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ARTICLE

Surface-wave instability without inertia in shear-
thickening suspensions
Baptiste Darbois Texier1, Henri Lhuissier1, Yoël Forterre 1 & Bloen Metzger1✉

Recent simulations and experiments have shown that shear-thickening of dense particle

suspensions corresponds to a frictional transition. Based on this understanding, non-

monotonic rheological laws have been proposed and successfully tested in rheometers.

These recent advances offer a unique opportunity for moving beyond rheometry and tackling

quantitatively hydrodynamic flows of shear-thickening suspensions. Here, we investigate the

flow of a shear-thickening suspension down an inclined plane and show that, at large volume

fractions, surface kinematic waves can spontaneously emerge. Curiously, the instability

develops at low Reynolds numbers, and therefore does not fit into the classical framework of

Kapitza or ‘roll-waves’ instabilities based on inertia. We show that this instability, that we call

‘Oobleck waves’, arises from the sole coupling between the non-monotonic (S-shape)

rheological laws of shear-thickening suspensions and the flow free surface.
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How microscopic interactions affect the macroscopic flow
behavior of complex fluids is at the core of soft matter
physics. Recently, it has been shown that shear-thickening

in dense particulate suspensions corresponds to a frictional
transition at the microscopic scale; when the imposed shear stress
exceeds the inter-particle short-range repulsive force, the grain
contact interaction transits from frictionless to frictional1–8.
During this transition, the proliferation of frictional contacts can
be so massive that it triggers a remarkable macroscopic rheolo-
gical response: the rate of shear of the suspension decreases when
the imposed shear stress is increased. As a result, highly con-
centrated shear-thickening suspensions have peculiar S-shape
rheological laws9,10, which have been rationalized by a frictional
transition model3,11,12. So far, the consequences of the frictional
transition and its associated S-shape rheology have been essen-
tially investigated in rheometers, where instabilities, shear bands
and spatiotemporal patterns have been documented11,13–15. By
contrast, very little is known about the behavior of shear-
thickening suspensions in real hydrodynamic flow configurations
beyond rheometry, in spite of the numerous applications16–18.

An archetypical case, which is widely encountered in industrial
and geophysical applications, is the incline plane flow config-
uration. As previously reported19 and illustrated in Fig. 1a (see
also Supplementary movie 2), when a thin layer of shear-
thickening suspension flows down an inclined plane, surface
waves of wavelengths much larger than the thickness can develop
spontaneously and grow as they propagate downstream. This
longwave free-surface instability may seem reminiscent of the
Kapitza instability observed when a thin liquid film flows down a
slope20,21, or more generally of the so called “roll waves”
instability observed from turbulent flows in open channels22–24,
to avalanches of complex fluids like mud25,26 or granular
media27. These latter two instabilities rely on the same primary
mechanism: the amplification of kinematic surface waves at high
velocity owing to inertial effects28. For a Newtonian liquid in the
laminar regime, the destabilization occurs only when the Rey-
nolds number of the flow, Re= ρu0h0/η, where ρ is the fluid
density, u0 its mean velocity, h0 the flow thickness and η the fluid

viscosity, exceeds the Kapitza threshold, ReK ¼ 5=ð6 tan θÞ, which
is typically much larger than 1 for a small tilting angle θ of the
incline29–31. By contrast, the growth of surface waves observed in
Fig. 1a for a dense shear-thickening suspension occurs at a
Reynolds number of only ≈1, i.e., far below the Kapitza threshold
ReK ≈ 5 predicted for θ= 10∘ (see also ref. 19). This suggests that a
different instability mechanism is at play for dense shear-
thickening suspensions, yet its origin remains an open question.

Here, we investigate the origin of this instability by studying
the flow of a shear-thickening suspension down an inclined plane
over a wide range of volume fractions and flow rates. We confirm
that this instability is not inertial and fundamentally different
than the classical Kapitza or Roll waves instabilities. We provide
experimental evidence together with a theoretical explanation,
which show that this destabilization arises from the coupling
between the flow free surface and the non-monotonic (S-shape)
rheological laws of shear-thickening suspensions.

