
HAL Id: hal-03091740
https://hal.science/hal-03091740v1

Submitted on 31 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Derivation of Constraints from Machine Learning
Models and Applications to Security and Privacy

Moreno Falaschi, Catuscia Palamidessi, Marco Romanelli

To cite this version:
Moreno Falaschi, Catuscia Palamidessi, Marco Romanelli. Derivation of Constraints from Ma-
chine Learning Models and Applications to Security and Privacy. Frank S. de Boer and Jacopo
Mauro. Recent Developments in the Design and Implementation of Programming Languages, 86,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp.11:1-11:20, 2020, OASICS, �10.4230/OA-
SIcs.Gabbrielli.2020.11�. �hal-03091740�

https://hal.science/hal-03091740v1
https://hal.archives-ouvertes.fr


Derivation of Constraints from Machine Learning
Models and Applications to Security and Privacy
Moreno Falaschi
Università di Siena, Italy
https://www3.diism.unisi.it/~falaschi/

Catuscia Palamidessi
Inria, France
LIX, Ecole Polytechnique, Institut Polytechnique de Paris, France
https://www.lix.polytechnique.fr/~catuscia/

Marco Romanelli
Inria, France
LIX, Ecole Polytechnique, Institut Polytechnique de Paris, France
Università di Siena, Italy
http://www.lix.polytechnique.fr/Labo/Marco.Romanelli/

Abstract
This paper shows how we can combine the power of machine learning with the flexibility of constraints.
More specifically, we show how machine learning models can be represented by first-order logic
theories, and how to derive these theories. The advantage of this representation is that it can be
augmented with additional formulae, representing constraints of some kind on the data domain.
For instance, new knowledge, or potential attackers, or fairness desiderata. We consider various
kinds of learning algorithms (neural networks, k-nearest-neighbours, decision trees, support vector
machines) and for each of them we show how to infer the FOL formulae. Then we focus on one
particular application domain, namely the field of security and privacy. The idea is to represent the
potentialities and goals of the attacker as a set of constraints, then use a constraint solver (more
precisely, a solver modulo theories) to verify the satisfiability. If a solution exists, then it means
that an attack is possible, otherwise, the system is safe. We show various examples from different
areas of security and privacy; specifically, we consider a side-channel attack on a password checker,
a malware attack on smart health systems, and a model-inversion attack on a neural network.
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1 Introduction

Machine learning (ML) is pervasive in nowadays society: systems based on this technology
run in hospitals to help diagnose diseases, in cars to help avoid car accidents, in banks to
evaluate loans and manage investments, at insurance agencies to evaluate coverage suitability
and costs for clients.
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11:2 Derivation of Constraints from ML for Security and Privacy

Machine learning refers to the automated pattern detection from data and it is is strictly
linked to the idea of “generalized learning” as opposed to “memorization learning”. The
latter is based on storing information in the shape of data and running a comparison between
new input data and the memorized one in order to make a decision. In contrast, ML aims at
finding complex patterns that not only fit the available data but also generalize to new input,
going beyond the mere comparison. Therefore, ML is particularly useful for tasks in which
decision rules are particularly difficult to be hard coded and when adaptivity is necessary,
like for instance speech and hand writing recognition.

In this paper, we propose to combine the power of machine learning with the flexibility
of constraint systems, which is one of the most successful methodologies for solving hard
discrete optimization problems. Nowadays, constraint programming is a mature technology,
there are very good commercial and open-source solvers, and the range of applications is
quite wide. In order to exploit a coordinated combination of the best solvers, portfolios of
collaborative solvers have been designed [4].

Recently, much research on constraint solving has been devoted to the satisfiability
modulo theories (SMT) problem. SMT solvers can deal with the satisfaction problem of
logical formulae formalized in first-order logic (FOL), often with equality, in combination
with some background theories. Examples of background theories can be the theory of real
numbers, integers, some data structures, etc. SMT solvers are useful for many applications,
such as verification of programs and software testing based on symbolic execution. Several
recent efficient SMT solvers are currently available, see for instance [5, 16].

As stated above, the goal of this paper is to combine ML and constraint systems. More
specifically, we show how machine learning models can be represented by first-order logic
theories, and how to derive these theories. We argue that this representing ML by FOL can
have numerous applications:

First of all, the representation can help to understand the ML model (explainability),
which, especially in the case of deep neural networks, could be quite mysterious. Providing an
explanations of the decision taken by the system is important from the point of view of the
users, especially since these decisions are often critical for the concerned people (diagnosing
the right disease, obtaining a loan, etc.).

Second, the representation of ML models in terms of constraint provides an automatic
way of creating new knowledge, since the learning process in ML is totally automatized and
simply consists in applying an algorithm to the available data (training data). Since this
new knowledge is represented in terms of constraints, it can be processed, queried, checked
for satisfiability or implications, etc..

Third, the representation can be augmented with additional formulae, representing
constraints of some kind on the data domain. For instance, new knowledge, or potential
attackers, or fairness desiderata.

In this paper, we focus on this latter application domain. In particular, we show how
our proposed approach can be used to detect potential security and privacy breaches on the
ML system, or to prove that they do not exist and the system is therefore secure. The idea
is to represent the system as a FOL theory, and the specific user and the attacker as a set
of constraints. A SMT solver can then be applied. The existence of a solution then reveals
the possibility of an attack, and its nature. The non satisfiability means that the system is
secure1.

