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Polina Lemenkova 

 
ABSTRACT

The presented paper is focused on satellite 
image analysis using GRASS GIS. The aim is to 
perform comparative analysis of the land cover 
changes in Tokyo metropolitan area through 
spatial analysis. Data include multi-temporal 
Landsat TM satellite images on 2002, 2006 and 
2011. The images were captured from GloVis 
USGS service and imported to GRASS GIS via 
GDAL (utilities gdalwarp, r.in.gdal, gdalinfo). 
The methodology is based on GRASS GIS. The 
technique includes raster modules (d.rast, 
r.colors, g.region) and modules of image 
processing (i.landsat.rgb, i.class). Color 
composites were created by modules d.rgb, 
r.composite and auxiliary modules for 
visualization (d.rast, r.colors, etc). Spectral 
signatures were generated in an image using 
'i.cluster' algorithm and 'i.group' for clustering 
data. The classification was done by Maximum 
Likelihhood classifier 'i.maxlik'. The results 
show variations in land cover types for 2001, 
2006 and 2011, which also resulted in the 
automated grouping pixels into 7, 10 and 6 
classes, respectively. The paper demonstrated 
technical functionality of the GRASS GIS 
applied for multi-temporal image processing 
aimed at land cover types / change analysis 
using shell scripting approach.  

Keywords: GRASS GIS, Landsat TM, image 
processing, raster, cartography, mapping 

 SAŽETAK

Rad je fokusiran na analizu satelitskih snimaka 
pomoću GRASS GIS-a, s ciljem komparativne 
analize promjena zemljišnog pokrova u 
metropolitanskom području Tokija putem 
prostorne analize. Podaci uključuju multi-
temporalne satelitske snimke Landsat TM za 
2002., 2006. i 2011. godinu. Snimci su dobiveni 
pomoću usluge GloVis USGS i uvezeni u 
GRASS GIS putem GDAL (alati gdalwarp, 
r.in.gdal, gdalinfo). Metodologija se zasniva na 
GRASS GIS-u. Tehnika uključuje rasterske 
module (d.rast, r.colors, g.region) i module 
obrade snimaka (i.landsat.rgb, i.class). 
Kompoziti u boji kreirani su pomoću modula 
d.rgb, r.composite i pomoćnih modula za 
vizuelizaciju (d.rast, r.colors, itd.). Spektralni 
potpisi generisani su na slici koristeći 
algoritam 'i.cluster' i 'i.group' za grupisanje 
podataka. Klasifikacija se obavila pomoću 
klasifikatora maksimalne vjerojatnosti 
„i.maxlik“. Rezultati pokazuju razlike u 
vrstama pokrova zemljišta za 2001., 2006. i 
2011. godinu, što je rezultiralo i 
automatizovanim grupisanjem piksela u 7, 10 i 
6 klasa. U radu je prikazana tehnička 
funkcionalnost GRASS GIS-a primijenjenog za 
multi-temporalnu obradu snimaka usmjerenih 
na vrste zemljišnog pokrivača / analizu 
promjena korištenjem pristupa shell 
skriptovanja. 

Ključne riječi: GRASS GIS, Landsat TM, 
obrada snimaka, raster, kartografija, 
kartografisanje 
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1 INTRODUCTION 

Remote sensing (RS) is an important GIS technology for gathering geographic data for Earth 
sciences using a variety of satellite and airborne platforms. RS data play a significant role in the  
spatio-temporal mapping of the land cover types and analysis of land use changes. Numerous 
publications on RS data processing by various software and approaches present describing these 
issues at a greater detail: general fundamentals of GIS and RS (Campbell, 1996; Jensen, 1996; 
Bill, 2016), application of Erdas Imagine (Letortu et al., 2020; Yüzügüllü & Aksoy, 2011; 
Lemenkova, 2015a; Avdan & Jovanovska, 2016), ILWIS GIS (Koolhoven et al., 2010; 
Lemenkova, 2015b; 2015c; 2015d), ENVI GIS (Hawbaker et al., 2020; Lemenkova, 2015e), 
ArcGIS (Kennedy et al., 2020; Lemenkova, 2011; Kautz et al., 2019), Idrisi GIS (Warner & 
Campagna, 2009; Gala & Melesse, 2012; Lemenkova, 2014; Abaidoo et al., 2019). These studies 
revealed that RS data processing is an effective approach for monitoring environmental trends 
revealing urban sprawl or land degradation, providing that there are reliable algorithms of raster 
data processing. Thus, RS data processing has become a popular GIS technology for land cover 
change analysis and environmental monitoring in recent decades.  

