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One dimensional phase transition problem modelling striped spin orbit coupled Bose-Einstein condensates

We study the behaviour of a Modica-Mortola phase transition type problem with a non-homogeneous Neumann boundary condition. According to the parameters of the problem, this leads to the existence of either one component occupying most of the domain with an outer boundary layer containing the other component, or to many interfaces, on a periodic pattern. This is related to the striped behaviour of a two component Bose-Einstein condensate with spin orbit coupling in one dimension. We prove that minimizers of the full Gross-Pitaevskii energy in 1D behave, in the Thomas-Fermi limit of strong intra-component interaction, like those of the simplified Modica-Mortola problem we have studied in the first part.

Introduction

The aim of this paper is to study a one dimensional functional which models vortex stripes in two component condensates, namely

G ε,δ,κ (v, ϕ) = 1 2 1 0 v (x) 2 dx + 1 4ε 2 1 0 (1 -v 2 (x)) 2 dx + 1 8 1 0 v 2 (x)ϕ (x) 2 dx + δ 8ε 2 1 0 v 4 (x) sin 2 ϕ(x) dx - κ 2 1 0 v 2 (x)ϕ (x) dx. (1.1)
The function v 2 describes the total density of the two components, while the value of sin ϕ allows to discriminate between component 1 and component 2. Here ε is a small positive parameter which describes the interactions inside each component, δ is a positive parameter which describes the interactions between the two components and κ is the spin orbit modulation which we assume to be positive. With a spin orbit interaction term, it is customary to work with a fixed total mass of the condensate:

1 0 v 2 (x) dx = 1
, see e.g. [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF] . Indeed, in this case, each particle is allowed to change its spin. This is in contrast with the situation when there is no spin orbit interaction since in this latter case, one assumes that each component has fixed mass. We also work with the constraint ϕ(0) = 0: if we think of x as the radial coordinate of the polar coordinates in 2D, this means that the origin of the domain is always occupied by the first component. This is satisfied in the numerical simulations [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF].

We are going to study the limit of minimizers as ε tends to 0 according to the values of δ and κ. We will always work in a regime where v 2 tends to 1, and we will prove that this occurs if κ is bounded, or if κ blows up like √ δ/ε, and δ goes to zero as ε tends to zero. Under this hypothesis, we will show that the term

1 2 1 0 (v ) 2 + 1 2ε 2 (1 -v 2 )
2 has no contribution to the energy. Besides the behaviour of ϕ depends on κ and a reduced parameter

β = ε √ δ , (1.2) 
and is determined by the auxiliary problem

F β,κ (ϕ) := G ε,δ,κ (1, ϕ) = 1 8 1 0 ϕ (x) 2 + 1 β 2 sin 2 ϕ(x) dx - κ 2 1 0 ϕ (x) dx (1.3)
with ϕ(0) = 0. We will focus on the case where β is small. The study of the energy F β,κ is a Modica-Mortola type problem [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF] except for the non-homogeneous Neumann boundary condition at 1 which comes out in the Euler-Lagrange equations 2 due to the term κ 2 1 0 ϕ (x) dx. This Neumann boundary condition can lead to oscillations in ϕ and thus stripes in the original problem. Namely, for κβ < 1/π, that is κε/ √ δ < 1/π, we will show that ϕ converges exponentially fast to 0, except at the point 1, which means that the domain is almost nearly occupied by the same component; if κβ > 1/π, that is κε/ √ δ > 1/π (with κε/ √ δ independent of ε), then ϕ goes from 0 to N π where N is large, with a quasi periodic behaviour corresponding to many stripes. For κε/ √ δ close to 1/π, ϕ stays between 0 and π, corresponding to the usual phase transition solution.

The paper is dedicated to the study of F β,κ and the convergence of minimizers of G ε,δ,κ (v, ϕ) as ε tends to 0. We point out that Modica-Mortola type problems with non-homogeneous Neumann boundary conditions have been studied in [START_REF] Modica | Gradient theory of phase transitions with boundary contact energy[END_REF]. Besides functionals of the form (1.3) have been studied in [START_REF] Muratov | Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii-Moriya interaction[END_REF] but where the domain is the entire line R or the half-line R + . This is motivated by the understanding of interior and edge walls in ferromagnetism in presence of the Dzyaloshinskii-Moriya interaction also due to spin orbit effects.

Physical and mathematical motivation

Our motivation stems from the new physics emerging in spin orbit coupled Bose-Einstein condensates, and in particular the existence of vortex stripes [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF][START_REF] Hu | Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps[END_REF][START_REF] Martone | Approach for making visible and stable stripes in a spin-orbit-coupled Bose-Einstein superfluid[END_REF][START_REF] Sinha | Trapped two-dimensional condensates with synthetic spin-orbit coupling[END_REF][START_REF] Wang | Spin-orbit coupled spinor Bose-Einstein condensates[END_REF][START_REF] Zhai | Spin-orbit coupled quantum gases[END_REF]. Bose-Einstein condensates are quantum gases described by a complex valued wave function whose modulus is the density of atoms and whose phase is related to the singularities. Two component condensates are described by two wave functions and correspond to a single isotope in two different hyperfine spin states, two different isotopes of the same atom or isotopes of two different atoms. According to the respective values of the inter-component and intra-component interactions, the minimizers exhibit very different properties in terms of shape of the bulk, defects and coexistence of the components or spatial separation [START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF]. It turns out that the sign of the parameter δ plays an important role: if δ < 0, the two components coexist while if δ > 0, they separate or segregate. The segregation behavior in two component condensates has been studied by many authors: regularity of the wave function [START_REF] Noris | Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition[END_REF], regularity of the interface [START_REF] Caffarelli | Singularly perturbed elliptic systems and multivalued harmonic functions with free boundaries[END_REF], asymptotic behavior near the interface [START_REF] Aftalion | Interface layer of a two-component Bose-Einstein condensate[END_REF][START_REF] Alama | Domain walls in the coupled Gross-Pitaevskii equations[END_REF][START_REF] Berestycki | On phase-separation models: asymptotics and qualitative properties[END_REF][START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF][START_REF] Dancer | The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture[END_REF][START_REF] Sourdis | On the weak separation limit of a two-component Bose-Einstein condensate[END_REF], Γ-convergence to a perimeter type functional [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF][START_REF] Goldman | Phase segregation for binary mixtures of Bose-Einstein Condensates[END_REF][START_REF] Goldman | Sharp interface limit for two components Bose-Einstein condensates[END_REF] in the case of a trapped condensate. The coexisting case has been analyzed in [START_REF] Aftalion | Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation[END_REF][START_REF] Gallo | The ground state of two coupled Gross-Pitaevskii equations in the Thomas-Fermi limit[END_REF].

The interplay between the spin orbit coupling and the interaction parameter leads to very different and new patterns [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF][START_REF] Hu | Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps[END_REF][START_REF] Zhai | Spin-orbit coupled quantum gases[END_REF]. In the case of strong repulsive interaction, the spin orbit coupled BEC minimizes the energy by spontaneously breaking the rotational symmetry, developing a spin modulation in an arbitrary direction, leading to one dimensional stripes [START_REF] Martone | Approach for making visible and stable stripes in a spin-orbit-coupled Bose-Einstein superfluid[END_REF][START_REF] Sinha | Trapped two-dimensional condensates with synthetic spin-orbit coupling[END_REF][START_REF] Wang | Spin-orbit coupled spinor Bose-Einstein condensates[END_REF], which is the main interest of our paper.

When a two component condensate is spin orbit coupled, it is described by two wave functions u 1 and u 2 minimizing an energy depending on 3 parameters: κ the spin modulation, δ which measures the interaction between the components, and ε a small parameter related to the intra-component self-interaction. Instead of considering the harmonic trapping potential as in the experiments, we can assume that the system is localized in a bounded two-dimensional domain D. Then the energy is:

E(u 1 , u 2 ) = 1 2 D |∂ x u 1 + κu 2 | 2 + |∂ y u 1 + iκu 2 | 2 + |∂ x u 1 -iκu 1 | 2 + |∂ y u 2 + κu 1 | 2 + 1 4ε 2 D (|u 1 | 2 + |u 2 | 2 -1) 2 + δ 2ε 2 D |u 1 | 2 |u 2 | 2 (1.4) under the condition D |u 1 | 2 + |u 2 | 2 = 1.
This energy is the same as in [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF] up to a constant. When κ = 0, the ground state depends on the sign of δ. The case δ > 0 is known as the segregation case and the limiting behaviour is the minimal perimeter of the interface between the two components. In the case of fixed prescribed mass for each component, the limiting problem depends on δ, either tending to 0, +∞ or fixed, [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF][START_REF] Goldman | Phase segregation for binary mixtures of Bose-Einstein Condensates[END_REF][START_REF] Goldman | Sharp interface limit for two components Bose-Einstein condensates[END_REF]. More precisely, when δ tends to 0 then v 2 = u 2 1 + u 2 2 tends to 1 everywhere [START_REF] Goldman | Phase segregation for binary mixtures of Bose-Einstein Condensates[END_REF]. In the case of strong segregation (δ → ∞), then v tends to 0 at the interface leading to a sharp interface [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF]. On the other hand, if δ is fixed, then v stays between zero and 1 [START_REF] Goldman | Sharp interface limit for two components Bose-Einstein condensates[END_REF]. We will see that when the κ term is added to the problem, then for bounded κ at least, v tends to 1 strongly even at the interface.

Since in this paper we assume that the sum of the L 2 norms is fixed, instead of prescribed L 2 norm in each component, then the optimal solution for κ = 0 is to have only one component with all the mass, that is no interface. When κ is added to the problem and we impose a condition on the sum of the masses, the behaviour changes. It becomes energetically favorable to have an interface. For low κ, the numerical simulations [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF] indicate that radial symmetry is preserved and the interfaces are circles, that is the components are made up of concentric annuli with a central disk, while for large κ, there is a breaking of symmetry leading to one dimensional stripes. In [START_REF] Wang | Spin-orbit coupled spinor Bose-Einstein condensates[END_REF], this is described as standing waves, that is the two wave functions are in cos and sin. Therefore, in this paper, as a first understanding of this phenomenon we reduce the energy (1.4) to a one dimensional energy. More precisely we take D = [0, 1], u 1 and u 2 real valued and we set

v 2 = u 2 1 + u 2 2 , u 1 = v cos ϕ/2, u 2 = v sin ϕ/2.
We point out that ϕ = 0 corresponds to component 1, while ϕ = π/2 to component 2. This change of functions turns the energy (1.4) into (1.1), up to the addition of a constant term.

If κ is fixed, we will show that v 2 tends to 1 and the domain is almost occupied by component 1, except on a thin layer at the boundary. The fact that component 1 is privileged is due to our specific choice of boundary condition ϕ(0) = 0. If κ is of order √ δ/ε, and δ tends to 0, then we will show that v 2 tends to 1 everywhere, and the number of transitions (or pieces of each component) depends on an auxiliary problem for ϕ. If δ does not tend to zero, then v does not tend to 1 (), and the effect of the spin orbit takes place for even larger κ and remains an open question, since the problem is no longer decoupled between v and ϕ.

