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GRASS GIS FOR CLASSIFICATION OF LANDSAT TM
IMAGES BY MAXIMUM LIKELIHOOD DISCRIMINANT
ANALYSIS: TOKYO AREA, JAPAN

Polina Lemenkova

ABSTRACT

The presented paper is focused on satellite
image analysis using GRASS GIS. The aim is to
perform comparative analysis of the land cover
changes in Tokyo metropolitan area through
spatial analysis. Data include multi-temporal
Landsat TM satellite images on 2002, 2006 and
2011. The images were captured from GloVis
USGS service and imported to GRASS GIS via
GDAL (utilities gdalwarp, r.in.gdal, gdalinfo).
The methodology is based on GRASS GIS. The
technique includes raster modules (d.rast,
r.colors, g.region) and modules of image
processing  (i.landsat.rgh, i.class). Color
composites were created by modules d.rgb,
r.composite and auxiliary modules for
visualization (d.rast, r.colors, etc). Spectral
signatures were generated in an image using
i.cluster' algorithm and "i.group’ for clustering
data. The classification was done by Maximum
Likelihhood classifier 'i.maxlik'. The results
show variations in land cover types for 2001,
2006 and 2011, which also resulted in the
automated grouping pixels into 7, 10 and 6
classes, respectively. The paper demonstrated
technical functionality of the GRASS GIS
applied for multi-temporal image processing
aimed at land cover types / change analysis
using shell scripting approach.

Keywords: GRASS GIS, Landsat TM, image
processing, raster, cartography, mapping

SAZETAK

Rad je fokusiran na analizu satelitskih snimaka
pomocu GRASS GIS-a, s ciljem komparativne
analize promjena zemljisnog pokrova u
metropolitanskom podrucju  Tokija putem
prostorne analize. Podaci ukljucuju multi-
temporalne satelitske snimke Landsat TM za
2002., 2006. i 201 1. godinu. Snimci su dobiveni
pomocu usluge GloVis USGS i uvezeni u
GRASS GIS putem GDAL (alati gdalwarp,
r.in.gdal, gdalinfo). Metodologija se zasniva na
GRASS GIS-u. Tehnika ukljucuje rasterske
module (d.rast, r.colors, g.region) i module
obrade  snimaka  (ilandsat.rgb, i.class).
Kompoziti u boji kreirani su pomocu modula
d.rgb, r.composite i pomocnih modula za
vizuelizaciju (d.rast, r.colors, itd.). Spektralni
potpisi  generisani su na slici  koristeci
algoritam 'i.cluster' i 'i.group' za grupisanje
podataka. Klasifikacija se obavila pomocu
klasifikatora maksimalne vjerojatnosti
,imaxlik”. Rezultati pokazuju razlike u
vrstama pokrova zemljista za 2001., 2006. i
2011.  godinu, Sto je rezultiralo i
automatizovanim grupisanjem piksela u 7, 10 i
6 klasa. U radu je prikazana tehnicka
Sfunkcionalnost GRASS GIS-a primijenjenog za
multi-temporalnu obradu snimaka usmjerenih
na vrste zemljiSnog pokrivaca / analizu
promjena  koristenjem  pristupa  shell
skriptovanja.

Kljucne rije¢i: GRASS GIS, Landsat TM,
obrada  snimaka, raster, kartografija,
kartografisanje
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1 INTRODUCTION

Remote sensing (RS) is an important GIS technology for gathering geographic data for Earth
sciences using a variety of satellite and airborne platforms. RS data play a significant role in the
spatio-temporal mapping of the land cover types and analysis of land use changes. Numerous
publications on RS data processing by various software and approaches present describing these
issues at a greater detail: general fundamentals of GIS and RS (Campbell, 1996; Jensen, 1996;
Bill, 2016), application of Erdas Imagine (Letortu et al., 2020; Yiziigiilli & Aksoy, 2011;
Lemenkova, 2015a; Avdan & Jovanovska, 2016), ILWIS GIS (Koolhoven et al., 2010;
Lemenkova, 2015b; 2015¢c; 2015d), ENVI GIS (Hawbaker et al., 2020; Lemenkova, 2015¢),
ArcGIS (Kennedy et al., 2020; Lemenkova, 2011; Kautz et al., 2019), Idrisi GIS (Warner &
Campagna, 2009; Gala & Melesse, 2012; Lemenkova, 2014; Abaidoo et al., 2019). These studies
revealed that RS data processing is an effective approach for monitoring environmental trends
revealing urban sprawl or land degradation, providing that there are reliable algorithms of raster
data processing. Thus, RS data processing has become a popular GIS technology for land cover
change analysis and environmental monitoring in recent decades.

One of the advantages of RS data processing by GIS is that it enables analysis of the land cover
types based on analysis of spectral reflectance of pixels indicating variation of land cover
parameters with time. A key parameter in RS data processing is spectral reflectance of various
land cover types derived from pixel values in a raster grid. Combination of various Landsat TM
bands reveals and highlights areas of land cover change through adjusting colors and brightness
of the pixels by analysis of their spectral reflectance. Therefore, it is possible to perform spatial
analysis based on the multi-temporal analysis of raster data as a response to the need for land
cover assessment in urban areas. Since the direct land monitoring is time-consuming and costly
comparing to the RS data processing, the advantage of spatial analysis by GIS becomes clear.