One of the advantages of RS data processing by GIS is that it enables analysis of the land cover 
types based on analysis of spectral reflectance of pixels indicating variation of land cover 
parameters with time. A key parameter in RS data processing is spectral reflectance of various 
land cover types derived from pixel values in a raster grid. Combination of various Landsat TM 
bands reveals and highlights areas of land cover change through adjusting colors and brightness 
of the pixels by analysis of their spectral reflectance. Therefore, it is possible to perform spatial 
analysis based on the multi-temporal analysis of raster data as a response to the need for land 
cover assessment in urban areas. Since the direct land monitoring is time-consuming and costly 
comparing to the RS data processing, the advantage of spatial analysis by GIS becomes clear.  

The study area covers eastern part of Kantō plain with square of 32,389 km2 (Nussbaum, 2005), 
the largest plain in Japan, located on Honshu Island of Japan Archipelago. The name ‘Kantō’ 
meaning ‘East of the Barrier’ is well illustrated eastern location of the Kantō region within 
Honshu Island. It has a basin area of 17,000 km2, covers more than half of the Kantō region. The 
area includes Greater Tokyo Area, the most populous metropolitan area in the world, which 
consists of the densely populated Tokyo City and several prefectures of the neighboring Chūbu 
region. The major river in the central part of the Kantō plain is the Tone River which flows 320 
km (Encyclopedia Britannica, 2012) southeastwards through the Kantō Plain to the Pacific Ocean 
with the largest drainage area in Japan of 16,840 km2. 

Geographically, the study area is limited by an inclined square at following coordinates: 138° 
38'47.82''E – 37°3'24.84''N (upper left), 138°42'24.85''E – 35°0'18.47''N (lower left), 141° 
31'41.37''E – 37°4'44.67''N (upper right), 141°30'52.61''E – 35°1'32.55''N (lower right), Fig. 2 
(left). The study area is the largest and the most important metropolitan area of Japan that includes 
both industrial and recreational zones for the 37,393,129 citizens of Tokyo (World Population 
Review (2020). It is the largest city economy in the world and is one of the major global center 
of trade and commerce. The coastline of Tokyo Bay is heavily industrialized, the elevations of 
the landscape are relatively flat comparing to the most of Honshu, with mostly dominating low 
hills.  
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Geomorphology of the Kantō region is slightly bent southeast towards Pacific Ocean forming a 
basin centered in the Tone River and Tokyo Bay. The area is notable for hilly relief in the Kantō 
Plain rising higher than surrounding plateaus, typically undulating at 100 and 200 m above sea 
level. The elevations gradually decline eastward towards the Pacific Ocean, measuring 20 m at 
the coast of Yamanote, Tokyo Bay. Several plateaus form Kantō plain covered with a thick layer 
of loam of volcanic origin on their surfaces. Volcanic ashes have origine from surrounding 
volcanoes: Mounts Asama, Haruna, Akagi, Hakone, Fuji (Nihon Daihyakka Jiten, Shōgakkan, 
2020). The area undergoes a continuous process of tectonic development which results in the 
gradual sinking of the plain's central region. Geological instability of the region can be illustrated 
by the earthquakes, some of which devastating and involving hazardous consequences. 

Kantō region is the most highly developed, urbanized, and industrialized part of Japan with high 
concentration of light, automotive and heavy industry along Tokyo Bay and in major cities: 
Kawasaki, Saitama, Chiba. With about one third of the total population of Japan, the region is 
highly populated. As a result, this increases anthropogenic pressure and leads to possible gradual 
changes in the land cover types. Due to the importance of the area within the country, its 
landscapes should be monitored and regular mapping maintained using GIS tools.  

Recent studies on Kanto region shown changes in land use, land cover types, precipitation, 
relative humidity, and temperatures caused by global warming through various methods of 
modelling (Taniguchi, 2016; Sato et al., 2016). Further contribution towards geospatial studies 
of Kantō region is technically presented in this paper which tested functionality of GRASS GIS 
for multi-temporal analysis of satellite Landsat TM images at 2001, 2006 and 2011. 