1 It could happen that the SMT solver is not able to find a solution, but cannot prove the non-satisfiability
either. For the more complicated theories, indeed, it could happen that the SMT is not decidable, which
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1.1 Related work
The relation between constraint rules and automatic learning is a widely investigated topic
in the fields of artificial intelligence and machine learning. In particular, large bodies of
work have explored the possibility of extending the ability of learning from data to learn
constraints (see, among others, [19, 24, 34, 35])2. In other words, while in many applications
a trained model is considered as a black-box that creates a descriptive representation of the
problem by summarizing the knowledge coming from data, in this case, the focus is on the
symbolic interpretation of the model by extracting rules from the model itself (cfr. [9, 30, 43]).

According to the popular framework of learning from constraints, it is possible to rein-
terpret the learning theory based on supervised learning. For instance, the empirical risk
minimization approach (cfr. 2.1) can be seen as learning by constraining the error between
prediction and supervision to be minimal. Through first order logic (FOL) it is possible to
model families of logic constraints which, via the so called task functions, can be mapped
onto the real valued constraints which are typical of machine learning. The idea was first
introduced in [28] and then it has been adapted to kernel base machine learning models
in [19].

Building on these basic notions, the works in [25] and [31] propose a solution to learn
constraints from observable samples and solve search optimization problems for which the
constraints either are not given or need to be estimated. The solution is based and builds on
the idea of using data to select constraints from a finite domain, a problem that was already
addressed in [6]. In [34] and [35], the authors tackle the problem from an inductive logic
programming (ILP) standpoint, building on the framework first introduced in [28]. On the
one hand, they propose, once again, to learn constraints within a finite domain which can be
modeled by a certain language Lc. On the other hand, by using ILP, they work in a specific
machine learning in which first-order logic is used to represent the data as well as the learned
hypotheses which, in turn, can be expressed via Lc. Therefore, the solution to the problem
can be reduced to finding a particular hypothesis ∈ Lc such that it holds for all the positive
samples and for none of the negative samples. It is important to notice that the fact that
the hypothesis is to be selected as one possible choice within a set of hypothesis recalls the
typical machine learning requirement of probably approximately correct (PAC) learning [44].

The common denominator of the works referenced so far is that the only constraints that
are involved in the learning are somehow known a priori, and the learning involves taking a
decision on which constraints represent the hypotheses learnt from the samples.

In [13], a different framework, which represents a step in a new direction, is introduced.
As in the previous work (cfr. [25, 31, 34, 35]), the authors aim at learning constraints from a
learnable set. However, they propose to use information theoretic principles (maximizing the
information transfer from the concept space (hypotheses) to the rule space (constraints)), and
to model the constraints as neural networks. Doing so, they realize that this process leads to
the unsupervised development of new constraints that they analyze from the standpoint of
FOL.

[27] investigates how to optimise the ML process, and has some similarities with our

means that in some cases neither the satisfiability nor the unsatisfiability can be proved. In this case,
however, the SMT solver should return a warning, and in this case the diagnosis of the security of the
system is not conclusive, but at least we know it. Namely, the approach is correct, even though it may
not be complete.

2 A meaningful distinction must be highlighted between this and the idea of using constraints to drive
the learning of a model, for instance by including constraints in the optimized loss functions in a way
that recalls the minimization (maximization) of an objective functions according to constraints [36].

Gabbr i e l l i ’ s Fes t schr i f t
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approach as they present some coding of Artificial Neural Network and Decision Trees in
Local Search, Constraint Programming, Mixed Integer Non-Linear Programming (only ANNs)
and SAT Modulo Theory (only DTs).

1.2 Structure of the paper
In Section 2 we present some preliminary technical definitions on Machine Learning, Con-
straint systems, and SMT solvers. Then, in Section 3 we consider various machine learning
algorithms and we show how the resulting model can be represented as a FOL theory. In
Section 4 we show how to apply our methodology to some examples from the field of security.
In Section 5 we consider one application to a model-inversion attack. Finally, Section 6 draws
some conclusions and discusses some future work.

2 Preliminaries

2.1 Machine learning
We give here a brief introduction to the learning process and the derivation of the model.
We will focus on the supervised learning scenario in the context of classification problems,
which cover all examples considered in this paper. We describe the basic elements common
to all learning algorithms, and to this purpose we introduce a generic learner model based
on a well established statistic framework. The details specific to the various algorithms will
be described in the next section.

A learning problem is defined by:
a domain X of objects, represented as a vector of features (aka attributes) that we would
like to classify;
a set of labels (aka classes) Y;
a set of training data, i.e., a sequence S = ((~x1; y1) . . . (~xm; ym)) of pairs in X × Y;
a correct labelling function f : X → Y, such that, for all i, yi = f(~xi);
a distribution D of type X × Y, according to which the samples are generated;
the prediction rule or hypothesis h : X → Y , that can be used to predict the label of new
domain points;
a measure of success that quantifies the predictor’s error.

Ideally, the goal of the learning process is to select an h that minimizes the risk, defined as:

LD,f (h) def= P~x∼D [h(~x) 6= f(~x)] , (1)

which represents the expected probability (P) of a mismatch between h and f , measured with
respect to the distribution D.

In practice however we cannot compute analytically the h that minimizes (1), because
we do not have a mathematical description of D. What we can do, instead, is to use the
training set S, that, being generated from D, represents an approximation of it. Then h is
selected so to minimize the empirical risk over m samples, which is defined as:

LS(h) def= |{i ∈ [m] : h(~xi) 6= yi}|
m

. (2)

This principle is called empirical risk minimization (ERM). The way this minimization is
achieved depends on the specific algorithm, and the function h that is derived is called model.

For an extended discussion of the topic as well as a more complete overview of the
learning problem we refer to [41, 44]. For further information about ML and the most



M. Falaschi, C. Palamidessi and M. Romanelli 11:5

popular algorithms and applications we refer to [21], while for a more theoretical and
statistical background on the learning problem we refer to [15, 22].