Main results

We set I := (0, 1). For v in H 1 (I) we define

S(v) := {x ∈ [0, 1]; v(x) = 0}
(1.5)

and

I := {(v, ϕ) ∈ H 1 (I) × H 1 (I) \ S(v) ; ϕ(0) = 0 and 1 0 v 2 (x)dx = 1}. (1.6)
We want to minimize in the space I the functional G ε,δ,κ defined in (1.1). We set v 2 ϕ 2 = 0, v 2 ϕ = 0 and v 4 sin 2 ϕ = 0 on S(v). The main results obtained for G ε,δ,κ will be deduced from the study of an auxiliary problem which is also of independent interest. We recall that β is given by (1.2) and we study the functional F β,κ given by (1.3) defined in

J = {ϕ ∈ H 1 (I); ϕ(0) = 0}. (1.7)
We also set κ := κβ (1.8)

when necessary in order to study the case of unbounded κ as β goes to zero, that is κ can depend on β, though we do not write explicitly the dependence. We want to find an expansion of the energy of a minimizer of F β,κ and to describe the asymptotic behavior of these minimizers as β goes to zero. Note that this problem is a Modica-Mortola type problem with non-homogeneous Neumann boundary condition. The asymptotic behavior of the minimizers depends strongly on this Neumann condition, that is on the value of the parameter κ which we allow to depend on β. More precisely, we prove:

Theorem 1.1. Let κ < 1 πβ , and κ = κβ. For β small enough, there exists a unique minimizer ϕ β of F β,κ in J . Moreover, 0 < ϕ β (x) < π 2 for all x in (0, 1), ϕ β → 0 in C ∞ (K) as β → 0 for every compact set K ⊂ [0, 1) and

ϕ β (x) < 2 arctan tan ϕ β (1) 2 e x-1 β . (1.9) i) If κβ = κ is independent of β, then for β > 0 small enough, ϕ β (1) = arcsin(2κ)+ o β (1)
and

F β,κ (ϕ β ) = 1 - √ 1 -4κ 2 4β - κ 2β arcsin(2κ) + o β (β n ), ∀ n ∈ N * . (1.10) Moreover, if we set ψ β (x) := ϕ β (1 -βx), then ψ β → ψ 0 in C ∞ loc ([0, +∞)) where ψ 0 (x) = 2 arctan tan arcsin(2κ) 2 e -x . ii) If κβ = o β (1) then ϕ β (1) = 2κβ(1 + o β (1)) and F β,κ (ϕ β ) = -κ 2 β 2 (1 + o β (1)). (1.11) Moreover, if we set Φ β (x) := ϕ β (1-βx) 2κβ , then Φ β → e -x in C ∞ loc ([0, +∞)).
In this case, the Neumann boundary condition is too small to create a phase transition; component 1 occupies almost all the condensate, and ϕ β goes to 0. The size of the boundary layer is of order β. It is only for κ of order 1 that ϕ β reaches a non zero value at 1 in the limit. The proof relies on the classical Modica-Mortola technique using the solution of ψ = sin ψ, with the Neumann boundary condition at 1 ψ (1) = 2κ, and the value at 1 which comes from the minimization of the energy, that is ψ(1) = arcsin(2κ). This solution is exactly the function ψ 0 of the theorem.

When κ > 1 πβ , if κ = κβ is independent of β we observe a complete change of shape of a minimizer of F β,κ in J . Indeed such a minimizer satisfies that ϕ β (1) ≥ N π where N is an integer of order 1 β . This means that there are many interfaces and all phase transitions are of the same size because of the periodicity of the solution. More precisely, we denote by E(•) the integer part of a real number and we have:

Theorem 1.2. Let κ > 1
πβ and κ = κβ be independent of β. Let ϕ β be a minimizer of F β,κ in J . There exists a unique T in (0, 1) such that ϕ β (T ) = π. Besides, ϕ β is quasi periodic in the following sense:

ϕ β (x + T ) = π + ϕ β (x) for every x in [0, 1 -T ].
(1.12)

We set N := E( 1 T ). There exist 0 < c < C, independent of β, such that c β ≤ N ≤ C β . Furthermore, there exists a unique α0 , with 0 < α0 ≤ 2κ, defined by and we have

F β,κ (ϕ β ) = -α 2 0 8β 2 + O β 1 β . (1.14) Let φβ (x) := ϕ β (βx) defined in [0, 1 β ]. Then, φβ converges in C ∞ (K) for every K ⊂ [0, +∞) to ϕ 0 the solution of    ϕ 0 = sin ϕ 0 cos ϕ 0 in R + , ϕ 0 (0) = 0, ϕ 0 (0) = α0 , (1.15)
with α0 defined by (1.13).

The number N is called the number of periods and ϕ β (N T ) = N π. The proof relies again on an upper bound and lower bound, but taking into account the periodic solution of (1.15). We will also see that when κ gets large, the solution ϕ 0 becomes almost linear. The limiting case 1/π will be analysed in Proposition 2.14.

Once we have obtained these results about the auxiliary problem we use them to describe the original problem. Though we do not write down the ε dependence as κ ε and δ ε , we allow κ and δ to depend on ε. We need the hypothesis ε 2 = o ε (δ) to ensure that β = ε/ √ δ is small. When additionally, κ blows up like 1/ε, we also need to assume that δ is small to ensure that v 2 tends to 1.

Theorem 1.3. Let (v ε , ϕ ε ) be a minimizer of G ε,δ,κ in I, then: a) For κ bounded and δ fixed, for ε > 0 small, there exists C > 0, independent of all the parameters, such that

v ε -1 L ∞ (I) = o ε (ε), (1.16 
)

ϕ ε (1) = 2κ ε √ δ (1 + o ε (1)), ϕ ε L ∞ (I) ≤ Cκ ε √ δ , (1.17) 
G ε,δ,κ (v ε , ϕ ε ) = -κ 2 ε 2 √ δ (1 + o ε (ε)). (1.18) If we set Φ ε (x) = √ δ 2κε ϕ ε (1 -εx √ δ ) then Φ ε → e -x in C 1 loc ([0, +∞)). b) For κ < √ δ πε , we set κ = κ√ δ ε . If κ is independent of ε, δ = o ε (ε) and ε 2 = o ε (δ) then 1 -v ε L ∞ (I) = o ε (δ 1/4 ), ϕ ε (1) = arcsin(2κ)(1 + o ε (1)), (1.19) G ε,δ,κ (v ε , ϕ ε ) = √ δ ε (1 - √ 1 -4κ 2 ) 4 - κ 2 arcsin(2κ) (1 + o ε (1)). (1.20) Moreover, ϕ ε L ∞ (I) ≤ arcsin(2κ)(1 + o ε (1)). We set ψ ε (x) = ϕ ε (1 -εx √ δ
) and we have:

ψ ε → ψ 0 in C 1 loc ([0, +∞)) with ψ 0 (x) = 2 arctan tan arcsin(2κ) 2 e -x . c) For κ > √ δ πε , we set κ = κ√ δ ε . If κ independent of ε, δ = o ε (ε) and ε 2 = o ε (δ) then v -1 L ∞ (I) ≤ C δ ε and G ε,δ,κ (v ε , ϕ ε ) = -α 2 0 δ 8ε 2 (1 + o ε (1)), (1.21) 
where α0 is defined by (1.13). We let φε (x

) := ϕ( εx √ δ ) defined in [0, √ δ ε ]. If δ = O ε (ε 3/2 ) then φε converges in C 1 loc (R + ) to the solution ϕ 0 of (1.15).
The difference between points a), b) and c) of the theorem illustrates the switch of behaviour from one transition close to the outer boundary to many transitions, and thus explains the existence of many stripes.

Ideas of the proofs

In Section 2, we prove Theorems 1.1 and 1.2. In both cases we obtain the asymptotic expansion of the energy and then we study the behavior of minimizers. In the analysis of the minimizers of F β,κ , we strongly use the properties of the ODE satisfied by the minimizers, namely

ϕ (x) = 1 β 2 sin 2 ϕ(x) + ϕ (0) 2 . (1.22)
There are two cases: one where ϕ is in fact an almost solution of

ϕ (x) = sin ϕ(x) (1.23)
which is the usual Modica-Mortola solution, except that, in our case, it does not bridge 0 to π, but 0 to arcsin 2κβ since we have (1.23) and the Neumann condition at 1: ϕ (1) = 2κ. The usual Modica-Mortola techniques allow to get an upper bound, lower bound, and expansion of the energy. We prove that this case happens when κβ < 1/π and in this case the ground state stays below π. On the other hand, when κβ > 1/π, we prove that a minimizer goes beyond π, and we even prove that it goes beyond N π with N large. The proof uses the equipartition of energy between the terms

1 0 ϕ 2 and 1 0 1 β 2 sin 2 ϕ(x) + ϕ (0) 2 .
The definition of α0 comes from the minimization of the energy per period. This leads to the function h defined by (2.37) in the proof of Proposition 2.10. To prove the convergence of minimizers of F β,κ when β tends to zero we use appropriate bounds on the H 1 norm of ϕ or of some of its blow-up versions, and this allows us to pass to the limit in the Euler-Lagrange equations satisfied by ϕ β . At the end of Section 2 we also study the case when κ goes to +∞ and in a separate short subsection we give the asymptotic expansion of the simplified energy F β,κ when κ is close to 1/π.

In Section 3, we prove Theorem 1.3 and some related further results. In order to do so, we first prove the uniform convergence of v ε to 1 as ε goes to 0, which requires δ = o ε (ε). We also prove that ϕ ε is an almost minimizer of F β,κ with β = ε/ √ δ. This means that F β,κ (ϕ ) = min I F β,κ + o ε (1). Moreover we prove that the full energy G ε,κ,δ (v ε , ϕ ε ) is given at leading order by F β,κ (ϕ ε ). We then study the behavior of minimizers by performing some blow-up and passing to the limit in the Euler-Lagrange equations satisfied by the minimizers. In the case κ > 1/π, once we have proved that the limit of ϕ ε is quasi periodic, in order to find its period, we need to prove that the energy per period of ϕ ε is almost minimizing. Thus we can deduce that its slope at the origin minimizes the function h defined by (2.37) in the proof of Proposition 2.10.

2 An auxiliary problem: minimization of the energy F β,κ (ϕ)

In this section, we study the simplified energy (1.3).

Proposition 2.1. There exists a minimizer of F β,κ in J . Such a minimizer satisfies the following Euler-Lagrange equations:

   ϕ = 1 β 2 sin ϕ cos ϕ in (0, 1), ϕ(0) = 0, ϕ (1) = 2κ. (2.1)
A minimizer ϕ is smooth in [0, 1] and it also satisfies that for every x in [0, 1]

ϕ (x) 2 = 1 β 2 sin 2 ϕ(x) + ϕ (0) 2 (2.2)
and ϕ is increasing.

Proof. The existence and smoothness of minimizers are classical. Multiplying the first equation of (2.1) by ϕ and integrating we obtain (2.2). Now if ϕ (0) = 0 then ϕ ≡ 0 in [0, 1] from the Cauchy-Lipschitz Theorem. This contradicts the fact that ϕ (1) = 2κ with κ > 0. We deduce that ϕ (0) = 0 and thus ϕ does not vanish in

[0, 1]. Since ϕ (1) = 2κ we obtain that ϕ > 0 in [0, 1].
The rest of this section is devoted to the proof of Theorems 1.1 and 1.2. We recall the notation (1.8). Proof. We first find a lower bound on the energy following the method of Modica-Mortola and then we construct a test function which gives the matching upper bound.

The case κ <

Lower bound: By using Modica-Mortola's trick, we have that for ϕ a minimizer of F β,κ in J :

F β,κ (ϕ) ≥ 1 4β 1 0 |ϕ || sin ϕ| - κ 2β ϕ (1) 
We use a change of variable and the fact that ϕ is increasing to find that:

F β,κ (ϕ) ≥ 1 4β ϕ(1) 0 | sin y| dy - κ 2β ϕ (1) 
.

We let N := E( ϕ(1) π ) where E denotes the integer part. We obtain that

F β,κ (ϕ) ≥ N 2β + 1 4β ϕ(1) N π | sin y| dy - κ 2β ϕ (1) 
.