 
2 METHODOLOGY 
 
Methodology of this paper is based on using GRASS (Geographic Resources Analysis Support 
System) GIS, a free open source software. The fundamental principles of RS data processing in 
GRASS GIS were used and applied in this work using technical documentation of GRASS GIS: 
manuals, references and previous studies (Neteler and Mitasova, 2004; Neteler, 2000, 2001). with 
a special focus of using modules for RS data processing (Neteler, 2005) which are fundamentally 
based on measurements of the radiation reflected from the surface as detected on the Landsat TM 
images. As well known, the Landsat TM images have seven spectral bands and one thermal 
infrared radiation band, and have spatial resolution of 30 m.  
 
Technical properties, characteristics and nature of the Landsat TM images are well described in 
multiple published works (to mention a few of them: Chander et al., 2009; Masek et al., 2001; 
Barsi et al., 2003; Richards and Xiuping, 1999, McGowan & Mallyon, 1996; Arvidson et al., 
2001 2006; Beuchle et al., 2011; Markham et al., 2004; Hellweger et al., 2004; Goodwin and 
Collett, 2014) which were considered in this work. Since image data belong to raster type in their 
nature and file structure (Eastman, 1993), image processing by GRASS GIS also included raster 
data modules (e.g. d.rast, g.list rast, r.report) which were used in this paper together with 
specialized image processing modules (e.g. i.group, i.cluster, i.maxlik).  
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The techniques of this research include GRASS GIS modules for raster data analysis and special 
modules for image processing with approach of the unsupervised (machine-based) 'Maximum 
Likelihood' (MaxLike) classification. MaxLike method is based on parameter estimation of raster 
cells. MaxLike estimation statistical algorithm determines spectral values of each of the cell 
representing the parameters of land cover types as a map model.  
 
 
2.1 Data 
 
Data were collected at the USGS Global Visualization Viewer (GloVis), an online open public 
search and order tool for selected remote sensing data: https://glovis.usgs.gov/, Fig. 1. The 
imagery consists of three Landsat TM scenes with 5-year time span: 2001, 2006, 2011, Tab. 1. 
 
Table 1 
Technical metadata of the Landsat TM satellite images, Satellite Number: Landsat7, Resampling 
Technique: CC  
 

Characteristics Landsat TM 2001 Landsat TM 2006 Landsat TM 2011 

Entity ID P107R035_7X20010
924

LE71070352006313EDC00 LE71070352011103EDC00 

Acquisition Date 2001/09/24 2006/11/09 2011/04/13 

WRS Path 107 107 107 

WRS Row 35 35 35 

WRS Type L1Gt L1T L1T 
Time Series GLS2000 GLS2005 GLS2010 

Datum WGS84 WGS84 WGS84 

Zone Number 54 54 54 

File Size 277472401 249175968 290727647 

Orientation NUP NUP NUP 

Product Type L1Gt L1T L1T 

Sun Azimuth 145°.8942551 157°.282528 137°.1883665 

Sun Elevation 48°.21465 34°.0228493 55°.8559188 

Center Latitude 36°02'17.16"N 36°04'24.24"N 36°02'22.88"N 

Center Longitude 140°02'36.97"E 140°00'06.12"E 140°07'26.58"E 

NW Corner Lat 36°59'24.38"N 37°02'19.32"N 36°59'27.20"N 

NW Corner Long 139°15'57.64"E 139°11'02.04"E 139°18'07.20"E 

NE Corner Lat 36°41'44.67"N 36°43'51.60"N 36°41'04.24"N 

NE Corner Long 141°17'24.99"E 141°17'36.96"E 141°24'39.35"E 

SE Corner Lat 35°04'50.19"N 35°06'02.16"N 35°05'04.67"N 

SE Corner Long 140°48'08.39"E 140°47'48.84"E 140°55'31.51"E 

SW Corner Lat 35°22'05.14"N 35°24'07.20"N 35°23'04.92"N 

SW Corner Long 138°49'04.85"E 138°43'47.28"E 138°51'29.70"E 

Center Latitude dec 36°.038101 36°.0734 36°.03969 

Center Longitude dec 140°.0436035 140°.0017 140°.12405 

NW Corner Lat dec 36°.9901063 37°.0387 36°.99089 

(continued) 
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Table 1 (continued) 
Technical metadata of the Landsat TM satellite images, Satellite Number: Landsat7, Resampling 
Technique: CC  