The study area covers eastern part of Kanté plain with square of 32,389 km? (Nussbaum, 2005),
the largest plain in Japan, located on Honshu Island of Japan Archipelago. The name ‘Kanto’
meaning ‘East of the Barrier’ is well illustrated eastern location of the Kanto region within
Honshu Island. It has a basin area of 17,000 km?, covers more than half of the Kantd region. The
area includes Greater Tokyo Area, the most populous metropolitan area in the world, which
consists of the densely populated Tokyo City and several prefectures of the neighboring Chubu
region. The major river in the central part of the Kantd plain is the Tone River which flows 320
km (Encyclopedia Britannica, 2012) southeastwards through the Kantd Plain to the Pacific Ocean
with the largest drainage area in Japan of 16,840 km?,

Geographically, the study area is limited by an inclined square at following coordinates: 138°
38'47.82"E — 37°3'24.84"N (upper left), 138°42'24.85"E — 35°0'18.47"N (lower left), 141°
31'41.37"E — 37°4'44.67"N (upper right), 141°30'52.61"E — 35°1'32.55"N (lower right), Fig. 2
(left). The study area is the largest and the most important metropolitan area of Japan that includes
both industrial and recreational zones for the 37,393,129 citizens of Tokyo (World Population
Review (2020). It is the largest city economy in the world and is one of the major global center
of trade and commerce. The coastline of Tokyo Bay is heavily industrialized, the elevations of
the landscape are relatively flat comparing to the most of Honshu, with mostly dominating low
hills.
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Geomorphology of the Kanto region is slightly bent southeast towards Pacific Ocean forming a
basin centered in the Tone River and Tokyo Bay. The area is notable for hilly relief in the Kanto
Plain rising higher than surrounding plateaus, typically undulating at 100 and 200 m above sea
level. The elevations gradually decline eastward towards the Pacific Ocean, measuring 20 m at
the coast of Yamanote, Tokyo Bay. Several plateaus form Kantd plain covered with a thick layer
of loam of volcanic origin on their surfaces. Volcanic ashes have origine from surrounding
volcanoes: Mounts Asama, Haruna, Akagi, Hakone, Fuji (Nihon Daihyakka Jiten, Shogakkan,
2020). The area undergoes a continuous process of tectonic development which results in the
gradual sinking of the plain's central region. Geological instability of the region can be illustrated
by the earthquakes, some of which devastating and involving hazardous consequences.

Kanto region is the most highly developed, urbanized, and industrialized part of Japan with high
concentration of light, automotive and heavy industry along Tokyo Bay and in major cities:
Kawasaki, Saitama, Chiba. With about one third of the total population of Japan, the region is
highly populated. As a result, this increases anthropogenic pressure and leads to possible gradual
changes in the land cover types. Due to the importance of the area within the country, its
landscapes should be monitored and regular mapping maintained using GIS tools.

Recent studies on Kanto region shown changes in land use, land cover types, precipitation,
relative humidity, and temperatures caused by global warming through various methods of
modelling (Taniguchi, 2016; Sato et al., 2016). Further contribution towards geospatial studies
of Kanto region is technically presented in this paper which tested functionality of GRASS GIS
for multi-temporal analysis of satellite Landsat TM images at 2001, 2006 and 2011.

2 METHODOLOGY

Methodology of this paper is based on using GRASS (Geographic Resources Analysis Support
System) GIS, a free open source software. The fundamental principles of RS data processing in
GRASS GIS were used and applied in this work using technical documentation of GRASS GIS:
manuals, references and previous studies (Neteler and Mitasova, 2004, Neteler, 2000, 2001). with
a special focus of using modules for RS data processing (Neteler, 2005) which are fundamentally
based on measurements of the radiation reflected from the surface as detected on the Landsat TM
images. As well known, the Landsat TM images have seven spectral bands and one thermal
infrared radiation band, and have spatial resolution of 30 m.

Technical properties, characteristics and nature of the Landsat TM images are well described in
multiple published works (to mention a few of them: Chander et al., 2009; Masek et al., 2001;
Barsi et al., 2003; Richards and Xiuping, 1999, McGowan & Mallyon, 1996; Arvidson et al.,
2001 2006; Beuchle et al., 2011; Markham et al., 2004; Hellweger et al., 2004; Goodwin and
Collett, 2014) which were considered in this work. Since image data belong to raster type in their
nature and file structure (Eastman, 1993), image processing by GRASS GIS also included raster
data modules (e.g. d.rast, g.list rast, r.report) which were used in this paper together with
specialized image processing modules (e.g. i.group, i.cluster, i.maxlik).
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The techniques of this research include GRASS GIS modules for raster data analysis and special
modules for image processing with approach of the unsupervised (machine-based) 'Maximum
Likelihood' (MaxLike) classification. MaxLike method is based on parameter estimation of raster
cells. MaxLike estimation statistical algorithm determines spectral values of each of the cell
representing the parameters of land cover types as a map model.