2.2 Constraints and SMT solvers
In this paper we consider constraint systems as first order logic formulae. We note that
there are alternative approaches in the literature, for instance using Scott’s information
systems [40, 39].

Following [23], we define a constraint system as a 4-tuple (Σ,D,L, T ), where Σ is a
signature, D is a Σ-structure, L is a set of Σ-formulae, and T is a first order Σ theory.

The idea is that Σ defines the syntax of the functions and predicates with their arities,
D is the (Σ-)structure on which the computation is performed, and which allows to give a
semantic interpretation to the functions and predicates defined in Σ, L are the constraints
which can be syntactically expressed, and T is an axiomatization of some properties of D.

The pair (D,L) is called a constraint domain.
We make the following assumptions:
the terms and constraints in L are defined in a first-order language.
the binary predicate symbol = is always in Σ and is interpreted as the identity in D.
there are two constants true and false in L which are respectively identically true and
identically false in D.
the set of constraints L is closed under variable renaming, conjunction, and existential
quantification.

Examples of constraint domains [23] include, for instance, sets of linear equations and/or
inequations over real numbers, the domain of word equations on strings, the finite domains
over integers, where linear equations/inequations are built over variables which can assume
values on intervals of integers, boolean constraints, constraints over finite trees (namely logic
programming syntactic equations on data terms) etc.

We assume that our domains support a test of consistency or satisfiability. So we assume
that it is possible in any moment to perform the following check:

(D,L) ` c (3)

meaning that there exists a solution for the conjunction of constraints c, or that the variables
in c can be instantiated in such a way to be solvable.

We also assume that we can perform an entailment (or implication) test of one constraint
c′ by another one c:

(D,L) ` c⇒ c′. (4)

Sometimes we use the equivalent notation c ` c′.
A conjunction of constraints can be simplified by using several formal techniques, main-

taining the same set of solutions for the constraints to be solved.
Not for all constraint domains are available solvers for all possible cases, as the problem

might be undecidable in the general case. In this case the solution of some constraints can
be delayed until (and if) they become easier and (possibly) solvable.

Several refined techniques for solving constraints have been defined. We mention just a
few of them:

constraint propagation, exploiting local consistency conditions of subsets of constraints.
This normally allows to reduce the search space of solutions.

Gabbr i e l l i ’ s Fes t schr i f t
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constraint simplification, trying to replace constraints by equivalent ones easier to solve.
backtracking search, which allows to solve incrementally a subset of the constraints,
backtracking on some assignments as soon as the set of constraints clearly gets not
solvable.
local search, which tries to modify a value of a variable at each step, choosing assignments
close to the previous one in the search space.

For a more extensive overview please consult [38].

2.2.1 SMT solvers
SMT solvers are decision procedures for satisfiability of fragments of first-order logic with
equality, where variables range over SMT data types, such as Booleans, integers, and reals.
Satisfiability Modulo Theories (SMT) problem for a theory T [29] expressed as a set of closed
first order formulae, can be intuitively defined as follows: given a formula F (it can be a
propositional formula, or a ground formula in first order logic, or a formula in first order
logic), determine whether F is T -satisfiable, i.e., whether there exists a model of T that is
also a model of F . A formula F is T -satisfiable or T -consistent if F ∧ T is satisfiable in the
first-order sense. If the theory T is empty the problem reduces to satisfiability of a set of
propositional/first order logic formulae. SAT solvers are available for this subproblem. A lot
of research has been devoted to develop efficient SMT solvers [29]. There exist eager or lazy
approaches. In eager approaches the input formula is transformed in a satisfiability equivalent
one, usually in conjunctive normal form and then SAT solvers are applied. In a lazy approach
the atoms of T are considered as propositions by the SAT solver. If the SAT solver returns
a propositional model M of F , then this assignment (seen as a conjunction of literals) is
checked by a T -solver. If M is found T -consistent then it is a T -model of F . Otherwise
the process restarts. Incremental techniques, theory propagation and simplification can be
also applied. Some examples of efficient SMT solvers are CVC4 [5], Yices 2 [16] and Z3 [14].
It is also possible to use efficient open source constraint programming solvers containing
constraint solvers integrated with SAT modules, such as Chuffed [11] and OR-tools [32].

3 FOL theories from machine learning models

In this section we consider various machine learning algorithms and we show how the resulting
model can be represented as a FOL theory.

3.1 Decision trees
Decision Trees (DTs) are models of supervised learning rather simple to understand and to
interpret, also thanks to their graphical representation as mathematical trees [33]. They are
predictive models, i.e., they allow to derive the value of a target variable from the value of
the features of a given sample, and they are of two main kinds: classification trees, if the
target variable is categorical, or regression tree if the predicted outcome is a real number.
Here we consider the first case.

In general, DTs are constructed via an algorithmic approach that tries to identify the best
ways to split the data set according to various criteria. To find the optimal tree, however, is
a NP problem, so usually a greedy approach is used, which, at each step, identifies a feature
and a test on that feature. In general, we choose the feature that gives the best information
gain at that point of the process, which should help to keep the weighted tree balanced, at
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least locally. The feature is then associated to an intermediate node of the tree3 and the
possible outcomes of the test, that determine a partition on the data, are associated to the
subtrees children of that node, and label the corresponding edges. The process goes on until
we reach a unique classification for the target variable of the remaining data, which is then
associated to a leaf. Figure 1a shows an example of decision tree where each node xi is
submitted to a binary test, i.e., whether it satisfies or not a certain property Pi. More in
general however, the test could have more than two outcomes; the important thing is that
they are mutually exclusive and cover the whole range of possibilities.