Results and discussion
Evidence of an instability distinct from the classical Kapitza or
roll waves instabilities. We perform experiments with shear-
thickening aqueous suspensions of commercial native cornstarch
(Maisita®, http://www.agrana.com). We vary the particle volume
fraction over a wide range (0.30 < ϕ < 0.48) and characterize the
onset of stability (the value of ϕ refers to the dry volume of corn-
starch computed from its dry weight and density, 1550 kgm−3).
We use a 1m long and 10 cm wide inclined plane covered with a
diamond lapping film (663-3M with roughnesses of ~45 μm) to
insure rough boundary conditions. The suspension is released from
a reservoir at the top of the plane through a gate with an adjustable
aperture (Fig. 1b). A scale, placed at the bottom end of the incline
(not shown in the schematic), provides the instantaneous flow rate
q of the suspension. To probe the stability of this free-surface flow
for moderate volume fractions ϕ ≤ 0.4, the gate is mounted on a
translating stage imposing a small sinusoidal modulation of its
aperture (3 Hz, ±100 μm). At large volume fractions however (ϕ≳
0.4), no forcing is required because the flow is so unstable that it is
dominated by noise amplification of its most unstable mode. Two

Fig. 1 Experimental characterization of the instability onset. a Non-inertial surface waves emerging spontaneously when a concentrated suspension
of cornstarch particles flows down an incline (volume fraction ϕ= 0.45, inclination angle θ= 10∘ and normalized flow Reynold number Re/ReK≈ 0.2).
b Sketch of the experimental setup. We use the progressive drainage of the reservoir to quasi-steadily vary the flow rate. The instability onset is
determined by measuring the wave amplitudes both at the top and at the bottom of the incline with two laser sheets and cameras. For ϕ≤ 0.4, an
oscillation of the gate is added to impose a controlled perturbation. c Spatiotemporal plots of the laser sheet transverse-position versus time, indicating the
vertical oscillations (blue and red arrows) of the free surface, at the top and at the bottom of the incline (ϕ= 0.33, θ= 2∘, Re≈ 37). d Reynolds number of
the flow, Re, and e amplitude of the perturbation at the top, Δh1, and at the bottom, Δh2, during the drainage of the suspension reservoir (ϕ= 0.36, θ= 3∘).
The instability onset (Δh1= Δh2) is given by Rec≈ 28 (black-dashed-line).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00500-4

2 COMMUNICATIONS PHYSICS |           (2020) 3:232 | https://doi.org/10.1038/s42005-020-00500-4 | www.nature.com/commsphys

http://www.agrana.com
www.nature.com/commsphys


low-incident laser sheets and two cameras are used to measure the
mean film thickness h0~2−10mm, and the crest-to-crest amplitude
of the waves upstream and downstream of the incline (Fig. 1c). The
calibration of the laser sheet projections on the film surface yields a
local measurement of h0 with a precision of 10 μm.

We use a protocol designed to characterize the instability onset
with a single experiment for each volume fraction ϕ and
inclination θ. The flow rate is varied quasi-steadily, either using
the progressive drainage of the reservoir (decreasing flow rate) or
by slowly increasing the gate aperture (increasing flow rate). At
each instant, an effective Reynolds number of the flow is
computed from the instantaneous flow rate q and from the
mean film thickness h0 using the relation Re ¼ 3q2=ðgh30 sin θÞ,
where g is the gravitational acceleration. Note that the flow rate is
varied sufficiently slowly that at each instant, the flow rate is
constant along the incline. With such a definition based on mean
quantities only, the Reynolds number can be applied to any
rheology and is directly related to the Froude number F ¼
u20=ðgh0 cos θÞ commonly used to described roll waves24 by
Re ¼ 3F=tanθ, where u0= q/h0 is the mean flow velocity. Re also
reduces to the standard expression Re= ρu0h0/η for a Newtonian
fluid of viscosity η and density ρ in the laminar regime (Nusselt
velocity profile). Figure 1d shows the concomitant evolution of Re
and of the wave amplitude upstream (Δh1) and downstream (Δh2)
the incline during the drainage of the reservoir, starting from an
unstable situation where Δh2 > Δh1. The stability onset is precisely
reached when Δh1= Δh2, which provides us with the critical
Reynolds number Rec (dashed line in Fig. 1c), the critical flow
thickness hc, and the critical basal shear stress, τc ¼ ρghc sin θ.
We have verified that the same instability onset is obtained by
carrying successive steady-state measurements at various constant
flow rates. A new freshly prepared suspension of cornstarch is
used for each measurement. Experiments are repeated four times
for each volume fraction.