2.1 Data

Data were collected at the USGS Global Visualization Viewer (GloVis), an online open public
search and order tool for selected remote sensing data: https://glovis.usgs.gov/, Fig. 1. The
imagery consists of three Landsat TM scenes with 5-year time span: 2001, 2006, 2011, Tab. 1.

Table 1
Technical metadata of the Landsat TM satellite images, Satellite Number: Landsat7, Resampling
Technique: CC

Characteristics Landsat TM 2001 Landsat TM 2006 Landsat TM 2011
Entity ID P1°7R03952—47X20010 LE71070352006313EDC00  LE71070352011103EDC00
Acquisition Date 2001/09/24 2006/11/09 2011/04/13
WRS Path 107 107 107
WRS Row 35 35 35
WRS Type LI1Gt LIT LIT
Time Series GLS2000 GLS2005 GLS2010
Datum WGS84 WGS84 WGS84
Zone Number 54 54 54
File Size 277472401 249175968 290727647
Orientation NUP NUP NUP
Product Type LI1Gt LIT LIT
Sun Azimuth 145°.8942551 157°.282528 137°.1883665
Sun Elevation 48°.21465 34°.0228493 55°.8559188

Center Latitude

Center Longitude
NW Corner Lat
NW Corner Long
NE Corner Lat

NE Corner Long
SE Corner Lat

SE Corner Long
SW Corner Lat

SW Corner Long
Center Latitude dec

Center Longitude dec
NW Corner Lat dec

36°02'17.16"N
140°02'36.97"E
36°59'24.38"N
139°15'57.64"E
36°41'44.67"N
141°17'24.99"E
35°04'50.19"N
140°48'08.39"E
35°22'05.14"N
138°49'04.85"E
36°.038101
140°.0436035
36°.9901063

36°04'24.24"N
140°00'06.12"E
37°02'19.32"N
139°11'02.04"E
36°43'51.60"N
141°17'36.96"E
35°06'02.16"N
140°47'48.84"E
35°24'07.20"N
138°43'47.28"E
36°.0734
140°.0017
37°.0387

(continued)

36°0222.88"N
140°07'26.58"E
36°59'27.20"N
139°18'07.20"E
36°41'04.24"N
141°24'39.35"E
35°05'04.67"N
140°55'31.51"E
35°23'04.92"N
138°51'29.70"E
36°.03969
140°.12405
36°.99089
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Table 1 (continued)

Technical metadata of the Landsat TM satellite images, Satellite Number: Landsat7, Resampling
Technique: CC

Characteristics Landsat TM 2001 Landsat TM 2006 Landsat TM 2011

NW Corner Long dec 139°.2660118 139°.1839 139°.302

NE Corner Lat dec 36°.6957406 36°.731 36°.68451
NE Corner Long dec 141°.2902738 141°.2936 141°.41093
SE Corner Lat dec 35°.080607 35°.1006 35°.08463
SE Corner Long dec 140°.8023302 140°.7969 140°.92542
SW Corner Lat dec 35°.3680942 35°.402 35°.3847

SW Corner Long 138°.8180141 138°.7298 138°.85825

These image scenes were projected automatically to the UTM projection, Zone 54N, datum
WGS84 (Fig. 2), and a GRASS GIS project containing nine Landsat TM channels for each of
three images was generated using this projection. Geographically, the images cover Kantd region,
Greater Tokyo Area, Japan.

Home Take Tour Release Notes FAQ Preferences  Feedback  Logout [|

Choose Your Data Set{s)

(D) ASTER Lovei 1T O T
(D) ooco

D o1 au0

D) €01 Hyparion 0

@) siobal Land Survey © T
3 scones match your criberia

(D) s awirs 0

‘Metadats Filter

Dute Range
o600 2000 © o on o/ O

Global Land Survey LE710703251 1153EDC00

Figure 1. Data capture at USGS GloVis.

2.2 Raster data preprocessing in GDAL

The initial files pre-processing was done using GDAL library which was run by GMT, Fig. 2.
The explanation of the GDAL data processing consists in following subtasks:
1. The metadata were checked: gdalinfo p107r035_7dk20010924 z54 61.tif
2. The file was then rotated to the north and the resolution of the GeoTIFF was enforced
to 30 (from the initial 60 m) using -tr flag which sets the output file resolution (in target
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georeferenced units): gdalwarp -tr 30 30 pl07r035 7dk20010924 z54 61.tif
p107r035_7dk20010924 z54 61 rot.tif

3. After transformation and warping the GeoTIFF, its metadata were again checked up:
gdalinfo p107r035_7dk20010924 z54 61 rot.tif