Since y → | sin y| is π-periodic and sin y ≥ 0 for y in [0, π], we have

ϕ(1) N π | sin y| dy = ϕ(1)-N π 0 sin y dy = 1 -cos(ϕ(1) -N π). Thus F β,κ (ϕ) ≥ N 2β (1 -κπ) + 1 β 1 -cos(ϕ(1) -N π) 4 - κ 2 (ϕ(1) -N π). (2.3) 
Note that this first lower bound is valid for any κ. Now we study the function

f (x) = 1 -cos x 4 - κx 2 (2.4) for x in [0, π]. We have that f is smooth, f (x) = sin x 4 -κ 2 and f (x) = cos x 4 . If κ = κβ ≤ 1 2 , then we set x β m = arcsin(2κβ) ∈ [0, π 2 ] (2.5)
and

x β M = π -arcsin(2κβ). We obtain that f has a local minimum at x β m with f (x β m ) = 1 - √ 1 -4κ 2 4 - κ 2 arcsin(2κ), (2.6) 
besides f has a maximum at

x β M and f (x β M ) = 1+ √ 1-4κ 2 4
κ 2 (π -arcsin(2κ)). In order to know if the minimum of the function f in [0, π] is attained in x β m or in π we set

g(κ) = f (x β m ) -f (π) = 1 - √ 1 -4κ 2 4 - κ 2 arcsin(2κ) - 1 -κπ 2 ,
We observe that:

g(0) = -1 2 , g( 1 2 ) = -1 4 + π 8 > 0 and g (κ) = π 2 -arcsin(2κ) 2 > 0.
Thus there exists a critical value of κ called κcrit < 1 2 such that: if κ < κcrit then f attains its unique minimum at x β m = arcsin(2κ) and min

[0,π] f = 1- √ 1-4κ 2 4 -κ 2 arcsin(2κ), whereas if κ ≥ κcrit then min [0,π] f = f (π) = 1-κπ 2 . Note that κcrit > 1 π since g( 1 π ) < 0. Besides if κ > 1 2 , then f < 0 and f is decreasing, meaning that min [0,π] f = 1-κπ 2 .
From this study, we obtain that for κ < 1 π we have

F β,κ (ϕ) ≥ N 2β (1 -κπ) + 1 β 1 - √ 1 -4κ 2 4 - κ 2 arcsin(2κ) (2.7)
for every ϕ minimizer of F β,κ in J and N = E( ϕ(1) π ).

Upper bound: We now construct a test function which shows that for κ < 1 π we have that a minimizer of F β,κ in J satisfies ϕ β (1) < π and the lower bound given by (2.7) with N = 0 is optimal. For ϕ in J , we set ψ(x) = ϕ(βx) defined in [0, 1 β ] and we observe that

F β,κ (ϕ) = H β,κ (ψ) := 1 8β 1 β 0 ψ (x) 2 + sin 2 ψ(x) dx - κ 2β ψ( 1 β ).
Let γ > 0 be a small number to be fixed later (γ → 0 as β → 0). In (γ, 1 β ) we take

ψ(x) = 2 arctan e x-1 β tan[ arcsin(2κ) 2
] . This is the solution of

   ψ = sin ψ in (γ, 1 β ), ψ ( 1 β ) = 2κ, ψ( 1 β ) = arcsin(2κ).
(2.8)

We thus have:

1 β γ ψ (x) 2 + sin 2 ψ(x) dx = 2 1 β γ |ψ (x)|| sin ψ(x)|dx = 2 ψ( 1 β ) ψ(γ)
| sin y| dy, where in the last equality we used the change of variable formula and the fact that ψ is increasing. We set

η := ψ(γ) = 2 arctan(e γ-1 β tan[ 1 2 arcsin(2κ)]
) and in [0, γ] we take ψ(x) = ηx γ . We then have that

H β,κ (ψ) = 1 β γ 0 η 2 8γ 2 + 1 8 sin 2 ( ηx γ )dx - κη 2 + 1 4β 1 β γ |ψ (x)|| sin ψ(x)|dx - κ 2β [ψ( 1 β ) -η].
It follows that

H β,κ (ψ) ≤ η 2 8γ + γ 8 1 β + cos η - √ 1 -4κ 2 4β - κ 2β arcsin(2κ).
(2.9)

We then choose γ such that γ β tends to zero and η 2 γβ tends to zero (we can take γ = β n for all n ≥ 2) and we obtain min

J F β,κ ≤ H β,κ (ψ) ≤ 1 β 1 - √ 1 -4κ 2 4 - κ 2 arcsin(2κ) + o β (β n ), for all n in N * .
(2.10) By using (2.7) and (2.10) together we find that for κ

< 1 π , a minimizer ϕ β of F β,κ satisfies N := E( ϕ β (1) π ) = 0 and min ϕ∈J F β,κ (ϕ) = 1 - √ 1 -4κ 2 4β - κ 2β arcsin(2κ) + o β (β n ) for all n in N * . (2.11)
We recall that κ = κ β and this yields that, if κβ = o β (1) we have min

J F β,κ = 1 -1 -4κ 2 β 2 4β - κ 2 arcsin(2κβ) + o β (β 2 ) = 1 -(1 -2κ 2 β 2 ) 1 4β -κ 2 β + o β (κ 2 β). Hence if κ is fixed or if κ = o β ( 1 β ) then we obtain (1.11).
Proposition 2.3. For κ = κβ < 1 π , with κ independent of β, let ϕ β be a minimizer of F β,κ in J . We have that

ϕ β (1) = arcsin(2κβ) + o β (β n ) (2.12)
for all n in N * . In particular for β small enough we have 0

≤ ϕ β (x) ≤ ϕ β (1) < π 2 . Besides if κ = o β (1), we have that ϕ β (1) = 2κβ(1 + o β (1)).
Proof. From (2.3), where we know that N = 0, and (2.10), we deduce that for ϕ β a minimizer of F β,κ in J we have

1 -cos ϕ β (1) 4β - κϕ β (1) 2β ≤ F β,κ (ϕ β ) ≤ 1 β 1 - √ 1 -4κ 2 4 - κ 2 arcsin(2κ) + o β (β n ) (2.
13) for all n in N * . With f defined as (2.4), we have 1-

√ 1-4κ 2 4 -κ 2 arcsin(2κ) = min [0,π] f = f (x β m )
, where x β m = arcsin(2κβ). Then (2.13) implies

f (ϕ β (1)) ≤ f (x m ) + o β (β n ). (2.14) 1) If κ = κβ is independent of β, then f and x m := x β m = arcsin(2κ) do not depend on β. From (2.14), we obtain that f (x m ) ≤ f (ϕ β (1)) ≤ f (x m ) + o β (β n )
for all n in N * . The study of the function f done in the proof of the previous proposition then shows that ϕ β (1) → arcsin(2κ). Expanding f around x m , we have that

f (ϕ β (1)) = f (x m ) + f (x m ) 2 (ϕ β (1) -x m ) 2 + o β [(ϕ β (1) -x m ) 2 ]. (2.15) This proves that (ϕ β (1) -x m ) = o β (β n ) for all n in N. 13 
2) If κ = κβ = o β (1), from (2.13) we still have that

f (ϕ β (1)) = f (x β m ) + o β (β n ).
besides we observe that f defined by (2.4) converges uniformly to f 0 (x) = 1-cos x 4 on [0, π]. Since f (x β m ) goes to zero as β goes to zero this implies that ϕ β (1) → 0 as β → 0. Now we can write

f β (ϕ β (1)) = f (x β m ) + f (x β m ) 2 (ϕ β (1) -x β m ) 2 + o β [(ϕ β (1) -x β m ) 2 ]. Since f (x β m ) → 1 4 we conclude that ϕ β (1) = x β m + o β (β n ) for all n in N * . Expanding x β m = arcsin(2κβ) = 2κβ + o β (κβ), we conclude the proof. Proposition 2.4. Let κ = κβ < 1 π , if κ is independent of β or if κ = o β (1)
, then for β small enough, there exists a unique minimizer of F β,κ in J .

Proof. Let ϕ β be a minimizer of F β,κ in J . From Proposition 2.1 and Proposition 2.3, we know that ϕ β is increasing and that 0 ≤ ϕ β (x) ≤ ϕ β (1) < π 2 , for β small enough. For simplicity, we let ϕ = ϕ β and we let α := ϕ (0). We observe that (2.2) implies that 4κ 2 -β 2 α 2 ≥ 0 and since we know that ϕ(1) < π 2 we deduce that ϕ(1) = arcsin[ 4κ 2 -β 2 α 2 ]. Taking the square root of (2.2) we obtain ϕ (x) = √

sin 2 ϕ(x)+β 2 α 2 β for all x in [0, 1]. This implies g(α) := β arcsin[4κ 2 -β 2 α 2 ] 0 dy sin 2 y + β 2 α 2 = 1. (2.16)
We claim that there exists a unique α > 0 such that g(α) = 1. This will imply uniqueness of the minimizer ϕ by the Cauchy-Lipschitz Theorem. To prove our claim we observe that g is smooth, g(0) = +∞, g(2κ) = 0 and

g (α) = β arcsin[4κ 2 -β 2 α 2 ] 0 -β 2 α dy (sin 2 y + β 2 α 2 ) 3/2 - 2βα 1 -4κ 2 + β 2 α 2 × 1 (4κ 2 -β 2 α 2 ) 2 + β 2 α 2 < 0. (2.17)
This concludes the proof.

The next Proposition states that the minimizer of F β,κ converges exponentially fast to zero away from the point 1 as β converges to zero. Proposition 2.5. Let κβ < 1 π , with κ independent of β or κ = o β (1) and let ϕ β be the minimizer of F β,κ in J . Then (1.9) holds and

ϕ β → 0 in C ∞ loc ([0, 1)).
Proof. It follows from (2.2) that for every x in [0, 1) we have ϕ (x) 2 > sin 2 ϕ(x)

β 2
. Since ϕ > 0, cf. Proposition 2.1, we find

ϕ (x) > | sin ϕ(x)| β .
Since 0 < ϕ(x) < π 2 , for 0 < x ≤ 1 and for β small enough, from Proposition 2.3, we can say that ϕ (x) sin ϕ(x) > 1 β for every x in (0, 1). Integrating this relation between x and 1 yields

log tan(ϕ(1)/2) tan(ϕ(x)/2) > 1 -x β ⇒ tan ϕ(x) 2 < tan ϕ (1) 2 e 
x-1 β

(2.18)

for every x in [0, 1) and this implies (1.9). To deduce that ϕ converges to zero in C ∞ loc ([0, 1)) we observe that from the first Equation of (2.1), we have that ϕ tends to zero in C 0 (K) for every compact set K ⊂ [0, 1). Let us show that ϕ (0) converges to zero. From (2.13) and (2.12) we find that for all n in N:

1 - √ 1 -4κ 2 4β + o β (β n ) = 1 -cos ϕ(1) 4β = 1 4β 1 0 |ϕ || sin ϕ| ≤ 1 8 1 0 ϕ 2 + 1 8β 2 1 0 sin 2 ϕ ≤ 1 - √ 1 -4κ 2 4β + o β (β n ).
In particular we find that for all n in N we have

1 0 ϕ - sin ϕ β 2 = o β (β n ). (2.19)
Now, by using (2.2), we find that

ϕ (x) - sin ϕ(x) β 2 ≥ β 2 ϕ (0) 4 1 + β 2 ϕ (0) 2 + 1 ≥ β 2 ϕ (0) 4 ( 1 2 + o β (1)).
(2.20)

By using (2. [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]) and (2.20) we find ϕ (0) → 0 as β tends to zero. This implies that ϕ converges to zero in C 0 (K) for every compact set K ⊂ [0, 1). Then a classical bootstrap argument allows us to infer that ϕ converges to zero in C ∞ loc ([0, 1)). Now that we know the behaviour of the minimizer on every compact set of [0, 1) we study the shape of the minimizer near the point 1. We begin with the case κβ = o β (1). Proposition 2.6. Let us assume that κβ = o β (1), then for β small enough, the minimizer

ϕ β of F β,κ satisfies ϕ β L ∞ ([0,1]) ≤ Cκβ, for some C > 0 independent of β. We set Φ β (x) := ϕ β (1-βx) 2κβ
, defined in [0, 1 β ). We have that