The representation of the tree in terms of constraints is defined as follows. The constraint
system (Σ,D,L, T ) is such that:

Each sort of Σ represents a feature, plus there is a sort for the class. The values of
the features and of the class are represented in Σ by symbols of the corresponding
sort. Furthermore Σ contains the propositional symbols corresponding to the properties
decorating the edges of the tree.
For each feature x, Σ contains a distinct variable X of the sort corresponding to x.
Furthermore, Σ contains an additional variable L of sort class.
D is a structure containing the domains of the features values, the domain of the class
values, and the properties that decorate the edges. Because of the way the tree is
constructed, each property is satisfied by at least one feature value.

In order to define the theory T we introduce the following notation: Given a path γ from
the root to a leaf, we denote by γi the proposition associated to the i-th edge in the path,
and let xi be the node just before that edge. Let ` be the label decorating the leaf of that
path. Then, for each path γ, we assume that T contains the following formula.

(
∧
i

γi(Xi))⇒ L = ` (5)

For example, the set of formulae constructed from the binary tree of Figure 1a is shown
in Figure 1b. If the properties decorating the edges are equalities or negations of equality,
then we don’t need to add anything else in T . Otherwise, we need to define the meaning of
the propositions. For finite domains this can be done by adding to T all the statements of
the form P (v), where P is a proposition and v a value symbol, whenever the corresponding
property holds for that value. Otherwise, we should enrich the theory with formulas defining
P . For instance if P is an ordering ≤ on numbers, we should incorporate in the constraint
system the axioms defining this relation.

The set of constraints L depends on the potential attack and on the victim. In general the
victim is the object that we want to classify, hence it is specified by a tuple (v1, v2, . . . , vn)
representing the value of each feature. The constraints relative to the victim are therefore
equalities of the form Xi = vi. As for the attacker, it is characterized by its prior knowledge
and its capabilities, usually consisting of the properties on the features that the attacker
knows or can infer from observing the system, Hence, typically the attacker can be represented
by FOL contraints constructed on the γi(Xi)’s atomic formulas. In Sections 4 and 5 we will
see examples of attacks and how to derive the corresponding constraints.

3 A generalization of this method consists in associating to a node a set of features, and in this case the
test represents a relation among the features. Here however we consider only the simpler case of a single
feature per node.

Gabbr i e l l i ’ s Fes t schr i f t
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x1

x2

◦ ◦ ◦

`1 `2 � � �

P2(x2)

◦ ◦ ◦

¬P2(x2)

P1(x1)

x3

◦ ◦ ◦

`t−1

P3(x3)

◦ ◦ ◦

`t

¬P3(x3)

¬P1(x1)

(a) A binary decision tree.

P1(X1) ∧ P2(X2) ∧ . . . ∧ Pl(Xl)
=⇒ L = `1

P1(X1) ∧ P2(X2) ∧ . . . ∧ ¬Pl(Xl)
=⇒ L = `2

...
¬P1(X1) ∧ ¬P3(X3) ∧ . . . ∧ Pr(Xr)

=⇒ L = `t−1

¬P1(X1) ∧ ¬P3(X3) ∧ . . . ∧ ¬Pr(Xr)
=⇒ L = `t

(b) The formulae derived from the decision tree.

Figure 1

3.2 Support vector machines
Support-vector machines are able to support both classification and regression problems.
Their foundation relies on the theory of Vapnik and Chervonekis [8].

In this learning method, each object is represented as a point in the n-dimensional space,
where n is the number of features. The idea behind the (linear) support vector machine is
to construct a hyperplane or a set of hyperplanes of dimension n− 1, which partition the
space in such a way that, ideally, each subspace contains only elements of the same class. In
practice however a perfect partition is usually not possible, so the presence of elements of
different classes is tolerated, we just try to minimize their number4.

A hyperplane is described by a formula like

~w · ~x− a = 0 (6)

where ~w is a vector of numerical coefficients, and a is a numerical constant. Both ~w and a
are determined by applying the minimization explained above.

For instance, in a binary classification problem, we would determine ~w and a so that as
many elements as possible of class `1 are below the hyperplane defined by (6) (~w · ~x− a < 0),
and as many elements as possible of class `2 are above it (~w · ~x − a > 0). An example is
shown in Figure 2: no linear hyperplane can completely separate the classes `1 and `2, but
the hyperplane h2 is optimal.

To derive a constraint system from such model we proceed in a way similar to the one
described in Subsection 3.1. In this case, however, Σ must contain also the symbols +,×
(numerical addition and multiplication), and < (strict ordering), and T must contain also the
axioms defining these operations and the ordering relation. The specific axioms representing
the classification are then:

~w · ~X < a⇒ L = `1 ~w · ~X > a⇒ L = `2 (7)

4 One method to improve the result is to consider more features, which corresponds to increasing
the number of dimensions. Another possibility is to consider also non-linear separation surfaces. A
generalizazion of support vector machines in this sense has been proposed as well.
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Figure 2 Separating the classes `1 and `2 by hyperplanes. Among the three hyperplanes h1, h2

and h3, the one that produces the best discrimination is h2. The resulting partition is not perfect
but it is optimal, because no linear hyperplane can completely separate the classes `1 and `2.