2.3. Image Processing in GRASS GIS

2.3.1 Processing color composites by d.rgb and r.composite modules

After the data were processed in GDAL, the scenes were converted to GRASS GIS via ‘r.in.gdal’
utility: r.in.gdal p107r035 7dk20010924 z54 61.tif out=lIsat7 2001 61 and repeated for each
spectral band for all the three images (2001, 2006 and 2011), Fig. 3 (left: console scripting in
GRASS, right: shell script in Xcode environment). After all the images were read into the GIS
project, the images were processed using raster and image processing modules of GRASS GIS,
as described below. A simple color-composite image was obtained from 3 grey-colored channels
selected from several channels combined in one image by assigning each channel to a different
base color. A near-natural colored image was generated from a combination of blue, green and
red channels (each one is grey-colored). Then, gray-colored channels 10, 20 and 30 were assigned
to blue, green, and red color of the GRASS color composition module, respectively, (Fig. 4) using
a sequence of GRASS GIS commands:

e gregion rast=Isat7 2001 61 -p

e r.colors Isat7 2001 10 col=grey

e r.colors Isat7 2001 20 col=grey

e r.colors Isat7 2001 30 col=grey

e d.mon wx0

e d.erase

e d.rgb b=lIsat7 2001 10 g=lsat7 2001 20 r=Isat7 2001 30

Here, grey scale color table was applied to the channels 10, 20 and 30, respectively, from which
a near-natural color composite was generated by d.rgb into the GRASS monitor (Fig. 4). GRASS
module ‘d.rgb’ was used to display RGB triplets as an overlay in the active graphics frame. Then,
this color composites was stored as new map using ‘r.composite’ module by GRASS code:
r.composite blue=lIsat7 2001 10 green=lIsat7 2001 20 red=lIsat7 2001 30
output=Isat7 2001 rgb. Finally, this file was read into the project and checked up using g.list rast
module which shows the content of the raster files within current project.
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@ Terminal Shell Edit View Window Help.

®  ® | pauline — bash --rcfile /varffolders/h0/tbj87rtj2tvdgp0q94iwe_ 0000 ® = @

bash-3.25 gdalinfo pl@7r@35_7dk20010924_z54_61.tif
Driver: GTiff/GeoTIFF
Files: pl@7r@35_7dk20010924_z54_61.tif
Size is 4270, 3796
Coordinate System is:
PROJCS ["WGS 84 / UTM zone 54N",
GEQOGLS ["WGS B4,
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY ["EPSG","7038"]],
AUTHORITY ["EPSG","6326"11,
PRIMEM[“Greemwich", B,
AUTHORITY ["EPSG","B981"]],
UNIT["degree",®.0174532025199433,
AUTHORITY ["EPSG","9122"]1],
AUTHORITY ["EPSG™,"4326"]],
PROJECTION["Transverse_Mercator”],
PARAMETER [*latitude_of_origin*,@],
PARAMETER[“"central_meridian",141],
PARAMETER["scale_factor”,@.9996],
PARAMETER [ false_easting”,58@008],

@ Terminal Shell Edit View Window _Hel’p

gp0qg4iwe_qo000

pauline — bash --rcfile /var/folders/h0/tbiB7rj

|bash-3.25% gdalwarp -tr 28.5 28.5 pl@7r@35_7dk20018924_z54_61.%if ple7rad

Creating output file that is B989P x 7992L.

Processing pl@7r@35_7dk20010924_254_61.tif [1/1] : 9...18...

|bash-3.2% gdalinfo pl87r@35_7dk20818924_z54_61_rot.tif
Driver: GTiff/GeoTIFF
Files: p187r@35_7dk20019024_254_61_rot, tif
Size is 8989, 7992
Coordinate System is:
PROJCS["WGS B4 / UTM zone S4N",
GEDGLS ["WGS 847,
DATUM ["WGS_1984",
SPHEROID [“WGS 84" ,6378137,298,257223563,
AUTHORITY [EPSG",“ 783011,
AUTHORITY ["EPSG","6326"]],
PRIMEM ["Greenwich™,9,
AUTHORITY ["EPSG”, "8901"]],
UNIT["degree”,8.8174532925199433,
AUTHORITY [*EPSG™,"9122"1],
AUTHORITY [“EPSG™, "4326"]],
PROJECTION["Transverse_Mercator™],
PARAMETER [“latitude_of_origin®“,@],
PARAMETER [ central_meridian”,141],

28,..30,..40

PARAMETER["false_northing”,8],
UNIT["metre”,1,

AUTHORITY ["EPSG™, "9801"]],
AXIS["Easting",EAST],
AXIS[“"Northing” ,NORTHI,
AUTHORITY [YEPSG","32654"]]

Origin = (298745,
Pixel Size = (6@.

PARAMETER [“scale_factor”,0.9996],
PARAMETER [ false_easting",5000008],
PARAMETER " false_northing”, @],
UNIT["metre”,1,

AUTHORITY [*EPSG™, “0001%]1,
AXIS[“Easting®,EAST],
AXIS [*Northing™ ,NORTH],

4103775, )
-68. ) AUTHORITY ["EPSG" ,"32654" ] |

Metadata: Origin = (290745, 4183775, 1
AREA_OR_PDINT=Point Pixel Size = (28. =28, ]
Metadata:

TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
TIFFTAG_XRESOLUTION=72
TIFFTAG_YRESOLUTION=72

Image Structure Metadata:
INTERLEAVE=BAND

AREA_OR_POINT=Point
TIFFTAG_RESOLUTIONUNIT=2 ({pixels/inch)
TIFFTAG_XRESOLUTION=72
TIFFTAG_YRESOLUTION=72

1 Structure Metadata:
Corner Coordinates: .;:;ERLE:;EZE:ND: s

Upper Left ( 200745.008, 4183775.000) (138d38'47.82"E, 37d 3'24.84"N) | rner Conrdinates:

