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+Pierre Gaillard, + Université de Bourgogne, Dijon, France :
e-mail: Pierre.Gaillard@u-bourgogne.fr,

Abstract

Solutions to the focusing nonlinear Schrödinger equation (NLS) of or-
der N depending on 2N − 2 real parameters in terms of wronskians and
Fredholm determinants are given. These solutions give families of quasi-
rational solutions to the NLS equation denoted by vN and have been
explicitly constructed until order N = 13. These solutions appear as de-
formations of the Peregrine breather PN as they can be obtained when all
parameters are equal to 0. These quasi rational solutions can be expressed
as a quotient of two polynomials of degree N(N + 1) in the variables x

and t and the maximum of the modulus of the Peregrine breather of order
N is equal to 2N + 1.
Here we give some relations between solutions to this equation. In par-
ticular, we present a connection between the modulus of these solutions
and the denominator part of their rational expressions. Some relations
between numerator and denominator of the Peregrine breather are pre-
sented.

2010 AMS : 35B05, 35C99, 35Q55, 35L05, 76M99, 78M99.
Keywords : Fredholm determinants, NLS equation, Peregrine breathers, rogue
waves, wronskians.

1 Introduction

We consider the one dimensional focusing nonlinear Schrödinger equation (NLS)
which can be written in the form

ivt + vxx + 2|v|2v = 0, (1)

The first results concerning the NLS equation date from the works of Zakharov
and Shabat in 1972 who solved it using the inverse scattering method [1, 2]. Its
and Kotlyarov first constructed periodic and almost periodic algebro-geometric
solutions to the focusing NLS equation in 1976 [3, 4]. Ma found in 1979 the first
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breather type solution of the NLS equation [5]. In 1983, the first quasi rational
solutions of NLS equation were constructed by Peregrine [6]. In 1986, Eleon-
ski, Akhmediev and Kulagin obtained the two-phase almost periodic solution
to the NLS equation and got the first higher order analogue of the Peregrine
breather[7, 8, 9]. Other analogues of the Peregrine breathers of order 3 and
4 were constructed using Darboux transformations, in a series of articles by
Akhmediev et al. [10, 11, 12, 13].
Recently, many works about NLS equation have been published using different
methods. We can quote the works of Matveev et al. [14, 15] in 2010 for the rep-
resentation of the solutions in terms of wronskians; those of Gaillard [16, 17, 18]
for the solutions given in terms of wronskians and Fredholm determinants, and
their quasi-rational solutions limit of order N depending on 2N −2 parameters.
Akhmediev gave quasi rational solutions using Darboux transformation in sev-
eral papers [19, 20, 21]. Guo, Ling and Liu in 2012 gave an other representation
of the solutions as a ratio of two determinants [22] using generalized Darboux
transformation. A new approach has been done by Ohta and Yang in [23] using
Hirota bilinear method. Smirnov [24] gave solutions with an algebro-geometric
approach. Other types of solutions were given by Zhao et al. in [25].

We give some relations between the modulus of these solutions and the de-
nominator part of their rational expression. Some relations between numerator
and denominator of the rational solutions are given.

2 Different representations of solutions to the

NLS equation

2.1 Solutions of the NLS equation in terms of of Fredholm

determinant

We have to define the following notations.
The terms κν , δν , γν and xr,ν are functions of the parameters λν , 1 ≤ ν ≤ 2N ;
they are defined by the formulas :

κν = 2
√

1− λ2ν , δν = κνλν , γν =

√

1− λν
1 + λν

,;

xr,ν = (r − 1) ln
γν − i

γν + i
, r = 1, 3.

(2)

The parameters −1 < λν < 1, ν = 1, . . . , 2N , are real numbers such that

−1 < λN+1 < λN+2 < . . . < λ2N < 0 < λN < λN−1 < . . . < λ1 < 1
λN+j = −λj , j = 1, . . . , N.

(3)

The condition (3) implies that

κj+N = κj , δj+N = −δj+N , γj+N = γ−1
j , xr,j+N = xr,j , j = 1, . . . , N. (4)
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Complex numbers eν 1 ≤ ν ≤ 2N are defined in the following way :

ej = i
∑N−1

l=1 al(jǫ)
2l+1 −

∑N−1
l=1 bl(jǫ)

2l+1,

ej+N = i
∑N−1

l=1 al(jǫ)
2l+1 +

∑N−1
l=1 bl(jǫ)

2l+1,
1 ≤ j ≤ N − 1.

