 12 which represent the EERs obtained in the case of sen-
sor data fusion by including and excluding gravity data, respectively. In
this case the results show that fusing the accelerometer, gyroscope and grav-
ity data improves the performance of the system by achieving EER = 19.2 %.

From all these experiments we can conclude that it is possible to distin-
guish users based only on their prehensile movements. This allows real-time
biometric authentication to be carried out, continuously and passively (with-
out requiring the user’s collaboration). The lowest EER = 19.2% is obtained
when fusing the accelerometer, gyroscope and gravity data. The study is
proposed as a first step in the development of a secure non-obtrusive au-
thentication system. The obtained result can also mean that 80.8% of the
time the user is authenticated only by the way she/he holds and moves the
smartphone, which is in our opinion quite encouraging. The obtained EER,
that may seem high, is due to the fact that the data were collected in an
uncontrolled environment. In real-word applications, the biometric data is
affected by several sources of noise that affects recognition rates.

4.6. Comparison results with Neverova et al.’s approach

We also assessed the performances of the proposed scheme in compari-
son to [6], which is the closest one to our system as it uses the prehensile
movements as biometric trait. The comparison was done with respect of two
important metrics, namely the EER and the authentication delay. The au-
thentication delay represents the time spent by the system to accept or reject
the authentication of the user. First, we present the results obtained in rela-
tion to the authentication delay. As can be seen in Table 2, the system takes
8 seconds (s) to authenticate a user when using a 20 point window (where
the best HTER is performed), this is much better than the delay achieved
by [6] where the authentication delay is 30 seconds.

Table 3 shows the obtained results through the proposed scheme com-
pared to [6]. EER = 19.2% are the lowest rates and are obtained when we
consider a window of 20 points. In this case, as shown in Table 2, only 8s
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Table 2: Authentication delay in function of feature window size.

Feature window size 10 20 30 40 50
Delay 2s 8s 18s 32s 50s

of the inertial data are used to authenticate the user. This means that the
user verification test can be done after every 8s, which allows to improve the
security level. Indeed, the more frequently the user identity verification is
carried, the faster a potential intruder can be detected. Regarding the results
according [6], 20.52% of EER and 30s of authentication delay are obtained.
This period could be sufficient for an impostor to access the personal data
of a legitimate user without be detected.

To make a comparison with [6] on the same data set, we calculated the
EERs obtained by the two protocols using the HMOG database. To develop
the protocol of Neverova et al. [6], we used the parameters indicated in
Neverova’s thesis [22].

Table 3: Comparison.

EER Authentication delay EER on HMOG dataset
Neverova et al. [6] 20.52% 30s 17.52
The proposed scheme 19.2% 8s 14.8

4.7. Testing the protocol on touchscreen data

After testing the performance of the proposed protocol using prehensile
movements as a biometric trait, we will study its performance on another
biometric trait. In this section we investigate whether our protocol can con-
tinuously authenticate users based on the way they interact with the touch-
screen of a smartphone. To do so, we used the public database proposed by
Frank et al. [23] where they propose a set of raw touch data collected from
41 users interacting with a smartphone using basic navigation maneuvers.

For our tests we have extracted the same features as those proposed by
Frank et al. [23] and the same classifier as discussed in section 3.4. The
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Figure 13: FAR vs FRR performed by the proposed protocol using the touchscreen data

results of the experiments are illustrated in the Figure 13. EER = 3.74 %
is the rate obtained by applying the proposed protocol on touchscreen data.
The table 4, summarizes the EERs obtained by our protocol and the one
proposed by Neverova et al. [6] applied to three different datasets. Our
protocol achieves better recognition rates on all three datasets.

Table 4: Comparison results with Neverova et al. [6].

EER EER on HMOG dataset EER on Frank at al. dataset
Neverova et al. [6] 20.52% 17.52% 8.25%
The proposed scheme 19.2% 14.8% 3.74%

5. Conclusion

In this paper, we have proposed an efficient continuous and realtime au-
thentication scheme for smartphones based on user prehensile movements
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through the inertial signal sensors. We have elaborated a data-set of pre-
hensile movements and integrated a Hidden Markov Model-Universal Back-
ground Model (HMM-UBM) to evaluate the identity of users. The proposed
scheme collects in realtime the prehensile movement data with gravity sig-
nals, extracts the feature vectors, trains the model HMM-UBM and verifies
the user’s identities. For the performance evaluation, we have implemented
a prototype of the proposed scheme and we have tested its efficiency in terms
of Equal Error Rate (EER) and authentication delay. The proposed scheme
demonstrates a considerable gain in terms of accuracy and delay. We plan to
improve the authentication rate by proposing a multimodal biometric system
combining prehensile movement with touch movements and location.
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[14] E. Aguilar-Garnica, J. P. Garćıa-Sandoval, Software sensors design
and selection for the production of biodiesel from grease trap wastes,
Computer Aided Chemical Engineering, vol. 37(2015), pp. 1589–1594.
https://doi.org/10.1016/B978-0-444-63577-8.50110-8.

[15] A. Das, N. Borisov and M. Caesar, Exploring Ways To Mitigate Sensor-
Based Smartphone Fingerprinting, arXiv:1503.01874, Cornell university
library (2015).

[16] D. Figo, P. C. Diniz, D. R. Ferreira and J. M. P. Cardoso,
Preprocessing techniques for context recognition from accelerometer
data, Personal and Ubiquitous Computing, vol. 14 (2010) 645–662.
https://doi.org/10.1007/s00779-010-0293-9.

[17] S. Saha, R. Lahiri, A. Konar, B. Banerjee and A. K. Nagar, HMM-
based gesture recognition system using kinect sensor for improvised
humancomputer interaction, International Joint Conference on Neu-
ral Networks (IJCNN), 2017, pp. 2776–2783, Anchorage, AK, USA.
https://doi.org/10.1109/IJCNN.2017.7966198.

28



[18] A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incom-
plete data via the EM algorithm, Journal of the royal statistical society.
Series B (methodological) (1977) 1–38.

[19] L. Baum, T. Petrie, G. Soules, and N. Weiss, A maximization tech-
nique occurring in the statistical analysis of probabilistic functions of
markov chains, The Annals of Mathematical Statistics (1970) 164–171.
https://doi.org/10.1214/aoms/1177697196.

[20] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, Score normalization
for text-independent speaker verification systems, Digital Signal Process-
ing, vol. 10(1)(2000) 42–54. https://doi.org/10.1006/dspr.1999.0360.

[21] Cherifi, Prehensile movements when handling a smartphone. figshare.
Dataset. (2020). https://doi.org/10.6084/m9.figshare.11855709.v1

[22] Natalia Neverova, Deep Learning for Human Motion Analysis, PhD the-
sis, UNIVERSITE DE LYON, 2016, France.

[23] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication, IEEE Trans. Inf. Forensics Security, vol. 8(1)
(2013) 136–148.

29



Figure 14: Sample data of 500 points with a window of 1s
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