Φ β → Φ 0 := e -x in C ∞ loc ([0, +∞)].
Before proceeding to the proof of this proposition, we remark that, in general, although ϕ β converges to zero in C 0 ([0, 1]), we do not have

C 1 convergence of ϕ β on [0, 1] since ϕ β (1) = 2κ. Proof. Since ϕ β is increasing in [0, 1] and since ϕ β (1) = 2κβ(1 + o β (1)) from Proposi- tion 2.3, we deduce that ϕ β L ∞ ([0,1]) ≤ Cκβ for β small enough, with C independent of β and κ. Now we observe that Φ β = ϕ β (1-βx) 2κβ
satisfies:

     Φ β = cos(2κβΦ β ) sin(2κβΦ β ) 2κβ in (0, 1 β ), Φ β (0) = ϕ β (1) 2κβ , Φ β (0) = 1.
(2.21) Besides,

1 β 0 Φ β (x) 2 dx = 1 2κ 2 1 β 0 ϕ β (1 -βx) 2 dx = 1 2κ 2 β 1 0 ϕ β (y) 2 dy. We recall that F β,κ (ϕ β ) = -κ 2 β 2 (1 + o β (1)) and ϕ β (1) = 2κβ(1 + o β (1)) if κβ = o β (1)
. From this, we deduce that

1 0 ϕ β (y) 2 dy ≤ Cκ 2 β and 1 β 0 Φ β (x) 2 dx ≤ C. Thus, since Φ β (0) → 1, Φ β is bounded in H 1 loc (R + ). From the Sobolev injections, up to a subsequence in β, we have Φ β → Φ 0 in C 0 loc ([0, +∞)) for some Φ 0 in C 0 loc ([0, +∞)). We also have that 2κβΦ β → 0 in C 0 loc ([0, +∞) and sin(2κβΦ β ) 2κβΦ β → 1 in C 0 loc ([0, +∞
). Therefore, we can pass to the limit in (2.21) and find that Φ 0 satisfies

Φ 0 = Φ 0 in R + . Since Φ β is bounded in L ∞ loc ([0, +∞)) we have that Φ β converges to Φ 0 in C 1 loc ([0, +∞)).
In particular, Φ 0 (0) = 1 and Φ 0 (0) = 1, that is Φ 0 (x) = e -x . By uniqueness of the limit, the entire sequence converges and by using a bootstrap argument we can show that the convergence holds in C ∞ loc ([0, +∞)). We now study the case where κ = κβ is independent of β and κ > 1 π . Note that in this case ϕ β does not converge to zero in C 0 ([0, 1]) since ϕ β (1) = 2 arcsin(2κ) + o β (1) from Proposition 2.3. The transition from 0 to 2 arcsin(2κ) takes place in a boundary layer of size β:

Proposition 2.7. Let ϕ β be the minimizer of F β,κ in J . We set ψ β (x) := ϕ β (1 - βx) defined in [0, 1 β ]. We then have that ψ β → ψ 0 in C ∞ loc ([0, +∞)) where ψ 0 (x) = 2 arctan tan arcsin(2κ) 2 e -x .
Proof. The function

ψ β = ϕ β (1 -βx) satisfies    ψ β = sin ψ β cos ψ β in (0, 1 β ), ψ β (0) = -2κ, ψ β ( 1 β ) = 0. (2.22) 
We have that

F β,κ (ϕ β ) = 1 8β 1 β 0 ψ β (x) 2 + sin 2 ψ β (x) dx-κ 2β ψ β (0)
. From Proposition 2.2 and 2.3, we deduce that 1 8β

1 β 0 ψ β (x) 2 + sin 2 ψ β (x) dx - κ 2β ψ β (0) = 1 - √ 1 -4κ 2 4β - κ 2β arcsin(2κ) + o β (1),
(2.23) and ψ β (0) = ϕ β (1) = arcsin(2κ) + o β (1). Hence

1 β 0 ψ β (x) 2 + sin 2 ψ β (x) dx ≤ 2(1 - √ 1 -4κ 2 ) + o β (β). (2.24) 
This proves that ψ β is bounded in H 1 loc (R + ) and hence converges weakly to some ψ 0 ∈ H 1 loc (R + ), up to a subsequence in β. Note that this also implies that the convergence is uniform on every compact set of R + . Now using (2.24) and some lower semi-continuity result, we obtain

M 0 ψ 0 (x) 2 + sin 2 ψ 0 (x)dx ≤ C κ (2.25)
for every M > 0 and where C κ is a constant which depends on κ. Thus we have

+∞ 0 ψ 0 (x) 2 + sin 2 ψ 0 (x)dx ≤ C κ.
The uniform convergence on every compact set allows us to pass to the limit in the sense of distributions in the first equation of (2.22), that is: ψ 0 satisfies ψ 0 = sin ψ 0 cos ψ 0 in R + . Thus from the regularity theory ψ 0 is C ∞ (R + ). From (2.25) we deduce that lim x→+∞ ψ 0 (x) = 0 and lim x→+∞ sin 2 ψ 0 (x) = 0.

(2.26)

The function ψ 0 also satisfies ψ 0 (x) 2 = sin 2 ψ 0 (x) + C for x in R + , with C a constant. Equation (2.26) proves that C = 0. Thanks to the first equation of (2.22) and a bootstrap argument we also have that the convergence is smooth on every compact set of [0, +∞). In particular ψ 0 (0) = -2κ and we have that ψ 0 is decreasing. Now recall from Proposition 2.3 that 0 ≤ ψ β (x) < π 2 for x in R + . This implies that ψ 0 = -sin ψ 0 , ψ 0 (0) = -2κ and ψ 0 (0) = arcsin(2κ) and thus ψ 0 (x) = 2 arctan tan arcsin(2κ) 2 e -x . Theorem 1.1 follows from the Propositions of this section.

Proposition 2.8. Let κβ = 1 π then (1.10) still holds. Proof. Indeed coming back to the proof of Proposition 2.2 we find that the lower bound (2.7) and the upper bound (2.10) remain true in that case, so does the expansion of the ground state of the energy.

We are not able to give the behaviour of minimizers of F β,κ when β goes to 0 in the case κ = 1/π although we suspect that in this case we have a unique minimizer and it has the same behaviour as minimizers for κ < 1 π (cf. Propositions 2.5 and 2.7). The main difficulty is that if κ = 1 π , then the lower bound (2.7) and the upper bound (2.10) do not imply that N = 0. Thus we could have ϕ β (1) = N β + arcsin( 2 π ) with N β an integer which can be unbounded as β goes to 0.

The case κ > 1 πβ

In this section, we will see that a change of regime occurs when κ = κβ > 1 π , in the sense that the minimizer of F β,κ makes several transitions from 0 to π, from π to 2π etc. The first step is to prove that a minimizer ϕ β satisfies ϕ β (1) ≥ π. This is true as soon as κ > 1 π even if κ depends on β. Lemma 2.1. Let κ = κβ > 1 π , and let ϕ β be a minimizer of F β,κ in J , then

ϕ β (1) ≥ π. Proof. Let us call N = E( ϕ β (1)
π ). We recall that f given by (2.4) satisfies from (2.3) that: if

1 π < κ < κcrit then f (x) ≥ 1- √ 1-4κ 2 4 -κ 2 arcsin(2κ) whereas if κ ≥ κ crit , then f (x) ≥ 1-κπ 2 . 1) If κ ≥ κcrit , then F β,κ (ϕ β ) ≥ N + 1 2β (1 -κπ).
We claim that we can construct a sequence (ψ β ) β such that ψ β is in J and lim sup β→0 βF β,κ (ψ β ) ≤ (1 -κπ). This will imply that N ≥ 1. For the construction of such a sequence we refer to [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF] or p.106-107 of [START_REF] Braides | Γ-convergence for beginners[END_REF] and we just sketch the argument here. Let ϕ 0 be the solution of ϕ 0 = sin ϕ 0 such that ϕ 0 (-∞) = 0 and ϕ 0 (+∞) = π. This solution is the minimizer of min{

+∞ -∞ ϕ (x) 2 + sin 2 ϕ(x) dx; ϕ(-∞) = 0 and ϕ(+∞) = π}.
Besides it satisfies +∞ -∞ ϕ 0 (x) 2 + sin 2 ϕ 0 (x) dx = 4. Now we let T > 0 and ϕ T be a minimizer of min{ +T -T ϕ (x) 2 + sin 2 ϕ(x) dx; ϕ(-T ) = 0 and ϕ(+T ) = π}.

We have that ϕ T → ϕ 0 in H 1 loc (R) and

+T -T ϕ T (x) 2 + sin 2 ϕ T (x) dx → +∞ -∞ ϕ 0 (x) 2 + sin 2 ϕ 0 (x) dx
as T → +∞. To construct our sequence we choose 0 < t 1 < t 2 < 1 and we set

ψ β (x) :=                0 if 0 ≤ x < t 1 -βT, ϕ T ( x-t 1 β ) if t 1 -βT ≤ x ≤ t 1 + βT, π if t 1 + βT < x < t 2 -βT, ϕ T ( x-t 2 β ) + π if t 2 -βT ≤ x ≤ t 2 + βT, 2π if t 2 + βT < x ≤ 1.
(2.27)

We then have that

βF β,κ (ψ β ) = 1 8 {|x-t 1 |≤βT } βϕ 2 T ( x -t 1 β ) + 1 β sin 2 ϕ T ( x -t 1 β )dx + 1 8 {|x-t 2 |≤βT } βϕ 2 T ( x -t 2 β ) + 1 β sin 2 ϕ T ( x -t 2 β )dx -κπ.
We then make a change of variable y = x-t 1 β (or y = x-t 2 β ) and we obtain

βF β,κ (ψ β ) = 1 8 {|y|≤T } ϕ 2 T (y) + sin 2 ϕ T (y) dy + 1 8 {|y|≤T } ϕ 2 T (y) + sin 2 ϕ T (y) dy -κπ.
We take T → +∞ (but keeping in mind that βT must satisfy 1 -t 2 < βT ) and that proves that lim sup β→0 βF β,κ (ψ β ) ≤ (1 -κπ).

2)

If 1 π < κ < κcrit then (2.3) implies F β,κ (ϕ β ) ≥ N 2β (1 -κπ) + 1 - √ 1 -4κ 2 4β - κ 2 arcsin(2κ).
We claim that we can construct a sequence (ψ

β ) β such that F β,κ (ψ β ) = 1 2β (1 - κπ) + 1- √ 1-4κ 2 4β
κ 2 arcsin(2κ) + o β (1). This sequence is built combining the previous construction with the construction of the test function of the proof of Proposition 2.2. More precisely we take: The next proposition shows that a minimizer of F β,κ in J enjoys some symmetry property with respect to the point T 2 such that ϕ β ( T 2 ) = π 2 and also some periodicity property of period T . Proposition 2.9. Let κ > 1 π and let ϕ β be a minimizer of F β,κ in J . Let T 2 be the point in (0, 1) such that ϕ β ( T 2 ) = π 2 . Then we have that

ψ β (x) :=                  0 if 0 ≤ x < 1 4 -βT, ϕ T ( x-t 1 β ) if t 1 -βT ≤ x ≤ t 1 + βT, π if t 1 + βT < x < 1 2 , π + (x-1/2) β η if 1 2 ≤ x ≤ 1 2 + β, π + arctan e x-1 β tan[arcsin(2κβ)] if 1 2 + β ≤ x ≤ 1, ( 2 
ϕ β (x) = π -ϕ β (T -x), for all x in [0, T ],
(2.29)

and in particular ϕ β (T ) = π. Furthermore, ϕ β is periodic in the following sense:

ϕ β (x + T ) = π + ϕ β (x), for all x in [0, 1 -T ] (2.30)
Proof. First note that from Lemma 2.1 and from the fact that ϕ β is increasing, we have the existence and uniqueness of T 2 such that ϕ β ( T 2 ) = π 2 . We set ψ β (x) := π -ϕ β (T -x) defined for 0 ≤ x ≤ T . Then the Cauchy-Lipschitz Theorem implies that ψ β = ϕ β . Taking x = T in (2.29) we find ϕ β (T ) = π. In the same way, we now set Φ β (x) := ϕ β (x + T ) -π defined for x in [0, 1 -T ]. We apply the Cauchy-Lipschitz Theorem again and find (2.30).