Figure 2a shows the critical Reynolds number Rec, normalized
by the Kapitza threshold for a Newtonian fluid, as a function of ϕ.
For the lowest volume fraction investigated, ϕ= 0.30, the stability
threshold is close to ReK (it is typically 50% above, owing to the
finite forcing frequency and finite width of the plane32,33). As the
volume fraction is increased, Rec becomes increasingly larger
relative to ReK, reaching ≈5ReK at ϕ= 0.41. This behavior is
actually expected from Kapitza’s inertial mechanism for a

medium that is continuously shear-thickening34, like our
cornstarch suspension over that range of volume fractions
(0.35≲ ϕ≲ 0.41). More strikingly, for ϕ≳ 0.41 the relative critical
Reynolds number drops drastically, down to two orders of
magnitude below the Kapitza threshold at the largest volume
fraction investigated (ϕ= 0.48, for which Re ≈ 0.15 and F ≈ 10−2).
Clearly, in this domain, the flow destabilization can no longer be
explained within the Kapitza framework since inertial effects are
negligible. Note that inertia is also negligible at the particle scale,
since the Stokes number, St � ðd=h0Þ2Re, where d ~ 10 μm is the
particle size, is ~105 times smaller than Re. As shown in Fig. 2b,
this qualitative change in the onset of instability around ϕ= 0.41
is also observed in the evolution of the critical shear stress τc with
ϕ. Similarly, the surface wave speed at the instability threshold
changes significantly and abruptly. Its value cc, normalized by the
mean flow velocity u0 drops from 3, which is Kapitza’s prediction
for a Newtonian layer in the long wavelength limit, to ~2 for
volume fractions exceeding ≈0.41 (see Fig. 2c). These results
confirm that above ϕ ≈ 0.41, a longwave free-surface instability,
which is fundamentally distinct from the Kapitza instability,
emerges. In the following, we call this instability, which to our
knowledge as no equivalent in classical fluids, “Oobleck waves”.

Oobleck waves arise from the S-shape rheology and kinematic
wave propagation. To understand the origin of Oobleck waves,
we characterize the rheology of the cornstarch suspension in a
cylindrical-Couette rheometer (Fig. 3). We find that the volume
fraction at which Oobleck waves appear (ϕ ≈ 0.41) corresponds
precisely to ϕDST, the volume fraction at which the shear-
thickening transition becomes discontinuous. Indeed, we analyze
our rheological data along Wyart & Cates’s model, which
assumes that the effective viscosity of the suspension, ηðϕ; τÞ ¼
ηsðϕJðτÞ � ϕÞ�2, diverges at a critical volume fraction, ϕJ, that
depends on the applied shear stress, τ, according to ϕJðτÞ ¼
ϕ0ð1� e�τ�=τÞ þ ϕ1e

�τ�=τ , where (ηs, τ*, ϕ0, ϕ1) are material
constant. Here, ηs is a prefactor proportional to the solvent
viscosity, τ* is the short-range repulsive stress scale above which
the frictional transition occurs, which may be tuned by changing
the particle roughness or surface chemistry, ϕ0 (resp. ϕ1) is the
jamming volume fraction at which the suspension viscosity
diverge at low (resp. large) stress, with ϕ1 being dependent on the
inter-particle friction coefficient3. By fitting our measurements