 
Characteristics Landsat TM 2001 Landsat TM 2006 Landsat TM 2011 

NW Corner Long dec 139°.2660118 139°.1839 139°.302 

NE Corner Lat dec 36°.6957406 36°.731 36°.68451 

NE Corner Long dec 141°.2902738 141°.2936 141°.41093 

SE Corner Lat dec 35°.080607 35°.1006 35°.08463 

SE Corner Long dec 140°.8023302 140°.7969 140°.92542 

SW Corner Lat dec 35°.3680942 35°.402 35°.3847 

SW Corner Long 138°.8180141 138°.7298 138°.85825 

 
These image scenes were projected automatically to the UTM projection, Zone 54N, datum 
WGS84 (Fig. 2), and a GRASS GIS project containing nine Landsat TM channels for each of 
three images was generated using this projection. Geographically, the images cover Kantō region, 
Greater Tokyo Area, Japan.  
 

 
Figure 1. Data capture at USGS GloVis. 
 
 
2.2 Raster data preprocessing in GDAL 
 
The initial files pre-processing was done using GDAL library which was run by GMT, Fig. 2. 
The explanation of the GDAL data processing consists in following subtasks: 

1. The metadata were checked: gdalinfo p107r035_7dk20010924_z54_61.tif 
2. The file was then rotated to the north and the resolution of the GeoTIFF was enforced 

to 30 (from the initial 60 m) using -tr flag which sets the output file resolution (in target 
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georeferenced units): gdalwarp -tr 30 30 p107r035_7dk20010924_z54_61.tif 
p107r035_7dk20010924_z54_61_rot.tif 

3. After transformation and warping the GeoTIFF, its metadata were again checked up: 
gdalinfo p107r035_7dk20010924_z54_61_rot.tif 

 
 

2.3. Image Processing in GRASS GIS 
 
2.3.1 Processing color composites by d.rgb and r.composite modules 
 
After the data were processed in GDAL, the scenes were converted to GRASS GIS via ‘r.in.gdal’ 
utility: r.in.gdal p107r035_7dk20010924_z54_61.tif out=lsat7_2001_61 and repeated for each 
spectral band for all the three images (2001, 2006 and 2011), Fig. 3 (left: console scripting in 
GRASS, right: shell script in Xcode environment). After all the images were read into the GIS 
project, the images were processed using raster and image processing modules of GRASS GIS, 
as described below. A simple color-composite image was obtained from 3 grey-colored channels 
selected from several channels combined in one image by assigning each channel to a different 
base color. A near-natural colored image was generated from a combination of blue, green and 
red channels (each one is grey-colored). Then, gray-colored channels 10, 20 and 30 were assigned 
to blue, green, and red color of the GRASS color composition module, respectively, (Fig. 4) using 
a sequence of GRASS GIS commands: 

 g.region rast=lsat7_2001_61 -p 

 r.colors lsat7_2001_10 col=grey 

 r.colors lsat7_2001_20 col=grey 

 r.colors lsat7_2001_30 col=grey 

 d.mon wx0 

 d.erase 

 d.rgb b=lsat7_2001_10 g=lsat7_2001_20 r=lsat7_2001_30 

Here, grey scale color table was applied to the channels 10, 20 and 30, respectively, from which 
a near-natural color composite was generated by d.rgb into the GRASS monitor (Fig. 4). GRASS 
module ‘d.rgb’ was used to display RGB triplets as an overlay in the active graphics frame. Then, 
this color composites was stored as new map using ‘r.composite’ module by GRASS code: 
r.composite blue=lsat7_2001_10 green=lsat7_2001_20 red=lsat7_2001_30 
output=lsat7_2001_rgb. Finally, this file was read into the project and checked up using g.list rast 
module which shows the content of the raster files within current project. 
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Figure 2. Image pre-processing in GDAL in bash console: gdalwarp and gdalinfo utilities run by GMT. 
 
 
2.3.2 Maximum Likelihood classification  
 
The principle of the Maximum Likelihood consists in the grouping of the pixels in each cell by 
spectral classes according to the highest probability. Mathematical background of the 
classification consists in Chi-square test classifies observed pixels into mutually exclusive classes 
and repeats the process iteratively until a convergence is reached. The MaxLike classification 
includes a two-step approach (Fig. 3, right): 1) clustering of the initial image by ‘i.cluster’ and 
‘i.group’ modules; 2) Unsupervised classification of the image by ‘i.maxlik’ module. Second 
steps also includes using auxiliary modules for raster data processing and visualization (e.g. 
d.mon, d.rast, g.region). The details are explained below.  
 