We can now obtain an expansion of the ground state of the energy when κ does not depend on β. Proposition 2.10. Let κ = κβ > 1 π with κ independent of β. Let ϕ β be a minimizer of F β,κ in J , let 0 < α0 < 2κ be the unique number such that (1.13) holds, then we have the asymptotic expansion (1.14).

Proof. To prove the expansion of the energy we first find a suitable lower bound for the energy.

Lower bound: Note that we have ϕ β (0) = 0, ϕ β ( T 2 ) = π 2 . We let α := ϕ β (0). For simplicity we let ϕ = ϕ β , from (2.2) integrated from 0 to T /2, with the help of the change of variable y = ϕ β (x) we find

T 2 = π 2 0 β dy α 2 β 2 + sin 2 y . ( 2 

.31)

We define N by the relation N = E( 1 T ). From the quasi-periodicity property (2.30) and the fact that ϕ is increasing we have that:

F β,κ (ϕ) ≥ 2N e - κ(ϕ(1) -N π) 2β
where e is the minimum of the energy on half of a period, that is

e := min u∈F T 2 0 u (x) 2 8 + 1 8β 2 sin 2 u(x) dx - κπ 4β (2.32)
and

F := {u ∈ H 1 ((0, T 2 
)); u(0) = 0 and u( T 2 ) = π 2 }.

(2.33)

We now write We now set α = αβ. We claim that e < 0 (we postpone the proof of this fact for clarity and refer to Lemma 2.2). Since N = E( 1 T ) ≤ 1 T we thus have that (2.38)

T 2 0 u (x) 2 8 + sin 2 u(x) 8β 2 dx- κπ 4β = T 2 0 u ( 
F β,κ (ϕ) ≥ 2e T - κ(ϕ(1) -N π) 2β . ( 2 
This expression shows that, when κπ > 1 there exists a unique α0 = α0 (κ) such that h has a global minimum at x = α0 , defined by (1.13). Moreover we have h(α 0 ) = -α2 0 8 . Thus, by using (2.35) we obtain a lower-bound on the energy:

F β,κ (ϕ) ≥ - α2 0 8β 2 - κ(ϕ(1) -N π) 2β .
(2.39)

When κ does not depend on β, then α0 does not depend on β either. Note that from the definition of the integer part, we have 1 -T < N T ≤ 1. We now use (2.30) to deduce that 0 ≤ ϕ(1) -ϕ(N T ) = ϕ(1) -N π < π. This implies that

F β,κ (ϕ β ) ≥ - α2 0 8β 2 + O 1 β . ( 2 

.40)

Upper bound: To find a matching upper-bound we take the solution of

   ϕ = 1 β 2 cos ϕ sin ϕ in R + , ϕ(0) = 0, ϕ (0) = α0 β , (2.41) 
with α0 defined by (1.13). This solution satisfies Thanks to (2.42), we can also show that ϕ satisfies the symmetry and periodicity properties of (2.9). We let N := E( 1 T ) and we have

ϕ (x) 2 = sin 2 ϕ(x) + α2 0 β 2 for all x in [0, 1]. ( 2 
F β,κ (ϕ) = 2N T 2 0 ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx - κπ 4β + 1 N T ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx - κ 2β (ϕ(1) -N π) = 2N T 2 0 ϕ (x) 2 8 + sin 2 ϕ(x) + α2 0 8β 2 - κπ 4β - α2 0 T 16β 2 + 1 N T ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx - κ 2β (ϕ(1) -N π) = 2N π 2 0 sin 2 y + α2 0 4β - κπ 4β - α2 0 T 16 + 1 N T ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx - κ 2β (ϕ(1) -N π) = -α 2 0 N T 8β 2 + 1 N T ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx - κ 2β (ϕ(1) -N π) . (2.45)
Now we note that

N = E( 1 T ) = 1 T (1 + O β (T )) (2.46)
because T → 0 as β → 0 from (2.44). From the periodicity property of ϕ, we also have that

1 N T ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx ≤ 2 T 2 0 ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx ≤ 2 T 2 0 ϕ (x) 2 8 + sin 2 ϕ(x) + α2 0 8β 2 dx - α2 0 T 8β 2 ≤ 2 π 2 0 sin 2 y + α2 0 4β dy - α2 0 T 8β 2 ≤ κπ 2β - α2 0 T 8β 2 .
(2.47)

In the last inequality we have used the definition of α0 (1.13). By using (2.44) and

(2.47) we find that

1 N T ( ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 )dx = O( κ β ) = O( 1 β
).

(2.48)

We also recall from the periodicity property ϕ(x + T ) = π + ϕ(x) for x in [0, 1 -T ], that 0 ≤ ϕ(1) -N π < π. We then conclude from (2.47) and (2.48) that for β small enough.

F β,κ (ϕ) ≤ -α 2 0 8β 2 + O 1 β . ( 2 
Proof. We construct a test function which proves (2.50). Let 0 < γ < T 2 to be fixed later. We take u the solution of u = sin u on (γ, T 2

) such that u( T 2 ) = π 2 . That is u(x) = 2 arctan(e x-T
2 ). We set η = 2 arctan(e γ-T 2 ) and in [0, γ] we take u(x) = ηx γ . We thus have

T 2 0 u (x) 2 8 + sin 2 u(x) 8β 2 dx = γ 0 η 2 8γ 2 dx + 1 8β 2 γ 0 sin 2 ( ηx γ )dx + T 2 γ |u (x)|| sin u(x)| 4β dx ≤ η 2 8γ + γ β 2 + π 2 η | sin y| 4β dy ≤ η 2 8γ + γ β 2 + cos γ 4β ,
We then choose γ = β 3 (note that β 3 < T for β small since T = 2β

π 2 0 1 √ sin 2 y+ α2 0 ≥ πβ 2 √
1+4κ 2 because α0 ≤ 2κ) and this yields the result. Proposition 2.11. Let κ = κ β , with κ > 1 π independent of β. Let ϕ β be a minimizer of F β,κ in J . We set ψ β (x) := βϕ β (x), then up to a subsequence, there exists ψ 0 in H 1 (I) such that ψ β ψ 0 in H 1 (I) and thus ψ β → ψ 0 in C 0 ([0, 1]). Furthermore, there exists l > 0 such that lim β→0 βϕ β (1) = l. In particular, if N := E(

ϕ β (1) π ), then there exist 0 < c < C such that c β ≤ N ≤ C β .
(2.51)

Proof. By using (1.14) we find that

F β,κ (ϕ β ) = 1 8 1 0 (ϕ β (x) -2κ) 2 + 1 β 2 sin 2 ϕ β (x) dx - κ 2 2 = -α 2 0 8β 2 (1 + o β (1)).
We now use that ψ β (x) 2 = β 2 ϕ β (x) 2 and κ = βκ to obtain that

1 0 ψ β -2κ 2 dx ≤ C, (2.52) 
for some constant C which does not depend on β. Since ψ β (0) = 0, this implies that ψ β is bounded in H 1 (I). In particular, up to a subsequence, there exists

ψ 0 in H 1 (I) such that ψ β ψ 0 in H 1 (I) and ψ β → ψ 0 in C ([0, 1]). We call N := E ϕ β (1) π
the number of periods. It follows from Proposition 2.10 that we have

F β,κ (ϕ β ) = -α2 0 8β (1 + o β (1)
). By using (2.3) we conclude that N ≥ c β for some c > 0. And this, along with the uniform convergence of ψ β implies that lim β→0 βϕ β (1) = l, for some l > 0. In particular this implies that N satisfies c β ≤ N ≤ C β for some constants 0 < c < C. Proposition 2.12. Let κ = κβ > 1 π with κ independent of β. Let ϕ β be a minimizer of F β,κ in J . Let φβ (x) := ϕ β (βx) defined in [0, 1 β ]. We have that φβ converges in C ∞ (K) for every K ⊂ [0, +∞) towards ϕ 0 a solution of (1.15).

Proof. We let α β := ϕ β (0). The function φβ satisfies

   φβ = sin φβ cos φβ in (0, 1 β ), φβ (0) = 0, φ β (0) = βα β .
(2.53) Let us recall from Proposition 2.9 that ϕ β is quasi-periodic. We call N = E ϕ β [START_REF] Aftalion | Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation[END_REF] π , and we have from the previous proposition that c β ≤ N ≤ C β . Let K = [m; M ] be a compact subset of [0, 1 β ). On the interval βK ⊂ [0, 1) there is a finite number of periods of ϕ β , let us call L this number. Since the energy per period of ϕ β is of order 1 β (because the total energy is of order 1 β 2 ) we have that

βK ϕ β (x) 2 + 1 β 2 sin 2 ϕ β (x) dx - κ 2β ϕ β (M β) = -A β (1 + o β (1))
for some A > 0. Since there are exactly L periods on βK, we have Lπ ≤ ϕ β (M β) < (L + 1)π. This yields that

βK ϕ β (x) 2 + 1 β 2 sin 2 ϕ β (x) dx ≤ B β
for some B > 0. We also have

βK ϕ β (x) 2 + sin 2 ϕ β (x) β 2 dx = 1 β K φ β (x) 2 + sin 2 φβ (x) dx.
Hence we obtain that φβ is bounded in H 1 loc (R + ) and converges weakly in that space to some ϕ 0 . From the weak convergence in H 1 loc (R + ) and the strong convergence in C 0 loc ([0, +∞)) we obtain that ϕ 0 satisfies ϕ 0 = sin ϕ 0 cos ϕ 0 in R + . From the regularity theory, ϕ 0 is in C ∞ (R + ). We also have ϕ 0 (0) = 0 from the uniform convergence in compact sets of [0, +∞). We also set αβ = α β β . Because of the minimizing property of ϕ β , and from (1.14) and (2.36) we have that

h(α 0 ) ≤ h(α β ) ≤ h(α 0 )(1 + o β (1)), ( 2 

.54)

where h is defined by (2.37), α0 is the minimizer of h and satisfies h(α 0 ) = -α2 0 8 . Since α0 is the unique minimizer of h this implies that αβ → α0 , as β → 0.

(2.55) By a bootstrap argument, we can show that φβ converges in C ∞ loc ([0, +∞)) and hence satisfies (1.15).

When κ tends to +∞ as β goes to 0, we can get the expansion of the minimum of the energy in a simpler way since ϕ is almost linear.

Proposition 2.13. Let κ = κβ > 1 π , let ϕ β be a minimizer of F β,κ in J . Then if κ → +∞ as β → 0 we have F β,κ (ϕ β ) = - κ2 2β 2 (1 + o β (1)) (2.56) and ϕ β (x) -2κ L ∞ (I) → 0 and ϕ β (x) 2κx -1 L ∞ (I) → 0 (2.57)
as β tends to zero.

Proof. Taking x = 1 in (2.2) yields 4κ 2 = 1 β 2 sin 2 ϕ(1) + ϕ (0) 2 . We thus find that ϕ (x) 2 ≥ ϕ (0) 2 = 4κ 2 -sin 2 ϕ(1)

β 2 and then ϕ (x) ≥ √ 4κ 2 -1 β for every x in [0, 1]. We also have that ϕ (x) 2 ≤ 1 β 2 + ϕ (0) 2 and ϕ (0) ≤ 2κ. Thus for every x in [0, 1] √ 4κ 2 -1 β ≤ ϕ (x) ≤ √ 4κ 2 + 1 β .
(2.58)

In particular we have ϕ(1)

≤ √ 4κ 2 +1 β
. We can then say that

F β,κ (v β ) ≥ 4κ 2 -1 8β 2 - κ 2β √ 4κ 2 + 1 β . This implies that F β,κ (v β ) ≥ - κ2 2β 2 (1 + o β (1)) if κ(β) → +∞ as β → 0.
The upperbound is obtained with the test function: ϕ(x) = 2κx and it yields (2.56). It also follows from (2.58) that

ϕ β (x) 2κx -1 L ∞ (I) → 0 and ϕ β (x) -2κ L ∞ (I) → 0, as β goes to zero.
The expansion (2.56) is in agreement with (1.14), since when κ is large, κ ∼ 2α 0 . Theorem 1.2 follows from the Propositions of this section.