Lower Left | 290745.000, 3876015.800) (138d42'24.85"E, 35 0'18.47"N) |yooer teft ( 290745.000, 4103775.000) (138d38°47.82°E, 37d 3'24.84°N)
Upper Right | 546945.000, 4103775.000) (141d31'41.37"E, 37d 4'44.67"N) | qyer Left | 290745.000, 3876003.000) (138d42'24.87"E, 35d 0'16.8"N)
Lower Right { 546945.000, 387615.000) (141d30'52.61"E, 35d 1'32.55'N) |upper Right ( 546931.500, 4193775.800) (141d31°'40.83°E, 37d 4'44.67°N)

Center | 418845.000, 3989895.000) (140d 5'56.38"E, 36d 3' 0.82"N) |Lower Right [ 546931.500, 3876003.900) (141430°'52,088"E, 35d 1'32.16"N)

Band 1 Block=4278x1 TypesByte, ColorInterp=Gray Center [ 418838.258, 3989889.800) (140d 5'56.11"E, 36d 3' @.62"N)
Overviews: 1068x949 Band 1 Block=B989x1 Type=Ayte, ColorInterp=Gray

bash-3.25 I bash-3.2% [l

Figure 2. Image pre-processing in GDAL in bash console: gdalwarp and gdalinfo utilities run by GMT.

2.3.2 Maximum Likelihood classification

The principle of the Maximum Likelihood consists in the grouping of the pixels in each cell by
spectral classes according to the highest probability. Mathematical background of the
classification consists in Chi-square test classifies observed pixels into mutually exclusive classes
and repeats the process iteratively until a convergence is reached. The MaxLike classification
includes a two-step approach (Fig. 3, right): 1) clustering of the initial image by ‘i.cluster’ and
‘i.group’ modules; 2) Unsupervised classification of the image by ‘i.maxlik’ module. Second
steps also includes using auxiliary modules for raster data processing and visualization (e.g.
d.mon, d.rast, g.region). The details are explained below.

2.3.3 Clustering and generating spectral signatures by i.cluster and i.group

The GRASS GIS module "i.cluster' was used to generate spectral signatures for land cover types
in each of the Landsat TM images (2001, 2006 and 2011) using a Maximal Likelihood clustering
algorithm classifier. Then storing VIZ, NIR, MIR into group and subgroup, without Thermal
Infrared Sensor (TIR) was done using 'i.group' module of GRASS GIS. The resulting signature
file was used as an input for i.maxlik, to generate an unsupervised image classification, Fig. 3b.



12 Lemenkova, P. (2020). GRASS GIS for classification of Landsat TM images by maximum likelihood
discriminant analysis: Tokyo area, Japan.. Geodetski glasnik, 51, 5-25.

@& Terminal Shell Edit View Window Help @ Xcode File Edit View Find Navigate Editor Product Debug So
® e pauline — sh— 130x58 L N ) ¢ 34_GRASS_LandsatTM_i_class_maxliike copy — Edited
o T T T O e a) B B 34 GRASS_LandsatTM_i_class_maxlike copy.sh } No Selection b)

PV o o B A I\ W Y A A W ) h

TS PR SRS W S Ve

NS I

r.in.gdal plETrA3S_7dkTORIANZ4_154_61.TAF outeleat?_2081_s1
ML A PG, TS 7,0 0 e £.in.gdal p107r83s_7dkz0@18924_154_62.tif outsls
GRASS GIS hosepage: https://grass.osgen.arg s
TRis. Virglon rifa it Sns AT r.in.gdal plO7rd3S_7dpTOR18524_155_BA.tif out
Welp 13 madisble with the ¢ ; ekt r.in.gdal plO7rB3S_7diT0ELA%24_154_18. 147 out
See the liconce terms with: guversion -¢ £.in.gdn] BIOTO35_Td120010924_
See citation options with: goversion -x roin.gdal plO7rd3S_Tdt20810924_
It required, restart the GUL with: .91 wxpython £.in.gdal pLOTCO3S_TdrI0010924_
Mhen ready to quit entert exit r.in.gdal plETrO3S_7dt20810924_z84 5. tif outslsat?_201 %@
r.in.pdal pIBTEE3S_7d17081024_254_70.1i1 outslsat7_7081_78
Launching <wxpython> GUI in the background, please wait... @it rast

GRASS 7.6.2dev (Japan_LandsatT™)i~ > 83:32:54 PM: Debug: Adding duplicate image handler f
03:32:54 PM: Debug: Adding duplicate image handier for ‘Windows bitmap file®
§3:32:54 M Debug: Adding duplicate animatice handler for '1' type
03:32:54 MM: Debug: Adding duplicate animation kandler for '2' type
Jhgplicat RASS-T, 6, 300/ C gui_ meres. 1531 wPyDep
Use SetToolTip instead.

