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Generalized BSDE with jumps and stochastic quadratic

growth ∗

Anis Matoussi † Rym Salhi ‡

December 31, 2020

Abstract

In this paper, we study a doubly Reflected Backward Stochastic Differential Equation

with Jumps (DRBSDEs in short) when the driver have general quadratic growth. We

extend the result of Essaky and Hassani [14] to the jump setting and a generator with

general exponential quadratic growth.

Keywords: Doubly reflected BSDE with jumps, exponential stochastic quadratic growth, un-

bounded terminal condition.

1 Introduction

Motivation Our aim interest is to study backward stochastic differential equation with jumps

(BSDEJs) and unbounded terminal condition where the driver has stochastic quadratic growth.

We were inspired by the approach developed by Bahlali et al [2]. This approach is fundamen-

tally different and consists in deriving the existence of the solution via quadratic BSDEs with

two reflecting barriers. More precisely, the upper and lower bound in the structure condition of

the driver will play the role of obstacles processes. In this regard, there is no longer any need

to impose stronger integrability condition on the terminal condition ξ. The solution is then

obtained by proving that the constrained processes are equal to zero.

Unfortunately, as far as we know, there is no existing result on this subject. Hence, as a first

step, we concerns our self to the well-posedness of doubly reflected BSDEJ’s where the driver

has a general stochastic growth and unbounded terminal condition.

Literature review on doubly reflected BSDEs The notion of doubly reflected BSDEs

(DRBSDE in short) were first introduced and studied by Cvitanic and Karatzas [7] in the

Brownian setting. However the theory of BSDEs with constrains started with the seminal pa-

per of El Karoui, Kapudjian, Pardoux, Peng and Quenez [11] as the generalization of the work

of Pardoux and Peng [28]. Intuitively, the solution of these equation are constrained to stay

in the region surrounded by two given obstacles. This is achieved via two processes K− and

K+ under a minimality condition that is the process K+ and K− only act when Y reaches the

obstacle L and U .

Several works have been obtained in this subject since they are encountered in various fields

such as financial problem and mixed game problem. In [16], Hamadene Lepeltier and Matoussi
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the Chair Derivatives of the Future sponsored by the Fédération Bancaire Française, and the Chair Finance and

Sustainable Development sponsored by EDF and Calyon.
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investigated the existence of solution for DRBSDE when the driver has linear growth by assum-

ing regularity condition on the one barrier and also the existence of a positive semimartingale

between the barriers constraints. Later Hamadene and Hassani [17] generalize the result of [16]

and proved the existence of the solution when the barriers are completely separated. Under the

Mokobodski condition, Bahlali et al. [3] treated the case where the driver has linear growth

in y and quadratic in z. This result was followed by Hdhiri and Hamadene [20], they estab-

lish an existence result by assuming that the barriers are completely separated. Essaki and

Hassani [14] proved existence and uniqueness of the solution of doubly reflected BSDE under

more general assumption on the data by considering a driver with quadratic stochastic growth

i.e |f(t, y, z)| ≤ ζs(w) +
Cs(w)

2 |z|2 without imposing any integrability condition on the terminal

condition. This result was generalized later by Essaky, Hassani and Ouknine to the case of

RCLL obstacles.

More recently, Baadi and Ouknine [1] have studied doubly reflecting barrier BSDEs when the

noise is driven by a Brownian motion. They showed existence and uniqueness of the solution

when the reflecting barrier don’t satisfy any regularity assumption.

Several authors have been regarding to extend these results to the discontinuous setting. Crepey

and Matoussi [6] considered the case when the driver f is Lipschitz the Obstacles satisfy the

Mokobodski’s condition.

When the obstacles are completely separated, Hamadene and Hassani [18] showed that the

DRBSDE driven by a Brownian motion and a Poisson noise has a unique solution under weaker

integrability assumption. Let us mention that, in their study the proces Y has only inaccessible

jumps. This result was generalized later by Hamadene and Wang [22].

Doubly reflected BSDE is further developed to different framework, such work includes that of

[19, 5, 9, 10] among others.

Main contributions The main objective of this paper is to deal with generalized doubly

reflected BSDEs when the noise comes from a Brownian motion and an independent jump

random measure.























Yt = ξ +
∫ T

t
f(Ys, Zs, Vs)ds+ dRs+

∫ T

t
g(s, Ys)dAs −

∫ T

t
ZsdBs −

∫ T

t

∫

E
Vs(e)µ̃(ds, de)

+
∫ T

t
dK+

s −
∫ T

t
dK−

s , P-a.s.