The intermediate case κπ = 1 + η for η small

In this short section, we study the intermediate regime κπ = 1 + η β for some small η β as β → 0. On the other hand α2 0 + sin 2 y ≤ α0 + sin y ≤ α0 + y. Thus sin y + α2 0 + sin 2 y ≤ 2y + α0 and

π 2 α0 dy sin y + α2 0 + sin 2 y ≥ 1 2 π 2 α0 dy y + α0 /2 ≥ 1 2 log( π 2 + α0 2 ) -log 3α 0 2 ≥ 1 2 log 1 α0 - 1 2 log 3 2 . (2.60) 
We also have that sin y + α2 0 + sin 

√ α2 0 +sin 2 y ∼ 1 2 log 1 α0 . Proposition 2.14. Let us assume that κπ = 1 + β 2γ 2 log 1 β γ for 0 < γ < 1. Then a minimizer of F β,κ in J satisfies F β,κ (ϕ β ) = - 1 8β 2-γ (1 + o β (1)).
(2.62)

Note that when γ goes to zero, then κ tends to 1 π and we find that the energy blows up as -1 β 2 which is the behaviour described in Theorem 1.2. When γ tends to 1 then we recover that the energy blows up as 1 β , which is the same behaviour as the one observed for κ < 1 π with κ independent of β. Proof. Let α0 be the number defined by (1.13). Since κ goes to 1/π, α0 goes to 0 and

π 2 0 α2 0 + sin 2 y dy = κπ = 1 + β 2γ 2 log 1 β γ . (2.63)
Therefore, from Lemma 2.3, we find α2

0 2 log 1 α0 ∼ β 2γ 2 log 1 β γ . (2.64) 
A simple computation yields α0 ∼ β γ , as β goes to 0.

(2.65)

Coming back to (2.39) in the proof of Proposition 2.10, we see that

F β,κ (ϕ β ) ≥ -α 2 0 8β 2 - κ(ϕ β (1) -N π) 2β with N = E( ϕ β (1) 
π ). From the equivalent of α0 of (2.65) we deduce

F β,κ (ϕ β ) ≥ -1 8β 2-γ (1 + o β (1)).
(2.66)

To find an upper-bound we take the solution of ϕ = 1 β 2 cos ϕ sin ϕ such that ϕ(0) = 0 and ϕ (0) = α0 β . The main difference with the proof of Theorem 1.2 is that now we do not know that this solution reaches π 2 . If it does, then we can adapt the proof and in particular (2.44), using that the period T satisfies T ≤ Cβ 1-γ . Hence we find that (2.49). Now if the solution does not reach π 2 30 then we can still argue that:

F β,κ (ϕ β ) ≤ -α2 0 β 2 (1 + o β (1)) as in
F β,κ (ϕ) = 1 0 ϕ (x) 2 8 + sin 2 ϕ(x) 8β 2 dx - κ 2β ϕ(1) = 1 0 ϕ (x) 2 8 + sin 2 ϕ(x) + α2 0 8β 2 dx - κ 2β ϕ(1) - α2 0 8β 2 = ϕ(1) 0 sin 2 y + α2 0 4β dy - κ 2β ϕ(1) - α2 0 8β 2 ≤ π 4β - κ 2β ϕ(1) - α2 0 8β 2 ≤ - α2 0 8β 2 (1 + o β (1)) (2.67)
where in the last equality we have used (2.65) and this yields (2.62).

3 The full energy G ε,δ,κ (v, ϕ)

3.1 First properties of minimizers of G ε,δ,κ (v, ϕ)
The aim of this section is to prove that if (v ε , ϕ ε ) is a minimizer of G ε,δ,κ , then v ε is close to 1 and ϕ ε is an almost minimizer of F ε/ √ δ,κ . Proposition 3.1. For every ε, δ, κ > 0, there exists a minimizer of G ε,δ,κ (v, ϕ) in I. It satisfies the following Euler-Lagrange equations

-v + 1 ε 2 v(v 2 -1) + 1 4 vϕ 2 + δ 2ε 2 v 3 sin 2 ϕ -κvϕ = λv in (0, 1), -(v 2 ϕ ) + δ ε 2 v 4 cos ϕ sin ϕ + 2κ(v 2 ) = 0 in (0, 1), (3.1) 
v (0) = v (1) = 0, ϕ(0) = 0, ϕ (1) = 2κ, (3.2) 
where λ is a Lagrange multiplier.

Besides (v, ϕ) is smooth in [0, 1] × [0, 1] \ S(v), v is nonnegative and (v, ϕ) satisfies the relation v 2 + v 2 ϕ 2 4 - 1 ε 2 ( v 4 2 -v 2 ) - λ 2 2 v 2 - δ 2ε 2 v 4 sin 2 ϕ = const in [0, 1]. (3.3) 
Proof. The existence of minimizers is not direct because for a minimizing sequence (v n , ϕ n ) in I, ϕ 2 n could be unbounded in L 2 (I) near the points of S(v). However, one can adapt the argument of [START_REF] Ambrosio | A boundary value problem for nematic liquid crystals with a variable degree of orientation[END_REF] to prove the existence of minimizers.

The fact that (v, ϕ) satisfies the Euler-Lagrange equations is classical. Note that the boundary condition is: v(1) 2 (ϕ (1) -2κ) = 0. However, v(1) = 0 since otherwise, v (1) = 0 would imply that v is identically zero and this contradicts min

I G ε,δ,κ ≤ F β,κ (ϕ β ) < 0.
We note that if (v ε , ϕ ε ) is a minimizer then (|v ε |, ϕ ε ) is also a minimizer, thus we can assume v ε > 0.

The fact that (v, ϕ) satisfies relation (3.3) is obtained by multiplying the first equation of (3.1) by v and the second equation of (3.1) by ϕ , adding the two equations and integrating.

In order to use the results about the simplified functional F β,κ , with β = ε √ δ we first prove that v ε converges to 1. We will always assume that ε 2 = o ε (δ) since we want the parameter β to be small. Proposition 3.2. Let (v ε , ϕ ε ) be a minimizer of G ε,δ,κ in I. Then for ε > 0 small enough, there exists C > 0 independent of the parameters, such that

1 -v ε L ∞ (I) ≤ Cκ √ ε. (3.4) Proof. Since G ε,δ,κ (1, 0) = 0 we find that G ε,δ,κ (v ε , ϕ ε ) = 1 2 1 0 v 2 ε + 1 4ε 2 1 0 (1 -v 2 ε ) 2 + 1 8 1 0 v 2 ε (ϕ ε -2κ) 2 + δ 8ε 2 1 0 v 4 ε sin 2 ϕ ε - κ 2 2 ≤ 0. (3.5) 
Therefore, 1 2

1 0 v 2 ε + 1 4ε 2 1 0 (v 2 ε -1) 2 ≤ κ 2 2 . (3.6) 
We now apply Modica-Mortola's trick and the coarea formula (cf. [START_REF] Evans | Measure theory and fine properties of functions[END_REF]) to obtain

1 2 √ 2ε 1 0 |v ε (x)||1 -v ε (x) 2 |dx ≤ κ 2 2 1 2 √ 2ε ∞ -∞ |1 -t 2 |H 0 (v ε = t)dt ≤ κ 2 2 sup vε inf vε |1 -t 2 |dt ≤ √ 2κ 2 ε
where for the last inequality we have used that

H 0 (v ε = t) ≥ 1 if inf v ε ≤ t ≤ sup v ε
and H 0 (v ε = t) = 0 everywhere else. We first observe that 0 ≤ inf v ε ≤ 1 (because we assume v ε ≥ 0 and

1 0 v 2 = 1). a) If sup v ε > 1: we then have 1 inf vε (1 -t 2 )dt + sup vε 1 (t 2 -1)dt ≤ √ 2εκ 2
which implies that

1 inf vε (1 -t 2 )dt ≤ √ 2κ 2 ε and sup vε 1 (t 2 -1)dt ≤ √ 2κ 2 ε.
We set m = inf v ε and M = sup v ε and we obtain

√ 2κ 2 ε ≥ 1 -m - 1 -m 3 3 ≥ (1 -m)(1 - 1 + m + m 2 3 ) ≥ (1 -m) 2 -m -m 2 3 .
We have m 2 ≤ m and hence we find that

2 3 (1 -m) 2 ≤ √ 2κ 2 ε and (1 -m) ≤ Cκ √ ε.
We also have 

√ 2κ 2 ε ≥ M 3 -1 3 -(M -1) ≥ (M -1) M 2 + M -2 3 ≥ 2 3 (M -1) 2 . ( 3 
√ 2κ 2 ε ≥ M m (1 -t 2 )dt ≥ M -m - M 3 -m 3 3 ≥ (M -m)(1 - M 2 + mM + m 2 3
).

Since

M 2 + mM + m 2 ≤ 1 + 2m we have 1 -M 2 +mM +m 2 3 ≥ 2 3 (1 -m). Hence √ 2κ 2 ε ≥ (M -m)(1 -m) ≥ (M -m) 2 .
We deduce that (M -m) ≤ Cκ √ ε. On the other hand we have

2κ 2 ε 2 ≥ 1 0 (1 -v 2 ) 2 ≥ 1 0 (1 -M 2 ) 2 .
Thus 1 -M 2 ≤ Cκε for some C > 0 and 1 -M ≤ Cκε. This proves that (3.4) holds.

The previous proposition shows that for κ √ ε small enough, a minimizer (v ε , ϕ ε ) of G ε,δ,κ in I is not only in I but also in H 1 (I) × H 1 (I) and then we can prove that it is smooth everywhere in [0, 1]. From now on we will always assume that κ √ ε goes to 0. Proposition 3.3. Let (v ε , ϕ ε ) be a minimizer of G ε,δ,κ in I.

1) If κ is bounded independently of ε, and δ is also independent of ε then (1. [START_REF] Hu | Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps[END_REF] and (1.17) hold.