Fig. 2 Onset of instability. a Critical Reynolds number of the instability normalized by the Kapitza threshold Rec/Rek versus volume fraction ϕ. Inset: Rec/
Rek versus inclination angle θ for ϕ= 0.45. b Critical shear stress τc versus ϕ. c Normalized critical wave speed cc/u0 versus versus ϕ. Inset: cc/u0 versus
speed of the kinematic waves ckin/u0, the black line shows that the waves propagate at the speed of the surface kinematic waves. Dashed-blue-line: Kapitza
prediction (inertia+Newtonian fluid). Solid-red-line: prediction of the linear stability analysis (A ¼ d~_γ=d~τbj~τb¼1 ¼ 0) describing the coupling between the
flow free-surface and the suspension shear-thickening rheology. Different symbols indicate different inclination angles θ: ◇ 2∘, ▿ 3∘, ⊳ 6∘, ⊲ 9∘, ○ 10∘, △
22∘. The error bars indicate the standard deviation between experimental measurements. Different background colors highlight which instability emerges:
Kapitza (gray) or Oobleck waves (red).
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with this model, we find that the rheological curve (shear stress τ
versus shear rate _γ) becomes S-shaped when ϕ ≥ 0.41 ± 0.005=
ϕDST (see Fig. 3 and Methods for the fitting procedure). This
suggests that negatively sloped portion in the rheological curve
(d _γ=dτ < 0) is a key ingredient of the instability. S-shaped flow
curves, and more generally rheograms with a negatively sloped
region, are known to produce unstable flow conditions35,36.
Previous studies on shear-thickening suspensions have based
their analysis on this feature to explain for instance the emergence
of random fluctuations37 reported initially by Boersma et al.38,
and the oscillations observed when an object moves in a shear-
thickening fluid39,40 or in rheometric configurations15,41. How-
ever, all these models require inertia to predict an instability. By
contrast, here, the instability seems to be of a fundamentally
different nature. First, it can occur at very low Reynolds and
Froude numbers, for which inertial effects are negligible. Second,
at the instability onset, the unstable mode propagates at the speed
of the surface kinematic waves defined by ckin≡ dq/dh028 (Fig. 2c
inset). This indicates that the coupling between the flow and the
free-surface deformation, which was not considered in previous
studies, is essential to explain the emergence of Oobleck waves.

Oobleck waves instability mechanism. We now show how the
negative slope in the rheology coupled with a gravity-driven free-
surface flow can yield to an instability without invoking inertial
effects. In the zero-Reynolds number limit, the force balance on a
slice of suspension, as depicted in Fig. 4a, imposes that the basal
stress, τb, is equal to the sum of the projected weight of the slice,
ρgh sin θ, where h(x, t) is the local flow thickness, and of the
longitudinal pressure gradient induced by the free-surface deflec-
tion. For wavelengths much larger than the flow thickness and the
capillary length, the pressure profile perpendicular to the plane can
be assumed to be hydrostatic Pðx; z; tÞ ¼ ρg cos θðhðx; tÞ � zÞ,
where x is the flow direction and z the height within the flowing
layer in the perpendicular direction21. The depth-averaged force
balance is then given by

τb ¼ ρgh sin θ � ρgh cos θ
∂h
∂x

: ð1Þ

Let us now consider a perturbation of a base flow of constant
thickness, as illustrated in Fig. 4b. A local increase of the flow
thickness implies that ∂h/∂x becomes positive upstream of the

perturbation and negative downstream. To satisfy the force balance
(1), the basal shear stress τb upstream must therefore decrease,
whereas it must increase downstream. However, owing to the S-
shape rheology of the suspension, when d _γ=dτ < 0, a decrease (resp.
increase) in τb implies a local increase (resp. decrease) of the flow
rate _γ. Therefore, the shear rate increases upstream and decreases
downstream, inducing a net inward mass flux underneath the bump
and the amplification of the initial perturbation (red arrows in
Fig. 4b).