In case of more than 2 labels, each of these clauses will contain a conjunction of premises
of the form ~w · ~X < a and ~w · ~X > a, representing discriminations operated by various
hyperplanes. In some cases, which might be interesting for certain applications, failing to
recognize a sample as belonging to a certain class, for instance `1, might be less severe than
failing to recognize a sample as belonging to `2. A typical scenario is that of preliminary
tests meant to quickly tell sick patients (`2) and healthy ones (`1) apart in order to assign
the first ones to further tests. In this case, classifying an healthy person as sick is usually
considered less severe than misclassifying a sick patient who needs to be thoroughly checked
through further tests. Therefore, among two (or more) hyperplanes providing the same
overall misclassification rate (i.e. number of wrongly classified samples over the total amount
of samples), the one(s) with the lowest misclassification rate on the samples of class `2 is to
be preferred.

3.3 Nearest neighbors
The k-nearest neighbors algorithm (k-NN), where k is a numerical parameter, is a learning
method proposed by Thomas Cover that supports both classification and regression [2]. In
both cases we assume that the space of the features is equipped with a notion of distance d.
The basic idea is the following: every time we need to classify a new sample, we find the
k samples in the training set whose features are closest to those of the new one (nearest
neighbors). Once the k nearest neighbors are selected, a majority vote over their class labels
is performed to decide which class should be assigned to the new sample. See Figure 3 for an
example.

To derive a constraint system from such model we proceed in a way similar to the
one described in Subsection 3.1. In this case, however, Σ must contain also the symbol d
(distance), and ≤ (ordering), and T must contain also the axioms defining the notion of
distance and the ordering relation. Let us consider for simplicity the case k = 1. The specific
axioms representing the classification are as follows: for any tuple (~v, `) in the training set:

∀~w. d( ~X,~v) ≤ d( ~X, ~w)⇒ L = `. (8)

Note that the training set is finite, hence the quantification on ~w is done over a finite domain,

Gabbr i e l l i ’ s Fes t schr i f t
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l3

Figure 3 Classifying a new sample ‘?’ using k-NN. If k = 1 the new object will be classified as
`2. If k = 6 it will be classified as `3. If k = 13 it will be classified as `2 again.

which means that we can eliminate it by reducing to a conjunction of formulae. Note also
that we need to take a bit of care to avoid conflicts in the classification where there are two
or more samples that are at the same minimal distance from the new object. In this case,
we must establish some priority among samples, and add to T only the clause that sets the
labeling along with the sample of highest priority.

The above idea can be extended to the case of a generic k. For any set of k tuples
{(~v1, `1), . . . , (~vk, `k)} in the training set, let ` be the most frequent among the labels
`1, . . . , `k (again, in case of equality we must establish some kind of priority). The axioms
are:

∀~w 6= ~v1, . . . ~vk. (d( ~X,~v1) ≤ d( ~X, ~w) ∧ . . . ∧ d( ~X,~vk) ≤ d( ~X, ~w))⇒ L = `

where the quantification ∀~w 6= ~v1, . . . ~vk is to be replaced by a conjunction of all the formulae
in which ~w is different from ~v1, . . . ~vk.

3.4 Neural networks
Artificial neural networks (ANNs) are computing systems inspired by the biological brains [7,
21, 22]. An ANN consists of a collection of connected units called nodes, simulating the
behavior of neurons. The connections are called edges. Each node, like the synapses in a
biological brain, can receive, process, and transmit a signal to the nodes connected to it. The
"signal" is a real number, and the output of each node is computed by some function of its
inputs. Nodes and edges typically have a weight that increases or decreases the strength of
the signal at a connection, and is computed during the learning phase. Typically, neurons
are aggregated into layers, and signals travel from the first layer (the input layer), to the last
layer (the output layer).

The relation between neural networks and constraints has been the object of investigation
of several works already, especially in the context of the learning from constraints paradigm,
in which the idea is to use additional knowledge, represented as constraints, to guide and
refine the learning process. Two of these works, [13] and [12], provide also an interesting
point of view on the problem of learning explainability, which focuses on the interpretation
of the decision making process of the neural black-box models.

The key idea for this approach is to realize a mapping from the real valued functions
represented by neural networks models to the space of constraints. Let us consider an
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input space X of dimension n, i.e., the space of the samples fed to a net. A learning
environment for a multi-task (aka multi-label) classification problem can be defined as a
vector f = [f1, . . . , ft], where f : X ⊂ Rn → Y ⊂ Rt and t is the number of classes. The
environment of the constraints can be defined as φ = [φ1, . . . , φc], where φ : Y ⊂ Rt → Zc,
and c is the number of constraints. Typically each constraint φj is embedded into a non-
negative penalty function φ̂j for j = 1, . . . , c, so that the optimal learning environment, f∗
can be defined as

f∗ = argmin
f

c∑
j=1

∑
xk∈Xφj

φ̂j(f(xk)) + γf , (9)

where γ is a regularization term associated to f and Xφj is the sample space associated
to the j-th constraint. For example, f∗ could be defined in terms of the classical error
minimization, which corresponds to imposing φ̂j(f(x)) = (f(x)−y(x))2, where y(x) represents
the supervision. However, the role of φj in the considered learning framework is more general,
since φj could represent different types of knowledge expressed by means of FOL formulae.
In [19] the authors discuss how to use directly constraints as FOL, so to transfer logic
knowledge to neural networks models.

The authors of [13] refine the above paradigm and their system can actually automatically
learn new constraints ψ, initially modeled in terms of numerical functions of type Rn →
[0, 1]. Then, they show how to convert them into logical formulae, so to obtain a symbolic
representation of this new knowledge. The main idea consists in approximating the input
of each neuron with the vertices of the Boolean hyper-cube, while the neuron output is
approximated with a Boolean value.