_["Double—click or Ctri-Enter to run selected module”))

.region rast=lsat?_2091 61 —p

.calors lsat?_2001_18 col=grey

.colors 1sat7_2001_29 colsgrey

.ealors 18817 2001 38 colsgray

Jman wxd

erase

.7gb belsat? 7001 18 g=lsat?_1801 28 r=lsat7_2001_30

BRAanHw RS E

GRASS 7.6.2dev (Japan_LandsatT™)i~ » g.list rast
PIRTO0S_Tdk20010924_s%4_61

<atT}i~ = r.in.gdal pIOTrR35_TOkI00LRZ4_I54_62.14¢ cutslsatT_200)_62
Ieparting raster map <lsat?_3001_62=...

r.composite blupslsat?_ 2001 18 greenslat7 2881 28 redslsst?_ 2081 30 cutput=lat? 2801 rgh
L]
roin,gdal plo7ri3s_ Topiea10a2d_s54_B0.tif out=lsat? 2601 80 d.man wel
d
Fl

dist rast

r.in.gdal pLOTFOXS_TSLI0010924_254_10. Tif out=lsat?_2001_10 erase
roin.gdal plOTrA%S_Tr2ee10924_s54_20.Kif out=lsat?_2001_20
r.in.gdal pLOTFOXS_TELTR0LNTA_254_30. Tif outslsati_I001_30

Jrast leat7_2001_rgb

ruin.gdal plOTroXS_TdE20010924_254_80.Tif out=\sat?_2001_s0 ” # {.cluster ssess NP
r.in.gdal plETrE3S T4r20010924_254_50. Tif cutslsat7_2e01_50 i.proup groupslsat? 2091 subgroupslzaty 2861

elagiel UL MEINIRAEH I EAF crbsloat] 200 irputelsaty 2001 18, 1sat7_J003_20, 1sat7_2083_39, 1sat7 2001 40, 1sat7_2001 50, 1sat7_ 2001 70
<atf™li= > r.in.gdal pIO7ridS_Tdpl0010924 sS4 80.tif out=lsat? 2001 80 . :

Tegorting raster map <isat? 2001 B@-...

1008

<M}t~ = 7. in.gdal PISTrEIS_TUTZONLRUZ4_ISA_18.11f outelsary 001 18
Isporting raster map <isat]_2081_10>...

1008

<atTH)i= > r.in.gdal pIO7rEIS_TR20010824 254 20.1F outslsat? 2091 2

i.cluster group=lsst?_ 2001 subgrowp=lsat? 2041 \
signaturefile=sig_cluster_lsat2ed1 \
classes=18 reportfile=rep_clust_lsat2eel.txt

maxlik group=lsat?_2881 subgroupslsat? 2801 \

Tsporting raster map =<isat] 3001 20s... i

100 signaturefilessig_cluster_lsat2ee1 \

BT = £, in.gdal PIRTE3S_TOT20010U24_154 39, 111 cutelsat] 2001 38 cutput=lsat? 2891 cluster_classes rejectslsat? 2001 cluster_reject —overwrite
Ingorting raster map <lsat?_2001_3... # visuslly check result

e d.mon wid

<@ETH) 1~ = 7. in.gdal PIOTIOIS_TOTZONINUZ4_ISE_48.11f outelsary 2001 a8 & rant g LneE S e ke

Inporting raster map <lsat? 2001 4f>... d.Tast.leg 10at7 2001 cluster_redect

1008
<at™)i~ > r.in.gdal pl@7r@dS_7dt200100204_s5%4_50.tif out=1lsat?_2001 50
Teporting raster map «isat7_2001_50s. ..

100%
<atTH} i~ = r.in.gdal p187re35_Tdt20010524 754 78,11t cutslsat?_ 2091 78
Isporting raster map <lsat?_2001_7e>...

100

r.report 1sat?_2801_cluster_reject units=i.p

lasses_tile

r.mapcale 20 3 \
GRASS 7.6.2dev (Jansn LandsatTli~ > Il L] if{lsat?_ 2001 cluster_reject <= 12, Lsat?_2001_cluster_classes, nulll))*

Figure 3. Images read into GRASS GIS environment via r.in.gdal utility (left) and image classification by
maximal likelihood approach classifier (right).

The fundamental principle of the Maximum Likelihood clustering algorithm consists in the
approach that it groups pixel values with similar statistical properties according to minimum
cluster size, separability, number of clusters. In this research number of clusters was defined as
ten (Fig. 4a). As a result of final iteration process, several clusters were merged as similar ones,
resulting in seven, ten and six clusters for Landsat scenes of 2001, 2006 and 2011, respectively
(Fig. 5, 6 and 7). Thus, at this step the number of signatures were identified and set up. Since the
studied target goal represents land cover types, the pixel clusters are image categories their
spectral reflectance on the ground.

Then the iterative clustering algorithm run by GRASS GIS computes the cluster means and
standard deviation (stddev) creates covariance matrices using module i.cluster (Fig. 4b). In such
a way it identifies pixels from the data pool which have similar spectral reflectance values in the
various channels. After creating means and standard deviation values, the machine analyses class
distribution for the image and creates a table (Fig. 4) reporting the results of the clustering and
takes a decision on the number of classes.
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Figure 4. Generated spectral signatures for land cover types in a Landsat TM-200 by MaxLike clustering
algorithm, i.cluster GRASS GIS module. The resulting signature file in 4 print screens a), b), c), d).



14 Lemenkova, P. (2020). GRASS GIS for classification of Landsat TM images by maximum likelihood
discriminant analysis: Tokyo area, Japan.. Geodetski glasnik, 51, 5-25.