2

) If κ = κ√ δ ε , with κ < 1 π independent of ε, ε 2 = o ε (δ) and δ = o ε (ε) then (1.19) holds and ϕ ε L ∞ (I) ≤ ϕ ε (1)(1 + o ε (1)).
Moreover, in both cases,

G ε,δ,κ (v ε , ϕ ε ) = G ε,δ,κ (1, ϕ ε )(1 + o ε (1)) = inf F ε/ √ δ,κ (1 + o ε (1)).
(3.8)

Proof. Let (v, ϕ) be a minimizer of G ε,δ,κ in I and let φε be a minimizer of F β,κ in J , with β = ε/ √ δ. We have

G ε,δ,κ (v, ϕ) ≤ G ε,δ,κ (1, φε ) = F β,κ ( φε ) ≤ F β,κ (ϕ). (3.9) 
1) If κ is bounded we use (1.11) to get 1 8

1 0 v 2 ϕ 2 + δ 8ε 2 1 0 v 4 sin 2 ϕ - κ 2 1 0 v 2 ϕ ≤ -κ 2 ε 2 √ δ (1 + o ε (1)). (3.10)
We write κ 2

1 0 v 2 ϕ = κ 2 1 0 ϕ + κ 2 1 0 (v 2 -1)ϕ . (3.11) 
Moreover, using Young's inequality

κ 2 1 0 (v 2 -1)ϕ ≤ κ 4 ε 2α 1 0 ϕ 2 + 1 ε 2α 1 0 (v 2 -1) 2 (3.12)
for some α > 0 to be chosen later. We recall from (3.6) that (3.11) and (3.12), we obtain 1 8

1 0 (v 2 -1) 2 ≤ 2κ 2 ε 2 . From (3.10),
1 0 v 2 ϕ 2 + δ 8ε 2 1 0 v 4 sin 2 ϕ - κ 2 ϕ(1) - κ 4 ε 2α 1 0 ϕ 2 + 2κ 2 ε 2(1-α) ≤ -κ 2 ε √ δ (1 + o ε (1)). (3.13)
We recall from Proposition 3.2 that v 2 -1 L ∞ (I) ≤ Cκ √ ε. We chose α > 0 such that ε 2(1-α) = o ε (ε). For instance, we can take α = 1 4 and we obtain 1 8

1 0 ϕ 2 + δ 8ε 2 1 0 sin 2 ϕ (1 + O ε ( √ ε)) - κ 2 ϕ(1) ≤ -κ 2 ε 2 √ δ (1 + o ε (1)) √ δ 4ε 1 0 |ϕ || sin ϕ|(1 + O ε ( √ ε)) - κ 2 ϕ(1) ≤ -κ 2 ε 2 √ δ (1 + o ε (1)
). (3.14) This implies that ϕ(1) > 0. We let N := E ϕ(1) π and we deduce

√ δ ε N 2 + 1 -cos(ϕ(1) -N π) 4 (1 + O ε ( √ ε)) - κ 2 ϕ(1) ≤ -κ 2 ε 2 √ δ (1 + o ε (1)).
We can rewrite this last inequality as

N √ δ 2ε (1 - κεπ √ δ ) + √ δ ε f (ϕ(1) -N π) + √ δ ε N 2 + 1 -cos(ϕ(1) -N π) 4 × O ε ( √ ε) ≤ -κ 2 ε 2 √ δ (1 + o ε (1)) (3.15)
with f defined by (2.4). From the study of the function f done in Proposition 2.2 we have f (ϕ(1)

-N π) ≥ -κ 2 ε 2 2δ (1 + o ε (1)) thus N √ δ 2ε (1 - κεπ √ δ ) + √ δ ε N 2 + 1 -cos (ϕ(1) -N π) 4 × O ε ( √ ε) ≤ o ε (ε).
This implies that N = 0 for ε small enough. We now come back to inequality (3.10) and we recall that we only used the fact that

1 0 v 2 2 + 1 4ε 2 (1 -v 2 ) 2 ≥ 0.
Keeping track of this term in the computations leading to (3.15), we obtain

1 0 v 2 2 + 1 4ε 2 (1 -v 2 ) 2 + √ δ ε f (ϕ(1))(1 + O ε ( √ ε) ≤ -κ 2 ε 2 √ δ (1 + o ε (1)). (3.16)
The study of the function

f ε (x) := f (x) + 1-cos(x) 4 O ε ( √ ε) on [0, π] shows that f ε (x) ≥ -κ 2 ε 2 δ (1 + o ε (1)) for all x in [0, π].
Therefore, (3.16) yields

1 0 v 2 2 + 1 4ε 2 (1 -v 2 ) 2 ≤ o ε (ε). (3.17)
This is an improvement of (3.6). We can then apply the method of the proof of Proposition 3.2 to deduce from (3.17) the L ∞ estimate (1.16). From (3.16) and the lower bound

f (ϕ(1)) ≥ -κ 2 ε 2 2δ (1 + o ε (1)), we find -κ 2 ε 2 2δ (1 + o ε (1)) ≤ f (ϕ(1)) ≤ -κ 2 ε 2 2δ (1 + o ε (1)
). This implies, as in the proof of Proposition 2.3, that the first part of (1.17) holds. Moreover, going back to (3.14), and using the estimate for ϕ(1), we see that the estimate holds when the integral is taken from 0 to x. So the same reasoning as before yields

1 -cos |ϕ(x)| 4 ≤ κ 2 ε 2 2δ (1 + o ε (1)),
which implies the second part of (1.17). This computation also yields that

G ε,δ,κ (v, ϕ) ≥ √ δ ε f (ϕ(1))(1 + o ε (1)
), which, together with the upper bound (3.9) and the estimate on f (ϕ(1)) yields (3.8).

2) The proof follows the same scheme as the preceding proof. This time we deduce from (3.9) and (1.10) that 1 8

1 0 v 2 ϕ 2 + δ 8ε 2 1 0 v 4 sin 2 ϕ- κ 2 1 0 v 2 ϕ ≤ G ε,δ,κ (v, ϕ) ≤ f (arcsin(2κ)) √ δ ε (1+o ε (1)). 
(3.18) Inequality (3.6) yields that

1 0 (v 2 -1) 2 ≤ Cκ 2 ε 2 ≤ C κ2 δ. Thus we can write κ 2 1 0 (v 2 -1)ϕ ≤ κ 4 ε 2α 1 0 ϕ 2 + Cδε -2α (3.19)
with α to be chosen later. We also have from Proposition 3.2 that

v 2 -1 L ∞ (I) ≤ Cκ √ ε ≤ C κ δ ε and v 4 -1 L ∞ (I) ≤ C κ δ ε .
We want to take α such that

κε 2α = o ε ( δ ε ) and κδε -2α = o ε ( √ δ ε ). Since κ = κ√ δ
ε , this leads to ε -1/2+2α = o ε (1) and δε -2α = o ε (1). We use that δ = o ε (ε) and we see that the conditions are satisfied if 1 4 < α < 1 2 . For such an α we obtain 1 8 .20) This implies that ϕ(1) > 0. We let N := E ϕ(1) π and we apply the Modica-Mortola technique to get

1 0 ϕ 2 + δ 8ε 2 1 0 sin 2 ϕ (1 + O ε ( δ ε )) - κ√ δ 2ε ϕ(1) ≤ 1 - √ 1 -4κ 2 4 - κ 2 arcsin(2κ) √ δ ε (1 + o ε (1)). ( 3 
N 2 (1 -κπ) (1 + O ε ( δ ε )) + f (ϕ(1) -N π) ≤ f (arcsin(2κ))(1 + o ε (1)). (3.21)
with f defined by (2.4). The study of the function f shows that f (ϕ(1) -N π) ≥ f (arcsin(2κ)) and thus

N 2 (1 -κπ)(1 + O ε ( δ ε )) ≤ o ε (1).
Since 1 -κπ > 0, this yields N = 0 for ε small enough. By keeping track of the term

1 0 v 2 8 + 1 4ε 2 (1 -v 2 ) 2
in the previous inequalities we obtain

1 0 v 2 8 + 1 4ε 2 (1-v 2 ) 2 + √ δ ε f (ϕ(1)) 1 + O ε δ ε ≤ √ δ ε f (arcsin(2κ)) (1 + o ε (1)) . (3.22) But since f (ϕ(1)) ≥ f (arcsin(2κ)), we obtain 1 0 v 2 2 + 1 4ε 2 (1 -v 2 ) 2 ≤ o ε ( √ δ ε ).
Now we can apply the method of the proof of Proposition 3.2 to deduce the L ∞ bound for v and thus the first part of (1.19). Since we have also found that f (ϕ(1)) = f (arcsin(2κ))(1 + o ε (1)) this implies, like in Proposition 2.3, that ϕ(1) = arcsin(2κ)(1 + o ε (1)). We now come back to (3.20) and use the estimate for ϕ(1) to find 1 8

1 0 ϕ 2 + δ 8ε 2 1 0 sin 2 ϕ ≤ √ δ ε (1 - √ 1 -4κ 2 ) 4 (1 + o ε (1)). (3.23) 
This upper bound also holds for the integral between 0 and any x in (0, 1). Using the coaera formula, we thus find

1 -cos |ϕ(x)| 4 ≤ 1 - √ 1 -4κ 2 4 (1 + o ε (1))
and this provides the required upper bound for ϕ(x).

We recall that G )). Going back to (3.18) and keeping track of the computations leading to (3.22), we find

ε,δ,κ (1, ϕ) = f (ϕ(1)) √ δ/ε(1 + o ε ( 1 
G ε,δ,κ (v, ϕ) = f (ϕ(1)) √ δ ε (1 + o ε (1)) which is (3.8). Proposition 3.4. If κ = κ√ δ ε , with κ > 1 π independent of ε, ε 2 = o ε (δ) and δ = o ε (ε) then for a minimizer (v ε , ϕ ε ) of G ε,δ,κ , we have G ε,δ,κ (v ε , ϕ ε ) = G ε,δ,κ (1, ϕ ε )(1 + o ε (1)) = inf F ε/ √ δ,κ (1 + o ε (1)). ( 3 

.24)

If we assume that δ = O ε (ε 3/2 ), then

1 0 v (x) 2 dx + 1 4ε 2 1 0 (v 2 (x) -1) 2 dx = O ε √ δ ε . (3.25) 
Proof. Let (v, ϕ) be a minimizer of G ε,δ,κ . Then (3.9) holds. Moreover,

G ε,δ,κ (v, ϕ) ≥ 1 8 1 0 v 2 (ϕ -2κ) 2 + δ 8ε 2 1 0 v 4 sin 2 ϕ - κ 2 2 . (3.26) We use v -1 L ∞ (I) ≤ C δ ε (cf. Proposition 3.
2) and proceed as in the previous proofs, approximating v by 1 in (3.26), to obtain

G ε,δ,κ (v, ϕ) + κ2 δ 2ε 2 ≥ G ε,δ,κ (1, ϕ) + κ2 δ 2ε 2 1 + O ε δ ε .
The upper bound (1.14) shows that κ2 δ 2ε 2 is of the same magnitude as the energy. Therefore,

G ε,δ,κ (v, ϕ) = G ε,δ,κ (1, ϕ) 1 + O ε δ ε . (3.27) From (1.14), we have the bounds G ε,δ,κ (v, ϕ) ≤ -α2 0 δ 8ε 2 + O ε √ δ ε and G ε,δ,κ (1, ϕ) ≥ -α2 0 δ 8ε 2 + O ε √ δ
ε . This and (3.27) yield (3.24). From (3.27), we also deduce 1 2

1 0 v 2 + 1 4ε 2 1 0 (v 2 -1) 2 = O ε √ δ ε + O ε δ ε × δ ε 2 .
(3.28)

Now using δ = O ε (ε 3/2 ) we find (3.25).

In the previous Proposition, the estimate δ = o(ε) is not enough to have a sufficient bound for our later purposes on the energy for v. This is why we have added an extra hypothesis.

Convergence of minimizers

The study of the minimization of F ε/ √ δ,κ led to three different cases, for which we will prove convergence of ϕ ε . Proposition 3.5. Let κ > 0 and δ > 0 be fixed, let

(v ε , ϕ ε ) be a minimizer of G ε,δ,κ in I. If we set Φ ε (x) := √ δ 2κε ϕ ε (1 -εx √ δ ) then Φ ε → Φ 0 (x) := e -x in C 1 loc (R + ).
Proof. We recall from Proposition 3.3 that, in this case we have ϕ ε

(1) = 2κε √ δ (1+o ε (1)). Next from (3.8), we have G ε,δ,κ (1, ϕ ε ) = -κ 2 ε 2 √ δ (1 + o ε (1)). These two facts imply that 1 0 ϕ 2 ε 8 ≤ κ 2 ε √ δ (1 + o ε (1)). Now we set w ε (x) = v ε (1 -εx √ δ ) and Φ ε (x) := √ δ 2κε ϕ ε (1 -εx √ δ ). Both functions are defined in [0, √ δ ε ]. With β = ε √ δ we find 1 β 0 Φ ε (x) 2 dx = 1 2κ 2 β 1 0 ϕ ε (y) 2 dy ≤ C (3.29) for some constant C independent of ε, κ, δ. Since Φ ε (0) = √ δϕε(1) 2κε 
is bounded with respect to ε, we obtain that Φ ε is bounded in H 1 loc ((0, 1 β )) and hence there exists Φ 0 in H 1 loc (R + ) such that, up to a subsequence, Φ ε Φ 0 in H 1 loc (R + ) and Φ ε → Φ 0 in C 0 loc (R + ). Besides (w ε , Φ ε ) satisfies the following equations

-w + 1 δ w(w 2 -1) + κ 2 ε 2 δ wΦ 2 + 1 2 w 2 sin 2 (2κβΦ) + 2κ 2 ε 2 δ wΦ = ε 2 δ λw, -(w 2 Φ ) + w 4 cos(2κβΦ) sin(2κβΦ) 2κβ -2κ(w 2 ) = 0, (3.30) w (0) = w ( 1 β ) = 0, Φ(0) = √ δϕε (1) 
2κε , Φ (0) = -1.