2.3.3 Clustering and generating spectral signatures by i.cluster and i.group 
 
The GRASS GIS module 'i.cluster' was used to generate spectral signatures for land cover types 
in each of the Landsat TM images (2001, 2006 and 2011) using a Maximal Likelihood clustering 
algorithm classifier. Then storing VIZ, NIR, MIR into group and subgroup, without Thermal 
Infrared Sensor (TIR) was done using 'i.group' module of GRASS GIS. The resulting signature 
file was used as an input for i.maxlik, to generate an unsupervised image classification, Fig. 3b. 
 



12 Lemenkova, P. (2020). GRASS GIS for classification of Landsat TM images by maximum likelihood 
discriminant analysis: Tokyo area, Japan.. Geodetski glasnik, 51, 5-25. 

 

 
Figure 3. Images read into GRASS GIS environment via r.in.gdal utility (left) and image classification by 
maximal likelihood approach classifier (right). 
 
The fundamental principle of the Maximum Likelihood clustering algorithm consists in the 
approach that it groups pixel values with similar statistical properties according to minimum 
cluster size, separability, number of clusters. In this research number of clusters was defined as 
ten (Fig. 4a). As a result of final iteration process, several clusters were merged as similar ones, 
resulting in seven, ten and six clusters for Landsat scenes of 2001, 2006 and 2011, respectively 
(Fig. 5, 6 and 7). Thus, at this step the number of signatures were identified and set up. Since the 
studied target goal represents land cover types, the pixel clusters are image categories their 
spectral reflectance on the ground.  
 
Then the iterative clustering algorithm run by GRASS GIS computes the cluster means and 
standard deviation (stddev) creates covariance matrices using module i.cluster (Fig. 4b). In such 
a way it identifies pixels from the data pool which have similar spectral reflectance values in the 
various channels. After creating means and standard deviation values, the machine analyses class 
distribution for the image and creates a table (Fig. 4) reporting the results of the clustering and 
takes a decision on the number of classes.  
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Figure 4. Generated spectral signatures for land cover types in a Landsat TM-200 by MaxLike clustering 
algorithm, i.cluster GRASS GIS module. The resulting signature file in 4 print screens a), b), c), d).  
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The initial means for each of the clusters and statistical parameters is shown on Fig. 4a. The 
statistics on clustering includes several technical parameters such as minimum class size, number 
of initial clusters, minimum class separation, percent convergence, maximum number of 
iterations (Fig. 4a) as well as geospatial data: region extent, list of Landsat TM bands, row and 
column sampling intervals, means and standard deviation for bands. As can be seen on the report 
table summarizing clustering of the scene for 2001 (Fig. 4b), three classes have insignificant 
values (1, 0, 0), so that the images were reclassified for seven classes for the image scene of 2001.  
 

 
Figure 5. Landsat TM 2001 in near-natural colors: 10-20-30 channels (a) and classified image by i.maxlik 
module, Maximum Likelihood discriminant classifier (b) 
 
The next step includes iteration of the pixel to assign them to the classes so that each pixel, 
grouped into clusters represents land use classes by spectral signature of a surface cover type 
(various types of vegetation, water, urban areas, etc) assigned to a class (Fig. 4c). Final part of 
the table generated by ‘i.cluster’ shows results of class separability matrix and reclassified cluster 
number (Fig. 4d).  
 
2.3.4 Classifying image by Maximal Likelihood classifier 
 
Finally, classification of the images was done by GRASS GIS module i.maxlik. The ‘i.maxlik’ 
module performs unsupervised classification of the raster image which automatically assign 
raster pixels to different spectral classes using embedded algorithm using image statistics 
calculated by the machine. After the image bands were grouped by ‘i.group’ module and signature 
created by ‘i.cluster’ module, the next step included image classification using module ‘i.maxlik’ 
(Fig. 3b).  
 
The unsupervised classification is based on the Maximum Likelihood algorithm performed using 
'i.maxlik'. The 'i.maxlik' module assigns all pixels in the image to the classes generated at the 
previous step as spectral signatures during clustering process. Thus, module 'i.maxlik' read in 
information from the previous step during 'i.cluster' step: defined image group, subgroup and 
signature file. The content of the signature file is presented on Fig. 4 in four printscreens: a), b), 
c) and d). The next step includes visualization of the resulting image using ‘d.rast.leg’ module, 
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which was was used to visually check the results of the image classification by displaying a raster 
map and its legend.  
 