The initial means for each of the clusters and statistical parameters is shown on Fig. 4a. The
statistics on clustering includes several technical parameters such as minimum class size, number
of initial clusters, minimum class separation, percent convergence, maximum number of
iterations (Fig. 4a) as well as geospatial data: region extent, list of Landsat TM bands, row and
column sampling intervals, means and standard deviation for bands. As can be seen on the report
table summarizing clustering of the scene for 2001 (Fig. 4b), three classes have insignificant
values (1, 0, 0), so that the images were reclassified for seven classes for the image scene of 2001.

Clustering Legend

§1) Closs 1

N 2} Closs 2

Figure 5. Landsat TM 2001 in near-natural colors: 10-20-30 channels (a) and classified image by i.maxlik
module, Maximum Likelihood discriminant classifier (b)

The next step includes iteration of the pixel to assign them to the classes so that each pixel,
grouped into clusters represents land use classes by spectral signature of a surface cover type
(various types of vegetation, water, urban areas, etc) assigned to a class (Fig. 4c). Final part of
the table generated by ‘i.cluster’ shows results of class separability matrix and reclassified cluster
number (Fig. 4d).

2.3.4 Classifying image by Maximal Likelihood classifier

Finally, classification of the images was done by GRASS GIS module i.maxlik. The ‘i.maxlik’
module performs unsupervised classification of the raster image which automatically assign
raster pixels to different spectral classes using embedded algorithm using image statistics
calculated by the machine. After the image bands were grouped by ‘i.group’ module and signature
created by ‘i.cluster’ module, the next step included image classification using module ‘i.maxlik’
(Fig. 3b).

The unsupervised classification is based on the Maximum Likelihood algorithm performed using
'.maxlik'. The 'i.maxlik' module assigns all pixels in the image to the classes generated at the
previous step as spectral signatures during clustering process. Thus, module 'i.maxlik' read in
information from the previous step during 'i.cluster' step: defined image group, subgroup and
signature file. The content of the signature file is presented on Fig. 4 in four printscreens: a), b),
c¢) and d). The next step includes visualization of the resulting image using ‘d.rast.leg’ module,
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which was was used to visually check the results of the image classification by displaying a raster
map and its legend.

1) Class
2) Class
3) Class
4) Closs
5) Class
6) Class
7) Closs
8) Class
9) Closs
10) Class

= 000~ OO W=

[=]

Figure 6. Landsat TM 2006 in combination of 10-50-30 channels as RGB triplet (a) and classified image by
i.maxlik module, Maximum Likelihood discriminant classifier (b).

The module ‘r.report’ was used to check up pixels that were rejected (misclassified) at given
classes and filtering out pixels with high level of rejection by ‘r.mapcalc’ module. Additional
technical steps were also made at the last step: created a file name for the image output (new
reclassified image) as well as a name for the reject threshold map with units k and p (Fig. 8
showing the results for the scene-2011, Fig. 9 for scene of 2006 and Fig. 10 for the scene 0f 2001).
The rejection probability map shows raster map category report (Fig. 8a) and pixel-wise
assignment of confidence levels (Fig. 8b).

Finally, the whole algorithm process was repeated iteratively for the two Landsat TM images:
2006 and 2011 with the output results shown on Fig.5, 6 and 7, respectively.

3 RESULTS

RS data modelling through comparative analysis of three Landsat TM images processed by
GRASS GIS revealed that the Greater Tokyo Area was differentiated in terms of structural units
of the land cover types. Various physio-geographical and social factors including city sprawl and
environmental changes affected current situation of the land cover types which was highlighted
and visualized on the images.

The land cover classification scheme has been performed using machine learning approach,
therefore, the direct classes are assigned by the automated procedures. However, the explanation
of the land cover types includes following usual classes presented in populated areas according
to Jensen (1980), modified: 1) built-up areas of Tokyo city and outskirts, 2) bare land surface,
cultivated agricultural lands, 3) farm lands 4) vegetation (type 1: coniferous), 5) vegetation (type
2: broadleaf trees), 6) vegetation (type 3: park and garden areas), 7) water bodies, deep (Pacific
Ocean), 8) water bodies, shallow: Tokyo Bay, lakes and reservoirs, 9) rock outcrops in the
mountainous areas, 10) image background.
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| 1) Closs 1

Figure 7. Landsat TM 2011 in combination of 10-50-30 channels as RGB triplet (a) and classified image by
i.maxlik module, Maximum Likelihood discriminant classifier (b).

The results of the Landsat TM of 2001 classification into land cover based on MaxLike approach
are shown on Fig. 5. Here the land categorization revealed a high percentage of the agricultural
lands (yellow color) in the northern and eastern parts of the study area Kantd region, especially
along the Tone River. Built-up areas (light green color) were identified in the of Tokyo city and
its outskirts, southern and central part of the study area. However, the results of the Landsat TM
of 2006 (Fig. 6) show that there is an increase in bare surface especially in the south western part
of the study area. There is also an increase in rocks areas in the mountainous areas and more
pixels assigned for water body considering the changed color of the water during time of the year
(2001/09/24, 2006/11/09 and 2011/04/13). The available image on 2006 was acquired during
November, image of 2011 — in April, while image of 2001 — in September. The differences in
data capture necessarily affected the color of the water masses on the satellite images, since
shallow coastal waters might have more active mixing turbulence in early autumn (September
2001) and therefore visualized by various colors.