The work [12] also refines the above paradigm, and focuses on how to interpret the
outcome of the network in term of symbolic constraints, but the approach is quite different
from the one in [13]. Specifically, their proposal consists in introducing another neural
network that operates in the output space of the classifier, and whose purpose is to build
the formulae that represent the explanation of the classifier. The two networks are trained
jointly in the learning process, thus implicitly introducing a latent dependency between the
development of the explanation mechanism and the development of the classifier.

Both these approaches can be used for our purposes. We refer to the corresponding
papers [12] and [13] for the details.

4 Applications to Security

In this section we consider some examples of applications to security. The idea is to model
the attacker’s capabilities, its prior knowledge (aka side knowledge), and its goals in terms of
constraints. Then, consider the union of these constraints and the theory coming from the
machine learning model and use the SMT module to check the existence of a solution. In
the negative case we can conclude that the system is safe. Otherwise, a threat exists, and
the solution produced by the SMT provides the description of the potential attack and the
level of vulnerability.

We will consider two examples from two different areas of computer security: information
flow and malware.

4.1 Information flow
Secure information flow is concerned with the inference of secrets from information made
publicly available by the system, or anyway, information that the attacker is able to obtain
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by observing its behavior. Typically, these are physical observations made during a run, such
as the execution time, the level of energy consumption, etc., and the corresponding kind of
security breach is called side channel attack. The leakage of information in these situations
is due to the correlation between the secret and the observable, and, by definition, it cannot
be prevented using the typical security defenses, such as encryption or access control: it
usually requires a re-thinking of the system architecture. Given the situation, a verification
of the system in terms of constraints can be useful not only to show that the system is safe,
but also, in case of the existence of a breach, to indicate its cause and help redesigning the
system so to eliminate it.

The complete lack of any information leakage is called non-interference, and has been an
active area of research since the seminal paper of Goguen and Meseguer [20]. However, in
more recent times, it is recognized that for practical systems the non-interference property is
usually impossible to achieve, because some correlation between the output and the secret
is inherent to the specification of the system and therefore cannot be totally eliminated.
For example, a password checker always reveals a little bit of information about the secret
password: in case of success we know that the password is the string we have entered, and in
case of failure we know that the password must be different from the string we have entered.
Therefore, a more significant analysis is not to detect the existence of a leak, but, rather,
its magnitude. These considerations have given rise to the “modern” approach to secrecy
called quantitative information flow, which focuses on measuring the amount of leakage and
the threat that it implies. The metrics used for the measurements are usually based on
probabilistic aspects (typically, the probability of a successful attack) or on the complexity
of the attack (typically, the number of times the attack needs to be repeated to ensure
success) [3].

The constraint-based approach we propose can be used for verifying non-interference by
proving that the capabilities of the attacker do not allow to derive any information about
the value of the secret. This can be done by showing that there is no correlation between the
properties on the features accessible to the attacker and the value of the secret (an implication
from properties to values has no solution). More interestingly, our approach can also be used
to measure the leakage of information, by computing the number of possible values for the
secret from the point of view of the attacker. This number can then be interpreted as the
probability of a successful attack (in one-try scenario) or as the complexity of the attack
(in a repeated-try scenario). We show here an example of the latter in the form of a timing
attack to a password checker5. A timing attack is a particular kind of side-channel attack
based on the information that can be derived from the execution time.

We consider a password of n bits, and we assume that the checker takes in input a string
of n bits b1b2 . . . bn from the user (who could be an attacker trying to crack the password),
and checks it, bit by bit, against the stored password p1p2, . . . pn. We assume that the system
stops as soon as it finds a mismatch. Namely, at each run the system performs k steps, with
1 ≤ k ≤ n, where k is the position of the first bit that does not match the corresponding bit
in the password. If all bits match, then k = n and the system output success, otherwise fail.
Namely:

k
def=

{
argmin

i
(bi 6= pi) if ∃i. bi 6= pi

n otherwise
(10)

5 This is a toy example, but it illustrates well a typical class of realistic and practical timing attacks,
namely those against encryption keys. We have chosen a simpler example so to avoid introducing
cryptographic notions, which are orthogonal to the issues considered here.
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It is well known that such behavior produces a security breach. In fact, if an attacker
is able to observe the exact execution time, it can infer correctly a password prefix: for
1 ≤ k ≤ n, a k-steps run with output fail means that the first k bits of the password are
b1b2 . . . bk−1(bk⊕1), where ⊕ is the sum modulo 2. (A n-steps run with output success means,
of course, that the password is the same as the string.) As a consequence, the complexity
of the attacks reduces from exponential to linear (in n), in the sense that after at most n
re-iterations of the attack, the adversary can infer the entire password.

One technique to mitigate the security breach is the so-called bucketing [26], which
consists in letting the system run for a longer time, so to avoid revealing the exact step where
the first mismatch occurs. More precisely, the bucketing technique partitions a system’s
possible execution times into intervals, called buckets, of variable length. Given the number
of steps k as defined above, the system waits until the upper bound of the bucket containing
k, then it ends the computation and returns the result. For instance, if all buckets have size
h then the system stops after m time units, where m is the smallest number which is greater
than or equal to k, and is a multiple of h. Often, however, the buckets are of different sizes,
to further confuse the adversaries and/or to optimize the trade-off between execution time
and security.

Suppose that we have a password checker produced by an untrusted third party, and we
want to check how secure it is. We can interact with the system, but we don’t know its code.
Namely, we are in a black box scenario. In [10, 37] it was shown how to estimate the leakage
of information in a black box situation using machine learning. In short, by interacting with
the system the analyst collects a set of examples, representing pairs secret-observables, and
uses them to train a classifier that, given an observable, tries to infer the corresponding
secret. The expected error of the classifier gives a quantitative estimation of the threat.