Quantitative depth-averaged model without inertia. To go
beyond this qualitative picture, we perform a linear stability analysis
of a steady uniform flow of thickness h0 and depth-averaged velo-
city u0 using the Saint-Venant approximations (long wavelength
limit27,42) and neglecting inertia (lubrication approximation21). The
equations are written using the dimensionless variables ~h ¼ h=h0,
~x ¼ x=h0, ~u ¼ u=u0, ~t ¼ tu0=h0; ~τb ¼ τb=ρgh0 sin θ and linearized
by writing ~h ¼ 1þ h1, ~u ¼ 1þ u1 and ~τb ¼ 1þ τ1 with
(h1, u1, τ1≪ 1). Under these conditions, the mass conservation,
∂~thþ ∂~xðhuÞ ¼ 0, and the force balance (1) become ∂~th1 þ ∂~xh1 þ
∂~xu1 ¼ 0 and τ1 ¼ h1 � tan θ�1∂~xh1, respectively. The lineariza-
tion of the normalized shear-rate ~_γð ~τbÞ � ~u=~h, gives Aτ1= u1− h1,
where A ¼ d~_γ=d~τbj~τb¼1 is the slope of the rheological curve for the
base state basal stress τb ¼ ρgh0 sin θ, obtained from the integration
of the flow velocity profile (see Methods). Taking the spatial deri-
vative of the force balance and substituting τ1 and ∂~xu1 using the
rheology and mass balance, respectively, lead to a single partial
differential equation for the free-surface perturbation h1:

∂h1
∂~t

þ ~c
∂h1
∂~x

¼ A
tan θ

∂2h1
∂~x2

; ð2Þ

where ~c ¼ ckin=u0 ¼ 2þ A is the dimensionless speed of the
kinematic waves28. Interestingly, the perturbation amplitude is
found to follow a diffusion equation in the reference frame of the
kinematic waves, with an effective “diffusion coefficient” A= tan θ.
When A < 0, i.e., when the slope of the rheological law u0=h0 ¼
_γðτbÞ is negative, anti-diffusion occurs, which leads to an amplifi-
cation of all perturbations, whereas for A > 0 the flow is stable. The
onset of instability is thus given by A= 0. This criteria can be
expressed in terms of a critical Reynolds number Rec and a critical
basal shear stress τc using the Wyart & Cates rheological laws (see
Methods). Figures 2a, b show that, for ϕ ≥ ϕDST, these predictions
(red-solid lines) capture very well the value of the critical Reynolds
Rec and its dramatic drop over two decades when increasing ϕ, as
well as the order of magnitude and the drop of the critical shear
stress τc with ϕ. The decrease of the instability onset with increasing
ϕ is a direct consequence of Wyart and Cates’ rheological laws3,
where the DST onset stress also decreases with ϕ. Physically, it
comes from the fact that, when approaching the maximal possible
packing fraction ϕ0, less and less frictional contacts are required to
reach the DST region. The model also predicts a weak dependence
of Rec on the plane inclination angle, as observed experimentally
(Fig. 2a inset). This overall agreement is all the more conclusive that
it is rooted on physically based constitutive laws, of which the
rheological parameters are measured independently, without further
fitting. Another strong prediction of the model is that, at the
instability onset (A= 0), the speed of the unstable mode is equal to
the speed of the kinematic waves cc/u0= 2. This prediction is fully
consistent with the drop and value of the normalized wave speed
observed experimentally for ϕ > ϕDST (see Fig. 2c). These results
conclusively show that surface waves can emerge from the coupling
between a negatively sloped rheology and the flow free surface,
without the need for inertial effects.