This caused two various colors assigned to the water masses on the Landsat TM image of 2001.
Two images taken in late autumn and spring (November 2006 and April 2011, respectively)
shown more homogeneous assignment of the pixels to ‘water’ class.
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Figure 8. Rejection probability for cluster classes, here: Landsat TM 2011 image: console report (a) and
resulting image (b).

Furthermore, Fig. 7 (Landsat TM images of 2011) shows an increase in built-up areas and bare
surface (class 5) as compared with previous images (Fig. 5, Landsat TM images of 2001 ans Fig.
6, Landsat TM images of 2006) signifying variations in land cover use that might have been
caused by industrialization, climate variations and environmental effects.
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Figure 9. Rejection probability for cluster classes, here: Landsat TM 2006 image: console report (a) and
resulting image (b).

The rejection probability map (Fig. 8, example for the Landsat TM image of 2011, Fig. 9 for
Landsat TM image of 2006 and Fig. 10 for Landsat TM image of 2001) shows threshold contains
one calculated confidence level for each reclassified cell in the ‘reclass’ map.
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Figure 11. Matrix of separability generated by GRASS GIS for 3 images with class report for each scene.
Variations in class separability matrices and convergence for Landsat TM 2001, 2006 and 2011 scenes (from
left to right) with class means/standard deviation for each band.

High values in the rejection map (#10-16, values >70%) represent a high rejection probability for
the assigned classes. This map identifies cells in the reclassified image with the lowest probability
of being assigned to the correct class, since the classification is unsupervised. Variations in class
separability matrices and convergence for Landsat TM 2001, 2006 and 2011 images with class
means/standard deviation for each band are shown on Fig. 11.
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4 CONCLUSION

Automatization of data analysis is an important technique in cartography constantly developing
throughout recent decades along with rapid progress in computer sciences, updating and
modernization of the algorithms of machine learning and programming languages (Bertin, 1966;
Cauvin 1977; Benenson and Torrens 2004; Luzi and Pergalani, 1996; Lemenkova, 2019a, 2019b,
2019c, 2019d, 2020; Gauger et al., 2007; Schenke and Lemenkova, 2008; Suetova et al. 2005;
Robinson 1961). The need for automatization in GIS naturally leads to the demand for
programming based graphical plotting and statistical methods as important tools accompanying
geospatial research (Klauco et al., 2013a, 2013b, 2014, 2017; Lemenkova, 2019¢, 2019f).

However, it was only with active development of shell scripting, programming languages and the
modernization of their syntax and semantics that these methods began to be more widely used in
cartography (e.g. Lemenkova, 2019g, 2019h, 2019i). Instead of classic visualization of raster
grids and vector layers in GIS, additional use of machine learning and statistical data analysis in
cartography enables to operate with big data and massive geospatial data sets. Using approaches
of computer-based automatization is aimed to find a model which explains statistically the data
behavior by the language of maps, being developed since 1970s (Jenks 1976; Jensen 1980) and
rapidly progressed. Moreover, effective statistical plots and graphs highlight hidden correlations
between the geographic variables and illustrate numerical statistical results in the graphical visual
approach.

Geospatial analysis of the multi-temporal satellite images is a more direct approach which
combines statistical data analysis (raster pixels) and cartographic visualization (map layouts).
Multi-temporal image processing indicates the variations in the underlying structure of the land
cover types and changes in their RS model. Therefore, spatio-temporal data analysis in geography
is not a simple collection of RS data processing by GIS techniques but an important approach that
enables to reveal the phenomena of the environmental processes by technical overlay of data as
analysis of several satellite images. Such techniques necessarily require advanced methods of
data processing that incorporates both statistical and cartographic methods of data processing.
Specifically, for the Maximum Likelihood approach, the underlying algorithm is based on the
estimating the parameters of a probability distribution. Through analysis of the pixels on the
Landsat TM scenes, the algorithm maximizes a likelihood function, selecting the most probable
pixels in a raster in a statistical model of the observed cells. Through several iterations, GRASS
GIS achieves this goal using a comparison of the pixel values and assigning them to the clusters.

Current paper demonstrated cartographic functionality of the remote sensing data analysis using
GRASS GIS. The technique includes raster modules (d.rast, r.colors, g.region) and modules of
image processing (i.maxlik, i.cluster). The main aim of this paper was to perform automated
image classification (three different images of Landsat TM taken on 2001, 2006 and 2011 with
S-year time span) using Maximum Likelihood approach by GRASS GIS using automatically
generated spectral signatures. Spectral signatures were generated for land cover types in an image
using 'i.cluster' clustering algorithm and 'i.group' for clustering data into groups. The
classification was done using Maximum Likelihood classifier algorithm 'i.maxlik' using signature
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file. The results show variations in the land cover types for 3 different periods of image capture
(2001, 2006 and 2011) which also resulted in the automated grouping pixels into 7, 10 and 6
classes, respectively. The paper demonstrated technical functionality of the GRASS GIS applied
for multi-temporal image processing aimed at land cover change analysis using scripting
approach.
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