 
Figure 6. Landsat TM 2006 in combination of 10-50-30 channels as RGB triplet (a) and classified image by 
i.maxlik module, Maximum Likelihood discriminant classifier (b). 
 
The module ‘r.report’ was used to check up pixels that were rejected (misclassified) at given 
classes and filtering out pixels with high level of rejection by ‘r.mapcalc’ module. Additional 
technical steps were also made at the last step: created a file name for the image output (new 
reclassified image) as well as a name for the reject threshold map with units k and p (Fig. 8 
showing the results for the scene-2011, Fig. 9 for scene of 2006 and Fig. 10 for the scene of 2001). 
The rejection probability map shows raster map category report (Fig. 8a) and pixel-wise 
assignment of confidence levels (Fig. 8b).  
 
Finally, the whole algorithm process was repeated iteratively for the two Landsat TM images: 
2006 and 2011 with the output results shown on Fig.5, 6 and 7, respectively.  
 
 
3 RESULTS 
 
RS data modelling through comparative analysis of three Landsat TM images processed by 
GRASS GIS revealed that the Greater Tokyo Area was differentiated in terms of structural units 
of the land cover types. Various physio-geographical and social factors including city sprawl and 
environmental changes affected current situation of the land cover types which was highlighted 
and visualized on the images.   
 
The land cover classification scheme has been performed using machine learning approach, 
therefore, the direct classes are assigned by the automated procedures. However, the explanation 
of the land cover types includes following usual classes presented in populated areas according 
to Jensen (1980), modified: 1) built-up areas of Tokyo city and outskirts, 2) bare land surface, 
cultivated agricultural lands, 3) farm lands 4) vegetation (type 1: coniferous), 5) vegetation (type 
2: broadleaf trees), 6) vegetation (type 3: park and garden areas), 7) water bodies, deep (Pacific 
Ocean), 8) water bodies, shallow: Tokyo Bay, lakes and reservoirs, 9) rock outcrops in the 
mountainous areas, 10) image background. 
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Figure 7. Landsat TM 2011 in combination of 10-50-30 channels as RGB triplet (a) and classified image by 
i.maxlik module, Maximum Likelihood discriminant classifier (b). 
 
The results of the Landsat TM of 2001 classification into land cover based on MaxLike approach 
are shown on Fig. 5. Here the land categorization revealed a high percentage of the agricultural 
lands (yellow color) in the northern and eastern parts of the study area Kantō region, especially 
along the Tone River. Built-up areas (light green color) were identified in the of Tokyo city and 
its outskirts, southern and central part of the study area. However, the results of the Landsat TM 
of 2006 (Fig. 6) show that there is an increase in bare surface especially in the south western part 
of the study area. There is also an increase in rocks areas in the mountainous areas and more 
pixels assigned for water body considering the changed color of the water during time of the year 
(2001/09/24, 2006/11/09 and 2011/04/13). The available image on 2006 was acquired during 
November, image of 2011 – in April, while image of 2001 – in September. The differences in 
data capture necessarily affected the color of the water masses on the satellite images, since 
shallow coastal waters might have more active mixing turbulence in early autumn (September 
2001) and therefore visualized by various colors. 
This caused two various colors assigned to the water masses on the Landsat TM image of 2001. 
Two images taken in late autumn and spring (November 2006 and April 2011, respectively) 
shown more homogeneous assignment of the pixels to ‘water’ class.   
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Figure 8. Rejection probability for cluster classes, here: Landsat TM 2011 image: console report (a) and 
resulting image (b).  
 
Furthermore, Fig. 7 (Landsat TM images of 2011) shows an increase in built-up areas and bare 
surface (class 5) as compared with previous images (Fig. 5, Landsat TM images of 2001 ans Fig. 
6, Landsat TM images of 2006) signifying variations in land cover use that might have been 
caused by industrialization, climate variations and environmental effects.  
 

 
Figure 9. Rejection probability for cluster classes, here: Landsat TM 2006 image: console report (a) and 
resulting image (b). 
 