(5)

ǫ, aν , bν , ν = 1 . . . 2N are arbitrary real numbers.
Let I be the unit matrix, and

ǫj = j 1 ≤ j ≤ N, ǫj = N + j, N + 1 ≤ j ≤ 2N. (6)

Let’s consider the matrix Dr = (d
(r)
jk )1≤j,k≤2N defined by :

d(r)νµ = (−1)ǫν
∏

η 6=µ

∣

∣

∣

∣

γη + γν
γη − γµ

∣

∣

∣

∣

exp(iκνx− 2δνt+ xr,ν + eν). (7)

With these notations, the solution to the NLS equation takes the form [16, 17,
18] :

Theorem 2.1 The function v defined by

v(x, t) =
det(I +D3(x, t))

det(I +D1(x, t))
e2it−iϕ. (8)

is a solution to the focusing NLS equation depending on 2N − 1 real parameters

aj, bj, ǫ, 1 ≤ j ≤ N − 1 with the matrix Dr = (d
(r)
jk )1≤j,k≤2N defined by

d(r)νµ = (−1)ǫν
∏

η 6=µ

∣

∣

∣

∣

γη + γν
γη − γµ

∣

∣

∣

∣

exp(iκνx− 2δνt+ xr,ν + eν).

where κν , δν , xr,ν , γν , eν being defined in(2), (3) and (5).

2.2 Wronskian representation

For this, we need to define the following notations :

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (9)

with the arguments

Θr,ν = κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2, 1 ≤ ν ≤ 2N. (10)

The functions φr,ν are defined by

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11)

We denote Wr(y) the wronskian of the functions φr,1, . . . , φr,2N defined by

Wr(y) = det[(∂µ−1
y φr,ν)ν, µ∈[1,...,2N ]]. (12)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined in (7). Then we have
the following statement [17] :
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Theorem 2.2

det(I +Dr) = kr(0)×Wr(φr,1, . . . , φr,2N )(0), (13)

where

kr(y) =
22N exp(i

∑2N
ν=1 Θr,ν)

∏2N
ν=2

∏ν−1
µ=1(γν − γµ)

.

With these notations, we have the following result [17] :

Theorem 2.3 The function v defined by

v(x, t) =
W3(φ3,1, . . . , φ3,2N )(0)

W1(φ1,1, . . . , φ1,2N )(0)
e2it−iϕ.

is a solution to the focusing NLS equation depending on 2N − 1 real parameters
aj, bj, ǫ, 1 ≤ j ≤ N − 1 with φrν defined in (11)

φr,ν = sin(κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2), 1 ≤ ν ≤ N,
φr,ν = cos(κνx/2 + iδνt− ixr,ν/2 + γνy − ieν/2), N + 1 ≤ ν ≤ 2N, r = 1, 3,

κν , δν , xr,ν , γν , eν being defined in(2), (3) and (5).

We can give another representation of the solutions to the NLS equation
depending only on terms γν , 1 ≤ ν ≤ 2N . From the relations (2), we can
express the terms κν , δν and xr,ν in function of γν , for 1 ≤ ν ≤ 2N and we
obtain :

κj =
4γj

(1 + γ2j )
, δj =

4γj(1− γ2j )

(1 + γ2j )
2
, xr,j = (r − 1) ln

γj − i

γj + i
, 1 ≤ j ≤ N,

κj =
4γj

(1 + γ2j )
, δj = −

4γj(1− γ2j )

(1 + γ2j )
2
, xr,j = (r − 1) ln

γj + i

γj − i
, N + 1 ≤ j ≤ 2N.

(14)

We have the following new representation [17, 27] :

Theorem 2.4 The function v defined by

v(x, t) =
det[(∂µ−1

y φ̃3,ν(0))ν, µ∈[1,...,2N ]]

det[(∂µ−1
y φ̃1,ν(0))ν, µ∈[1,...,2N ]]

e2it−iϕ (15)

is a solution to the NLS equation (1) depending on 2N − 1 real parameters aj,

bj, ǫ, 1 ≤ j ≤ N − 1. The functions φ̃r,ν are defined by

φ̃r,j(y) = sin

(

2γj
(1 + γ2j )

x+ i
4γj(1− γ2j )

(1 + γ2j )
2
t− i

(r − 1)

2
ln
γj − i

γj + i
+ γjy − iej

)

,

φ̃r,N+j(y) = cos

(

2γj
(1 + γ2j )

x− i
4γj(1− γ2j )

(1 + γ2j )
2
t+ i

(r − 1)

2
ln
γj − i

γj + i
+

1

γj
y − ieN+j

)

,

where γj =

√

1− λj
1 + λj

, 1 ≤ j ≤ N.

λj is an arbitrary real parameter such that 0 < λj < 1, λN+j = −λj , 1 ≤ j ≤ N.
The terms eν are defined by (5),
where aj and bj are arbitrary real numbers, 1 ≤ j ≤ N − 1.

(16)
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Remark 2.1 In the formula (15), the determinants det[(∂µ−1
y fν(0))ν, µ∈[1,...,2N ]]

are the wronskians of the functions f1, . . . , f2N evaluated in y = 0. In particular
∂0yfν means fν .