Fig. 3 Rheograms of the aqueous cornstarch suspension. Shear-stress τ
versus shear rate _γ for various volume fractions ϕ. Solid lines: fit by Wyart
& Cates rheological laws setting the jamming volume fraction for
frictionless and frictional particles to ϕ0= 0.52 ± 0.005 and ϕ1= 0.43 ±
0.005, respectively, the short-range repulsive stress scale above which the
frictional transition occurs to τ*= 12 ± 2 Pa and the prefactor to ηs= 0.91 ±
0.01 mPa s. The rheograms are negatively sloped (d _γ=dτ<0) in the region
highlighted in blue.
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The Oobleck waves instability mechanism highlighted in this
study is not limited to shear-thickening suspensions and could be
extended to any other complex fluids having a rheology with a
negatively sloped region (e.g., granular materials and geomaterials
exhibiting velocity-weakening rheology43,44, concentrated poly-
mers or surfactant solutions35,36, liquid crystals45, active self-
propelled suspensions46). More generally, our analysis shows that
gravity forces, which are usually stabilizing for gravity-driven
free-surface flows, can become destabilizing in the presence of a
non-monotonic rheology. Our result could thus be extended to
other stabilizing forces such as capillary forces arising from the
free-surface deformation. We thus anticipate that other interest-
ing instabilities may be explained directly, or in the light of
our study.

Finally, in a broader context, our study reveals that kinematic
waves can be unstable in an overdamped medium, where inertia
is negligible. These waves, which are observed in a wide range of

situations (e.g., traffic and pedestrian flows47, sediment trans-
port48, fluidized bed49, surge, and floods23), result from mass
conservation and a general relationship between a local flow rate
and a local concentration50,51 (e.g., number of vehicles or
pedestrians on a road, solid packing fraction in a suspension,
depth of the flow). However, in all these systems, their emergence
from a uniform state requires an inertial lag between the flow rate
and the concentration28. In our system, the situation is very
different as these waves are unstable not from inertia, but from
the intrinsic constitutive flow rule of the material. Whether this
description of kinematic waves could be extended to more
complex systems, such as crowds47 or active self-propelled
particles46, are interesting topics to address in future studies.

Methods
Rheological data fitting procedure. Rheograms of the aqueous suspension of
cornstarch are measured for various volume fractions in a narrow-gap cylindrical-

Fig. 4 Instability mechanism. a Depth-averaged forces acting along the flow x direction on a slice of suspension of width dx (shaded in blue): basal force
τbdx, projected weight of the slice ρghdx sin θ and hydrostatic pressure ρg cos θh2ðxÞ=2, where τb is the basal shear stress, g is gravity, h(x) is the flow
thickness, θ is the plane inclination angle. b Positive feedback for a shear-thickening suspension with a S-shaped rheological curve: a local increase of the
flow thickness h implies that ∂h/∂x is positive (resp. negative) upstream (resp. downstream) of the perturbation. Force balance (see Eq. (1)) then implies
that the basal shear stress τb upstream (resp. downstream) must decrease (resp. increase). When the suspension rheogram is negatively sloped
(d _γ=dτ<0), this yields a local increase (resp. decrease) of the flow rate _γ. The combination of these two feedback cycles (gray arrows) induces a net inward
mass flux towards the bump (red arrows) that amplifies the initial perturbation (red vertical arrow).
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Couette cell (Fig. 5a) using a rheometer (Anton Paar MCR 501). The height of the
shear-cell (40 mm) is sufficiently large to neglect sedimentation effects of the
particles during the measurement. Similarly to the procedure followed by Guy
et al.4, the viscosity below (τ≪ τ*) and above (τ≫ τ*) the shear-thickening tran-
sition are extracted and plotted versus ϕ (Fig. 5b). The low viscosity branch
(frictionless branch) is first fitted with ηðϕÞ ¼ ηsðϕ0 � ϕÞ�2, with ηs and ϕ0 as
fitting parameters. This yields ηs= 0.91 ± 0.01 mPa.s and ϕ0= 0.52 ± 0.005. The
large viscosity branch (frictional branch) is then fitted with ηðϕÞ ¼ ηsðϕ1 � ϕÞ�2,
using the previous estimation of ηs, and letting ϕ1 as the only fitting parameter.
Note that the rheograms are obtained using both very rough (square symbols) and
rough walls (circle symbols), by covering the cell-walls with sand papers of dif-
ferent grades (roughnesses of ≈80 μm and ≈15 μm, respectively). The two mea-
surements overlap, except in the frictional branch at high volume fraction (shaded
symbols in Fig. 5b). For instance, the data from ϕ= 0.4 and 0.41 are included in the
fitting procedure, while 0.42 and 0.43 are not, because the first two points overlap,
independently of the roughness of the boundaries, whereas for 0.42 and 0.43 sys-
tematic deviations are observed indicating slippage or other artefacts. All data
points which are interpreted as biased measurements (transparent symbols) are
discarded from the fitting procedure; this yields ϕ1= 0.43 ± 0.005. Once the
values of ηs, ϕ0 and ϕ1 are set, we determine the value of τ* by fitting the full
rheograms τð _γÞ with Wyart & Cates laws: τ ¼ ηsðϕJðτÞ � ϕÞ�2 _γ, with ϕJðτÞ ¼
ϕ0ð1� e�τ�=τÞ þ ϕ1e