We present here an approach alternative to [10, 37], based on the idea of representing
the machine learning model, and the attacker, by constraints. The simplest model for our
purposes, in the case of this example, is the decision tree. Assume that the features x1, x2,
. . . , xn, express the result of the comparison of the string bits against those of the password,
i.e., xi = 0 if bi 6= pi, and xi = 1 otherwise. Then, the model is represented by the tree
in Figure 4a, where (not necessarily distinct) values t1, t2, . . . , tn indicate the time units
(labels). The corresponding set of constraints is given in Figure 4b.

We now consider how to represent an attacker. We assume that the adversary can give
in input a string and observe the number of time units before the system stops, and repeat
the attack until it infers the whole password. In a given iteration step during the attack,
the relevant background knowledge consists of the password bits p1, p2, . . . , pm that it has
already discovered. Obviously, the best strategy for the adversary consists in entering a
string of the form p1p2 . . . pmbm+1 . . . bn. Hence, this iteration step of the attack can be
represented by the disjunctive formula in Figure 5.

The union of the constraints in Figure 4b and Figure 5 has many solutions, that can be
produced by the SMT module, and that can be partitioned according to the value assigned
to the variable Time. Let St be the set of solutions in which the variable Time is assigned
the value t. Clearly, the largest such set is for Time = tm+1. In this case, in fact, the
attacker has no information about the remaining password bits, except that at least one
among bm+1, bm+2, . . . bm+h must be wrong, where h is the size of the bucket that contains
the m+ 1 bit. Equivalently, one of the Xm+1, Xm+2, . . . Xm+h must be 0. The number of
such configurations is 2h − 1, and can be determined automatically by counting the number
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x1

t1, fail

0

x2

t2, fail

0

xn

tn, fail

0

tn, succ

1

1

1

1

(a) The decision tree for the password example.

X1 = 0
=⇒ Time = t1 ∧ Result = fail

X1 = 1 ∧X2 = 0
=⇒ Time = t2 ∧ Result = fail

...

X1 = 1 ∧X2 = 1 ∧ . . . ∧Xn = 0
=⇒ Time = tn ∧ Result = fail

X1 = 1 ∧X2 = 1 ∧ . . . ∧Xn = 1
=⇒ Time = tn ∧ Result = succ

(b) The set of constraints derived from the decision
tree for the password example.

Figure 4

(X1 = 1 ∧X2 = 1 ∧ . . . ∧Xm = 1) ∧
(Time = t1 ∨ Time = t2 ∨ . . . ∨ Time = tn) ∧ (Result = fail ∨ Result = succ)

Figure 5 The attack in the password example

of solutions for these variables6. Assuming that the substring of length h have the same
probability 1/2h to be part of the correct password, and that the attacker chooses uniformly
the next one to try, the expected number of attempts that the attacker needs to perform to
get to the next bucket is:

2h−1∑
i=1

1
2h i = 1

2h
(2h − 1) 2h

2 = (2h − 1)
2 .

By repeating this process, we can determine the average-time complexity of the attack
(the expected total number of attempts before discovering the entire password), which is
given by (2h1 +2h2 +...+2hs−s)/2, where h1, h2, . . . , hs are the size of the buckets. We remark
that s and h1, h2, . . . , hs are not known, and that this result is computed automatically from
the constraints derived from the machine learning model. Furthermore, for more complicated
timing attacks, such as attacks to encryption key, the relation between the stopping time,
the size of the buckets and the bits of the key is not necessarily known, or may be very
complicated to compute. The method illustrated above gives a quick and easy way to
determine the complexity of the attack also in these cases.

6 This can be done for example in CLP(FD) [23] by using the predicate fd_size, which returns the
number of elements in the current domain of a variable.
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Pulse > 160− 0.5 Age ⇒ Hearth_alarm = on
((Sex = female ∧Weight > .85(Height − 100))

∨
(Sex = male ∧Weight > .90(Height − 100)))

∧
Blood_pressure > 130

 ⇒ Diabetes_alarm = on

Figure 6 Representation of a SHS in form of FOL constraints

4.2 Malware
Machine learning models are often used in critical applications which involve decisions of
significant personal, societal, or economical impact. Examples include network intrusion
detection, spam and phishing detection, healthcare systems, production planning, etc. Mal-
ware attacks to such decisional models typically consist in altering the values of some of the
features so to induce a misclassification, and therefore a wrong decision. In this section we
consider an example in the healthcare domain, and we show how our methodology can help
to detect a potential attack, or prove its impossibility.

In the last decade there has been a major evolution towards automatization in healthcare,
thanks to advances of research in the Internet of Things that has allowed to connect body
sensors and other implantable medicals devices to networks of computing and big data
resources. Smart healthcare systems (SHS’s) continuously collect data from the medical
sensors connected to the human body and process them for making decisions accordingly.
This trend will increase in the future due also to the development of personalised medicine.
Typically, machine learning is used to classify possible health problems from the symptoms
and prescribe the necessary treatment. Unfortunately, these devices are exposed to potential
attacks, especially due to the possible presence of malware that can compromise the readings
of the sensors, like in the case of MEDJACK [42].

We assume that the SHS uses a classifier that takes in input, as features, the physical
characteristics of the patient (such as weight, height, age, etc.), and the readings from the
body sensors, to decide whether there is some potential health threat, and consequently raise
the corresponding alarm. In this example we assume that the classifier is implemented as
a Support Vector Machine. Figure 6 shows some typical constraints that could be derived
from the classifier, to signal critical situations that could bring to a diabetic attack or to a
hearth attack. The first formula represents the monitoring of the pulse in relation to age,
during physical exercise. In the second formula the relations between height and weight are
based on the Broca equations for women and men, respectively, and indicate the condition
of being overweight.