2.3 Families of quasi-rational solutions of NLS equation

in terms of a quotient of two determinants

The following notations are used :

Xν = κνx/2 + iδνt− ix3,ν/2− ieν/2,

Yν = κνx/2 + iδνt− ix1,ν/2− ieν/2,

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (2).
Parameters eν are defined by (5).
Below the following functions are used :

ϕ4j+1,k = γ4j−1
k sinXk, ϕ4j+2,k = γ4jk cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(17)

for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ2N−4j−5

k sinXN+k,
(18)

for 1 ≤ k ≤ N .
We define the functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the
term Xk is only replaced by Yk.

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4jk cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(19)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ2N−4j−5

k sinYN+k,
(20)

for 1 ≤ k ≤ N .
Then we get the following result [27] :

Theorem 2.5 The function v defined by

v(x, t) =
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)
e2it−iϕ (21)
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is a quasi-rational solution of the NLS equation (1) depending on 2N − 2 real
parameters aj, bj, 1 ≤ j ≤ N − 1, where

nj1 = ϕj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2
(x, t, 0),

njN+1 = ϕj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2
(x, t, 0),

dj1 = ψj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2
(x, t, 0),

djN+1 = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2
(x, t, 0),

2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions ϕ and ψ are defined in (17),(18), (19), (20).

3 Structure of the multi-parametric solutions to

the NLS equation of order N depending on

2N − 2 parameters

3.1 The quotient of two polynomials of degree (N(N + 1)
in x and t by an exponential depending on t

Here we present a result which states the structure of the quasi-rational solu-
tions of the NLS equation. It was only conjectured in preceding works [16, 18].
Moreover we obtain here families of deformations of the Nth Peregrine breather
depending on 2N − 2 parameters.
In this section we use the notations defined in the previous sections. The func-
tions ϕ and ψ are defined in (17), (18), (19), (20).
The structure of the quasi rational solutions to the NLS equation is given by
[28] :

Theorem 3.1 The function v defined by

v(x, t) =
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)
e2it−iϕ (22)

is a quasi-rational solution of the NLS equation (1) quotient of two polynomials
R(x, t) and S(x, t) depending on 2N−2 real parameters aj and bj, 1 ≤ j ≤ N−1.
R(x, t) and S(x, t) are polynomials of degrees N(N + 1) in x and t.

Remark 3.1 The polynomials R(x, t) and S(x, t) have the same coefficients of
degrees N(N + 1) in 2x and 4t equal to 1.
The polynomial B(x, t) does not have any real root.
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3.2 The structure of the Peregrine breather of order n

There is any freedom to choose γj in such a way that the conditions on λj are
checked. We know from previous works [16, 18] that the (analogue) Peregrine
breathers are obtained when all the parameters aj and bj are equal to 0. In
order to get the more simple expressions in the determinants, we choose par-
ticular solutions in the previous families.

Here we choose γj = jǫ as simple as possible in order to have the conditions on
λj checked, and we have [27, 28] :

Theorem 3.2 The function v0 defined by

vn,0(x, t) =

(

det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])
e2it−iϕ

)

(aj=bj=0, 1≤j≤N−1)

(23)

is the Peregrine breather of order N solution of the NLS equation (1) whose
highest amplitude in modulus is equal to 2N + 1.

Remark 3.2 The previous result is given in the frame where the limit of the
modulus of the solution when x or t tend to infinity is equal to 1. We know that
if v(x, t) is is a solution to the NLS equation then u(x, t) = av(ax, a2t) is also
a solution to the NLS equation, for any arbitrary real a.

Remark 3.3 In (23), the matrices (njk)j,k∈[1,2N ] and (djk)j,k∈[1,2N ] are defined
in (22).

We have seen in previous section that solutions of NLS equation given by (16)
can be written in function uniquely of terms γ. We recall that the terms γj are

given by γj =

√

1− λj
1 + λj

, 1 ≤ j ≤ N ; λj is an arbitrary real parameter such that

0 < λj < 1, λN+j = −λj , 1 ≤ j ≤ N .
We can rewrite the result given in (16) in a simplest formulation as follows
[27, 28] :

Theorem 3.3 The function v defined by

v(x, t) =
det((f

(3)
jk )j,k∈[1,2N ])

det((f
(1)
jk )j,k∈[1,2N ])

e2it−iϕ (24)

is a quasi-rational solution of the NLS equation (1) depending on 2N − 2 real
parameters aj , bj, 1 ≤ j ≤ N − 1 where

f
(r)
jk =

∂2(k−1)

∂ǫ2(k−1)

(

γ4j−1 sin

[

2γ

1 + γ2
x + 4i

γ(1 − γ2)