�τ�=τ . The best fit, shown in Fig. 5c, is obtained for τ*= 12 ± 2
Pa. The value of τ* represents the critical shear stress required to overcome the
inter-particle repulsive force and activate frictional contacts between particles. For
an inter-particulate force f and a particle size d, the critical shear stress is expected
to be of order f/d2. The value we obtain (≈12 Pa) is consistent with the values
already reported in the literature for cornstarch in water.

Computation of τc and Rec. To compute the critical shear stress τc and the critical
Reynold number Rec from the instability criteria resulting from the linear stability
analysis A � d~_γ=d ~τbj ~τb¼1 ¼ 0, we need to relate the shear rate _γ � u0=h0, defined
as the ratio of the depth-averaged flow velocity to the flow thickness, to the basal
shear stress τb and the basal suspension viscosity η(τb).

For a steady uniform flow down an inclined plane of slope θ, the momentum
equation applied to a surface layer of thickness h0− z gives

τðzÞ ¼ ρg sin θðh0 � zÞ ¼ ηðzÞ dûðzÞ
dz

; ð3Þ

where the second equality uses the definition of viscosity, η ¼ τ=ðdû=dzÞ, and ûðzÞ
is the local velocity parallel to x. From the proportionality between τ and h0− z, the
local velocity can be expressed as

ûðτÞ ¼ 1
ρg sin θ

Z τb

τ

τ00

ηðτ00Þ dτ
00: ð4Þ

Using the definition of the depth-averaged flow velocity, u0 ¼
R τb
0 ûðτ0Þ dτ0=τb , we

obtain the expression of the depth-averaged shear rate

_γ ¼ τb
3ηðτbÞ

GðτbÞ; ð5Þ

where

GðτÞ ¼ 3ηðτÞ
τ3

Z τ

0

Z τ

τ0

τ00

ηðτ00Þ dτ
00dτ0; ð6Þ

embeds the shear-thickening of the suspension. By definition, G ¼ 1 for a
Newtonian fluid.

From (5) and (6) we obtain

A � d~_γ
d ~τb

j ~τb¼1 ¼
τb
_γ

d _γ
dτb

jτb¼ρg sin θh0
¼ 3

GðτbÞ
� 2; ð7Þ

where we have used d
dτ ð

R τ
0

R τ
τ0

τ
00

ηðτ00 Þ dτ
00
dτ0Þ ¼ τ2=ηðτÞ. Note that in (7), the basal

stress τb, the shear rate _γ and the derivative are taken at the base state, i.e., for
_γ ¼ u0=h0 and τb ¼ ρg sin θh0.

Finally, the critical shear stress τc, at which the flow destabilizes (black-solid-line
plotted in Fig. 2b of the main text), is obtained numerically by finding the value of
τb for which A(τc) = 0, i.e., Gðτb ¼ τcÞ ¼ 3=2. From the value of τc, we obtain the
critical Reynolds number (black-solid-line plotted in Fig. 2(a) of the main text)

Rec �
3u20

gh0 sin θ
¼ 3τc

3 ϕJ ðτcÞ � ϕ
� �4
9η2s ρg

2sin2θ
½GðτcÞ�2 ¼

3τc
3 ϕJðτcÞ � ϕ
� �4
4η2s ρg

2sin2θ
: ð8Þ
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