(3.31)

Using that w ε → 1 in C 0 loc (R + ) and Φ ε Φ 0 in H 1 loc (R + ) we can pass to the limit in the sense of distributions in the second equation of (3.30) and find that Φ 0 satisfies Φ 0 = Φ 0 . Since the convergence is uniform on [0, M ] for every M > 0 we find that Φ 0 (0) = lim ε→0 √ δϕε(1) 2κε = 1. We also have from the second equation of (3.30) that Φ ε is bounded in L 2 loc ((0, 1 β )). Since Φ ε is also bounded in H 1 ((0, 1 β )) we find that Φ ε converges in C 1 loc ([0, +∞)) and thus Φ 0 (0) = -1. This yields Φ 0 (x) = e -x . Since the limit is unique the entire sequence Φ ε converges.

Proposition 3.6. Let κ = κ√ δ ε , with κ < 1 π independent of ε, δ = o ε (ε) and ε 2 = o ε (δ). Let (v ε , ϕ ε ) be a minimizer of G ε,δ,κ in I. We set ψ ε (x) = ϕ ε (1 -εx √ δ ) then ψ ε → ψ 0 in C 1 loc (R + ) with ψ 0 (x) = 2 arctan tan arcsin(2κ) 2 e -x .
Proof. From Proposition 3.3, we have that ϕ )). We thus obtain

ε (1) = arcsin(2κ)(1+o ε (1)) and G ε,δ,κ (1, ϕ ε ) = √ δ ε 1- √ 1-4κ 2 4 -κ 2 arcsin(2κ) (1 + o ε ( 1 
1 0 ϕ 2 ε ≤ C √ δ ε ,
for some C > 0. Therefore,

1 β 0 ψ 2 ε = ε √ δ 1 0 ϕ 2 ε ≤ C.
This proves that ψ ε is bounded in H 1 ((0, 1 β )) and thus there exists ψ 0 in H 1 loc (R + ) such that ψ ε ψ 0 in H 1 loc (R + ), up to a subsequence. We have that w

ε = v ε (1 -εx √ δ ) and ψ ε satisfy -w + 1 δ w(w 2 -1) + 1 4 wψ 2 + κwψ = λ ε 2 δ w in (0, 1 β ), -(w 2 ψ ) + w 4 cos ψ sin ψ -2κ(w 2 ) = 0 in (0, 1 β) ), (3.32) 
w (0) = w (1) = 0, ψ(0) = ϕ ε (1), ψ (0) = 2κ. (3.33)
We recall from Proposition 3.3 that w ε → 1 in C 0 loc ([0, +∞)). We use that w ε → 1 in C 0 and ψ ε ψ 0 in H 1 loc (R + ) to pass to the limit in the sense of distributions in the second equation of (3.32) and we obtain ψ 0 = sin ψ 0 cos ψ 0 in R + .

(3.34)

From the uniform convergence of ψ ε on every compact of [0, +∞), we find that ψ 0 (0) = lim ε→0 ϕ ε (1) = arcsin(2κ). Besides, we see from the second equation of (3.32) that ψ ε is bounded in L 2 loc (R + ). Since ψ ε is also bounded in H 1 loc (R + ) (in particular ψ ε is bounded in L 2 loc (R + )) we have that ψ ε → ψ 0 in C 1 loc ([0, +∞)). This means that ψ 0 (0) = 2κ. The unique solution with the desired boundary conditions is ψ 0 (x) = 2 arctan tan[ arcsin(2κ) 2 e -x ] . Since the limit is unique, the entire sequence (ψ ε ) ε converges.

In the next case, we will show that ϕ ε goes beyond N π with N large, of order √ δ/ε. Since ψ ε (0) = 0 we have ψ ε bounded in H 1 (I). We deduce that there exists ψ 0 in H 1 (I) such that, up to a subsequence we have ψ ε ψ 0 in H 1 (I) and ψ ε → ψ 0 in C 0 ([0, 1]). In particular there exists l in R such that lim ε→0 ε √ δ ϕ ε (1) = l. We now show that l > 0. We call N = E ϕε(1) π , by using (2.3) and the fact that Proof. We set w ε (x) := v ε ( εx √ δ ). Let ψ ε be a minimizer of F β,κ in J where β = ε/ √ δ. We also set Φ ε (x) := ψ ε (βx). For any large R > 0, we want to prove that (w ε , φε ) is bounded in H 1 ((0, R)). In order to do that, we want to compare the energy of (w ε , φε ) with the energy of (1, Φ ε ) in (0, R). In particular, we let : for (w, ψ) in H 1 ((0, 1 β )) × H 1 ((0, 1 β )) and we want to show that there exists C > 0 independent of R such that ) in (R + x 0 , 1 β ), (u 1 , θ 1 ) in (R, R + x 0 ), (3.38) with

G ε,δ,κ (1, ϕ ε ) = -α2 0 δ ε 2 (1 + o ε ( 1 
g(
u 1 = 1 - x -R x 0 + x -R x 0 w ε (R + x 0 ) θ 1 = 1 - x -R x 0 Φ ε (R) + x -R x 0 φε (R + x 0 ) -πE φε (R + x 0 ) -Φ ε (R) π .
We can then see, by using the minimizing property of (w ε , φε ) that for every L in Z. Since we have that u (x) = wε(R+x 0 )-1

x 0 in (R, R + x 0 ) and (w ε (R + x 0 ) 2 -1) 2 ≤ Cδ (from (3.37)) we can see that

R+x 0 R u 2 2 + (u 2 -1) 2 4δ ≤ Cδ x 0 + C ≤ C
where C is independent of R. We also have that

θ (x) = 1 x 0 φε (R + x 0 ) -Φ ε (R) -πE φε (R + x 0 ) -Φ ε (R) π .
Hence we find, by using that x 0 > 1, that |θ Therefore (3.44) implies h(ω 0 ) ≤ h(α 0 ). But α0 is the unique minimizer of h, as proved in the proof of Proposition 2.10. Thus we have ω 0 = α0 and ϕ 0 is the solution of (1.15).

Theorem 1.3 follows from the Propositions of this section.

  .28) with η := 2 arctan e 1 2β tan[arcsin(2κβ)] . Note that we have ψ β = sin ψ β β in ( 1 2 + β, 1) and that ψ β (1) = π + arcsin(2κ). By combining the previous point with the ideas of the construction of the test function in the proof of Proposition 2.2 we can conclude the proof.

x 2 +sin 2 y 2 .

 2 

Lemma 2 . 3 ..

 23 As α0 → 0, then Since sin y + α2 0 + sin 2 y ≥ α0 , we deduce that

. 7 )

 7 It follows that (M -1) ≤ Cκ √ ε and then (M -m) ≤ Cκ √ ε. This yields (3.4). b) If sup v ε ≤ 1: we have

Proposition 3 . 7 .ε 1 0

 371 Let κ = κ√ δ ε with κ > 1 π independent of ε, ε 2 = o ε (δ) and δ = o ε (ε). Let (v ε , ϕ ε ) be a minimizer of G ε,δ,κ in I. We set ψ ε (x) := ε √ δ ϕ ε (x), then there exists ψ 0 in H 1 (I) such that ψ ε ψ 0 in H 1 (I) and ψ ε → ψ 0 in C 0 ([0, 1]) (up to a subsequence). Besides there exists l > 0 such that lim ε→0 ε √ δ ϕ ε (1) = l. Proof. We have ψ ε (x) = ε √ δ ϕ ε (x) for x in [0, 1]. From Proposition 3.4, we also have G ε,δ,κ (1, ϕ ε ) = -α2 0 δ 8ε 2 (1 + o ε (1)) with α0 defined by(1.13). This means to obtain that there exists C > 0 independent of ε such that (ψ ε -2κ) 2 ≤ C.

Proposition 3 . 8 .

 38 )) we find thatN ≥ C 1 √ δ ε for some C 1 > 0 and hence lim ε→0 ε √ δ ϕ ε (1) > 0. Let κ = κ√ δ ε , with κ > 1 π independent of ε, ε 2 = o ε (δ) and δ = O ε (ε 3/2 ). Let (v ε , ϕ ε ) be a minimizer of G ε,δ,κ in J , we set φε (x) := ϕ ε ( εx √ δ ). Then φε → ϕ 0 in C 1 loc (R + )where ϕ 0 is the solution of (1.15).

- 1 ) 2 ≤( 1 ,

 121 ε , φε ) ≤ R 0 g(1, Φ ε ) + C.(3.35) By using Proposition 3.4 with the rescaled function w ε (x) = v ε (βx) we find Cδ.Hence, there exists 1 < x 0 ≤ 2 such that(w ε (R + x 0 ) 2 -1) 2 ≤ Cδ. Φ ε ) in (0, R),(w ε , φε -πE φε(R+x0)-Φε(R) π

8 0 R u 2 θ 2 + u 4 sin 2 θ - κ 2 0 Ru 2 0 g(w ε , φε ) ≤ R 0 g( 1 , 0 | 8 =

 80220200108 (x)| ≤ π. Since w ε -1 L ∞ ≤ C δ ε we get 1 R+x R+x θ ≤ C with C independent of R. This yields R+x 0 Φ ε ) + C.By using the expression of g(w, ψ) we can see that such that φ0 (T ) = π. By using the equation of φ0 , and in particular the fact that φ 2 0 = sin 2 φ0 + ω 2 0 , we have that φ 0 (y)| sin 2 φ0 (y) + ω 2 0 dyh(ω 0 ).
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Thus we obtain (3.35). Since we know that | R 0 g(1, Φ ε )| is bounded uniformly in ε, we deduce that (w ε , φε ) is bounded in H 1 ((0, R)) for every R > 0. We can thus find ϕ 0 in H 1 loc (R + ) and extract a subsequence, still denoted by ε such that φε ϕ 0 in H 1 loc (R + ) and φε → ϕ 0 in C 0 loc (R + ). We also have that (w ε , φε ) satisfy

) and φε φ0 in H 1 loc (R + ) we can pass to the limit in the sense of distributions in the second equation of (3.41) and we find that φ0 satisfies

Furthermore the second equation of (3.41) also provides us with φ ε bounded in

Then, since φε is already bounded in H 1 loc (R + ) we have that φε → φ0 in C 1 loc ([0, +∞)). In particular we have that φ 0 (0) = ω 0 for some ω 0 > 0 such that lim ε→0 φ ε (0) = ω 0 . The rest of the proof is devoted to showing ω 0 = α0 , where α0 is defined by (1.13).

We pass to the limit ε → 0 in inequality (3.35), by using the convergence C 1 loc (R + ) of φε and Φ ε and the weak convergence in

We now use that φ0 and Φ 0 are periodic in the sense that there exist T , T such that φ0 (x + T ) = π + ψ 0 (x) in [0, 1 β -T ] and Φ 0 (x + T ) = π + Φ 0 (x) in [0, 1 β -T ] and we take the limit R goes to infinity in (3.43) to obtain