In this scenario, a particular patient can be represented by the values of his or her
attributes. For instance:

P1 Sex = female ∧Weight = 80 ∧Height = 165 ∧Age = 40 (11)
P2 Sex = male ∧Weight = 75 ∧Height = 180 ∧Age = 40 (12)

An attacker can be represented by its goals and its capability in tampering with the readings
of the sensors. For instance, an attacker that aims at thwarting the diabetes alarm and is
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able to alter the reading of the sensor Blood_pressure up to ± 20, can be represented by the
constraint:

R− 20 ≤ Blood_pressure ≤ R+ 20 ∧Diabetes_alarm = off (13)

where R is the true reading of the sensor.
Consider the set of constraints C consisting of set of formulae in Figure 6 together with

the one representing the patient ((11) or (12)), and the one representing the attacker (13).
By applying the SMT to C we can verify the existence of a potential attack. For instance,
consider the patient P1. For any r ≤ 150 C is satisfiable by the following assignment (where
we use =̇ to represent the association between a value and a variable):

Sex =̇ female , Weight =̇ 80 , Height =̇ 165 , Age =̇ 40 ,
R =̇ r , Blood_pressure =̇ r − 20 , Diabetes_alarm =̇ off

(14)

which for 130 < r ≤ 150 represents a security breach because in such situation the alarm
should be switched on.

Apart from reinforcing the security of the sensor, a possible countermeasure against this
attack would be to specialize the SHS for patient P1 so that the attacker could not succeed to
prevent the activation of the alarm whenever r > 130. In order to ensure the non-satisfiability
of (13) we derive that the threshold for Blood_pressure must be at most 110. Namely, we
need to replace the constraint on Blood_pressure in Figure 6 with Blood_pressure > 110. As
for patient P2, the attack on the diabetes alarm is not possible, thanks to the fact that, due
to his low weight, he is not a patient-at-risk. In both cases, the lack of an attack possibility
can be automatically verified by proving, via the STM, that the set of constraints has no
solution.

5 Applications to Privacy

5.1 Model inversion
Model-inversion (MI) attacks aim at deriving sensitive features of a target individual by
taking advantage of their correlation with the output revealed by the machine learning model.
The first work that pointed out the existence of such privacy threat was [18]. In that paper,
the authors considered a linear regression model for personalized medicine (recommendation
of the dosage of a drug called warfarin), and they showed that an attacker that has access
to some of the non-sensitive attributes of the victim (age, race, height, and weight) and to
the outcome of the model (the dosage), may infer the victim’s private genomic attributes,
especially if he or she has participated in the dataset used for training. (The study focused
on two genes, VKORC1 and CYP2C9, that are associated with the mechanism with which
the body metabolizes the drug.) Successive works (for instance, [17, 1]) have extended MI
attacks to other settings, e.g., recovering an image of a person from a face recognition model
given just their name, and other target models, e.g., logistic regression and neural networks.

Usually MI attacks are formalized in probabilistic terms, namely the attacker is supposed
to know the distributions of the data, and its strategy consists in determining which possible
value for the sensitive feature achieves the maximum likelihood, given its knowledge of the
non-sensitive values and the result of the model. However, for the sake of simplicity, here we
consider a non-probabilistic model of attacker.

Suppose that the model represents the classification h : X → Y , and that each x ∈ X is a
tuple of n features (attributes) 〈x1, x2, . . . , xn〉. Suppose that xn is the sensitive attribute,
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and that the attacker is interested in discovering whether the value of xn belongs to a target
domain A. Suppose that the attacker knows the value a1, a2, . . . , an−1 of the first n − 1
attributes, and the classification outcome b. Then, the attack is effective if all the values an,
such that h(a1, a2, . . . , an−1, an) = b, belong to A. Otherwise, the attacker does not have
enough evidence.

One way to model such attack by constraints is by representing its opposite, namely the
possible existence of an alternative value for xn which still satisfies the relation. This gives
rise to the formula:

X1 = a1 ∧X2 = a2 ∧ . . . ∧Xn−1 = an−1 ∧ Y = b ∧
∧
a∈A

Xn 6= a (15)

The outcome of the SMT solver in this case is to be interpreted as follows: no solutions
implies that there is an attack, and viceversa one or more solution implies that the attacker
has not enough evidence.

6 Conclusion

In this work we have discussed how to combine constraint solving and ML in a novel way. We
have shown that several algorithms for ML, such as decision trees, support vector machines,
k-nearest neighbours, can be transformed in a corresponding set of formulas in FOL to be
solved by means of constraint solvers and SMT solvers. There are several advantages of this
approach. One is to exploit the existing (and future) efficient solvers. Another one is to
be able to combine the formulae in FOL with additional formulae expressing some critical
facts on which we want to test the system. We have presented some examples of attempts of
security and privacy breaches, such as an attempt to discover a password using information
flow, an example of malware attack for smart health systems, and one model-inversion attack
to a neural network for personalised medicine. We have then represented the attacker by
an appropriate set of constraints, which we have combined together with the constraints
of the original system. Finally, a check of satisfiability by a (SMT) solver of the full set of
constraints allows us to derive whether the attack is possible, and how to prevent it.

As future work we intend to make some complexity analysis for the formulas that we derive
with our methodology and perform experiments to evaluate the effectiveness of our approach.
For this we need to encode the constraints generated with an appropriate constraint solver
as mentioned in Section 2.2.
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