The rejection probability map (Fig. 8, example for the Landsat TM image of 2011, Fig. 9 for 
Landsat TM image of 2006 and Fig. 10 for Landsat TM image of 2001) shows threshold contains 
one calculated confidence level for each reclassified cell in the ‘reclass’ map.  
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Figure 10. Rejection probability for cluster classes, here: Landsat TM 2001 image: console report (a) and 
resulting image (b). 
 

 
Figure 11. Matrix of separability generated by GRASS GIS for 3 images with class report for each scene. 
Variations in class separability matrices and convergence for Landsat TM 2001, 2006 and 2011 scenes (from 
left to right) with class means/standard deviation for each band. 
 
High values in the rejection map (#10-16, values >70%) represent a high rejection probability for 
the assigned classes. This map identifies cells in the reclassified image with the lowest probability 
of being assigned to the correct class, since the classification is unsupervised. Variations in class 
separability matrices and convergence for Landsat TM 2001, 2006 and 2011 images with class 
means/standard deviation for each band are shown on Fig. 11. 
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4 CONCLUSION 
 

Automatization of data analysis is an important technique in cartography constantly developing 
throughout recent decades along with rapid progress in computer sciences, updating and 
modernization of the algorithms of machine learning and programming languages (Bertin, 1966; 
Cauvin 1977; Benenson and Torrens 2004; Luzi and Pergalani, 1996; Lemenkova, 2019a, 2019b, 
2019c, 2019d, 2020; Gauger et al., 2007; Schenke and Lemenkova, 2008; Suetova et al. 2005; 
Robinson 1961). The need for automatization in GIS naturally leads to the demand for 
programming based graphical plotting and statistical methods as important tools accompanying 
geospatial research (Klaučo et al., 2013a, 2013b, 2014, 2017; Lemenkova, 2019e, 2019f).  
 
However, it was only with active development of shell scripting, programming languages and the 
modernization of their syntax and semantics that these methods began to be more widely used in 
cartography (e.g. Lemenkova, 2019g, 2019h, 2019i). Instead of classic visualization of raster 
grids and vector layers in GIS, additional use of machine learning and statistical data analysis in 
cartography enables to operate with big data and massive geospatial data sets. Using approaches 
of computer-based automatization is aimed to find a model which explains statistically the data 
behavior by the language of maps, being developed since 1970s (Jenks 1976; Jensen 1980) and 
rapidly progressed. Moreover, effective statistical plots and graphs highlight hidden correlations 
between the geographic variables and illustrate numerical statistical results in the graphical visual 
approach.  
 
Geospatial analysis of the multi-temporal satellite images is a more direct approach which 
combines statistical data analysis (raster pixels) and cartographic visualization (map layouts). 
Multi-temporal image processing indicates the variations in the underlying structure of the land 
cover types and changes in their RS model. Therefore, spatio-temporal data analysis in geography 
is not a simple collection of RS data processing by GIS techniques but an important approach that 
enables to reveal the phenomena of the environmental processes by technical overlay of data as 
analysis of several satellite images. Such techniques necessarily require advanced methods of 
data processing that incorporates both statistical and cartographic methods of data processing. 
Specifically, for the Maximum Likelihood approach, the underlying algorithm is based on the 
estimating the parameters of a probability distribution. Through analysis of the pixels on the 
Landsat TM scenes, the algorithm maximizes a likelihood function, selecting the most probable 
pixels in a raster in a statistical model of the observed cells. Through several iterations, GRASS 
GIS achieves this goal using a comparison of the pixel values and assigning them to the clusters.  
 
Current paper demonstrated cartographic functionality of the remote sensing data analysis using 
GRASS GIS. The technique includes raster modules (d.rast, r.colors, g.region) and modules of 
image processing (i.maxlik, i.cluster). The main aim of this paper was to perform automated 
image classification (three different images of Landsat TM taken on 2001, 2006 and 2011 with 
5-year time span) using Maximum Likelihood approach by GRASS GIS using automatically 
generated spectral signatures. Spectral signatures were generated for land cover types in an image 
using 'i.cluster' clustering algorithm and 'i.group' for clustering data into groups. The 
classification was done using Maximum Likelihood classifier algorithm 'i.maxlik' using signature 
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file. The results show variations in the land cover types for 3 different periods of image capture 
(2001, 2006 and 2011) which also resulted in the automated grouping pixels into 7, 10 and 6 
classes, respectively. The paper demonstrated technical functionality of the GRASS GIS applied 
for multi-temporal image processing aimed at land cover change analysis using scripting 
approach.  
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