(1 + γ2)2
t − i

r − 1

2
ln

γ − i

γ + i
+
∑N−1

l=1 (al + ibl)ǫ
2l+1 + (j − 1)

π

2

])

(ǫ=0)

,

f
(r)
jN+k =

∂2(k−1)

∂ǫ2(k−1)

(

γ2N−4j−1 cos

[

2γ

1 + γ2
x − 4i

γ(1 − γ2)

(1 + γ2)2
t + i

r − 1

2
ln

γ − i

γ + i
+
∑N−1

l=1 (al − ibl)ǫ
2l+1 + (j − 1)

π

2

])

(ǫ=0)

,

1 ≤ k ≤ N, 1 ≤ j ≤ 2N, r ∈ {1; 3}, ǫ ∈]0; 1[, γ = ǫ(1 − ǫ2)1/2.
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Remark 3.4 In the previous theorem, the expression
∂0

∂ǫ0
f(x) means f(x).

The solution to the NLS equation can be written in the form

vN (x, t) =
RN (x, t)

SN (x, t)
e2it =

(

1 +
AN (x, t)

BN (x, t)

)

e2it (25)

and the Peregrine breather in the form

vN,0(x, t) =
TN (x, t)

UN (x, t)
e2it =

(

1 +
PN (x, t)

QN (x, t)

)

e2it (26)

where the index 0 means that all the parameters are equal to 0.

4 Differential relation for the NLS equation

In previous works [27, 28], we have proven that the solutions vN to the NLS
equation can be written in the form

vN (x, t) =

(

1 +
AN (x, t)

BN (x, t)

)

e2it. (27)

We have a very simple relation between the square of the modulus of vN and the
denominator part BN . This relation appears in a paper of Ling and Zhao [25]
where the solutions to the NLS equation are given in the frame of the generalized
Darboux transfomation. Here this result and its proof are given in a general
frame by the following theorem :

Theorem 4.1 The solutions vN (x, t) =

(

1 +
AN (x, t)

BN (x, t)

)

e2it to the NLS equa-

tion verify the following relation

|vN (x, t)|2 = 1 + (lnBN (x, t))xx , (28)

where the subscript xx means the double derivation with respect to x.

5 Relations between rational part of the solu-

tions to the NLS equation

With the preceding notations, we get the following statement

Theorem 5.1 The polynomials of the solutions vN to the NLS equation defined

by (25) vN (x, t) =
RN (x, t)

SN (x, t)
e2it verify the following relations

(i(RN )t + (RN )xx − 2RN )S2
N − ((SN )xx + i(SN )t)RNSN

−2(RN )x(SN )xSN + 2((SN )2x +RNRN )RN = 0.
(29)

8



Proposition 5.1 The coordinates of extrema (x0, t0) of solutions vN to the

NLS equation defined by (25) vN (x, t) =
RN (x, t)

SN (x, t)
e2it verify the the following

relations

(RN )x(x0, t0)RN (x0, t0)SN (x0, t0) + (RN )x(x0, t0)RN (x0, t0)SN (x0, t0)
−2(SN )x(x0, t0)RN (x0, t0)RN (x0, t0) = 0,

(30)

(RN )t(x0, t0)RN (x0, t0)SN (x0, t0) + (RN )t(x0, t0)RN (x0, t0)SN (x0, t0)
−2(SN )t(x0, t0)RN (x0, t0)RN (x0, t0) = 0.

(31)

(RN )x(x0, t0)SN (x0, t0)− (SN )x(x0, t0)RN (x0, t0) = 0. (32)

(RN )t(x0, t0)SN (x0, t0)− (SN )t(x0, t0)RN (x0, t0) + 2iSN (x0, t0)RN (x0, t0) = 0. (33)

where a means the complex conjuguate of a.

Remark 5.1 As a consequence of the result on the highest modulus of the PN

breather defined by (26) vN,0(x, t) =
TN (x, t)

UN (x, t)
e2it, we get

TN (0, 0) = (2N + 1)UN (0, 0). (34)

6 Conclusion

Different representations of the solutions to the NLS equation have been sum-
marized in this paper, as well as the structure of the quasi rational solutions.
Some differential relations have been given in this text for the NLS equation.
From different studies realized by the author, [26, 27, 28, 29, 30, 31, 32], it seems
that the maximums of the modulus of the solutions to the NLS equation are in
connection with the zeros of the Yablonski-Vorob’ev polynomials [33, 34].
It would be relevant to study this conjecture.
It would be also relevant to search other types of equations verified by the
polynomials (PN , QN ), (RN , SN ), (AN , BN ) or (TN , UN ).
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tions for Darboux-Pöschl-Teller potentials and their difference extensions,
RIMS Kyoto, N. 1653, 1-19, 2009

[39] P. Gaillard, V.B. Matveev, Wronskian and Casorai determinant representa-
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