Lt ≤ Yt ≤ Ut and
∫ T

0 (Ys− − Us)dK
+
s =

∫ T

0 (Ys− − Ls)dK
−
s = 0, P-a.s.

where t ∈ [0, T ], B is a standard Brownian motion, µ̃ is a random jump measure, A is a non

decreasing process and R is positive measure. In our study we consider the case when the driver

has stochastic quadratic growth, unbounded terminal condition and that the two barriers are

completely separated. We extend the result of [14] and show existence and uniqueness of the

solution.

The main motivation of our work is that the assumptions on the driver that we consider here

are much involved in finance. If we look for the simplest example of a pricing problem in a Black

and Scholes market problem we can see that the fair price of an European options is given by

the solution of a linear BSDE where f(t, y, z) := r(t)yt + θ(t)zt, where θ is the risk premium.

Unfortunately, the interest rate and the risk premium are in general not bounded in the market.

Indeed, we want to investigated the solvability of generalized DRBSDE when the noise is gov-

erned by a Brownian motion and random jump measure. Similar to [14], our approach combines

exponential transformation and monotone approximation by mean of sup convolution. The first

transformation enables us to obtain the doubly reflected BSDEJs with bounded terminal condi-

tion and a driver with uniform structure condition. However the exponential transformation as
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it has been used in Kobylanski [24] cannot be applied singularly since we can not get a Lipschitz

one.

We are thus led naturally to a trancature procedure. We construct an approximation sequence

of globally Lipschitz doubly reflected BSDEJs by mean of sup convolution for which the solution

exists. The solution of the DRBSDE with jumps is constructed by proving a monotone limit

theorem and achieving the convergence of the Lipschitz DRBSDEs constructed by the above

trucation procedure. Then we show that the limit of those solution indeed solves the original

DRBSDEJ. As a final step we comeback to our initial system and prove that admit a solution

using a logarithmic transformation.

The paper is organized as follow. In section 2, we describe our setting and we recall briefly some

preliminary notations. In section 3 we give a precise definition of the solution of BRBSDEJ

and show by an exponential transformation how they are connected to another general doubly

reflected BSDEJ with more tractable coefficients. Then, we prove that these equations admit

a unique solution. Last section contains technical results. Furthermore, the special case of

generalized DRBSDEjs when the driver is Lipschitz is established .

2 Framework

We consider a filtered probability space (Ω,F ,F,P) on which the filtration F = (Ft)0<t<T

satisfies the usual conditions of completeness and right continuity and that FT = F and F0 be

trivial. Due to these usual conditions, we can take all semimartingales to have right continuous

paths with left limits.

On this stochastic basis, letW a d-dimensional Brownian motion and µ(ω, dt, de) an independent

integer valued random measure defined on ([0, T ] × E,B([0, T ]) ⊗ B(E)), with compensator

ν(ω, dt, de).

For a σ-finite measure λ on (E,B(E)) satisfying
∫

E
1∧|e|2λ(de) < ∞ and a bounded P⊗B(E)-

measurable non negative density function ζ, we will assume that the compensator ζ is absolutely

continuous with respect to λ⊗ dt such that

ν(ω, dt, de) = ζ(ω, t, e)λ(de)dt, 0 ≤ ζ ≤ Cη, for some constant Cν . (2.1)

Finally, we will denote by µ̃ the compensated measure of µ as

µ̃(ω, dt, de) = µ(ω, dt, de)− ν(ω, dt, de). (2.2)

Let f be a P ⊗ E-measurable function, the integral with respect to the random measure and

the compensator are defined as follow

(f ⋆ µ)t =

∫ t

0

∫

E

f(s, e)µ(ds, de) , (f ⋆ µ)t =

∫ t

0

∫

E

f(s, e)ν(ds, de).

In particular, the stochastic integral U ⋆ µ̃ =
∫

Us(e)µ̃(ds, de) is a local square integrable mar-

tingale, for any predictable locally integrable process U .

We will assume that W and µ̃ satisfies the following weak representation property with respect

to (Ft)0≤t≤T

M = M0 +

∫ .

0

Zs.dWs +

∫ .

0

∫

E

Us(e)µ̃(de, ds).

We will now introduce the specific spaces corresponding to our framework.

•L2,d is the spaces of Rd-valued and P-measurable processes such that

‖Z‖2L2 :=

∫ T

0

|Zs|2ds < +∞, P-a.s.
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•L2,d
ν is the space of P̃-measurable processes such that

‖U‖2L2
ν
:=

∫ T

0

∫

E

|Us(e)|2ν(de, ds) < +∞, P-a.s.

•K the space of P-measurable continuous non decreasing process such that K0 = 0.

•D (respectively Dc) the space of R-valued P-measurable càdlàg processes resp. (∆Yt = 0).

We also introduce the following classical spaces

• H
2 the set of all P-measurable processes Z such that E[

∫ T

0
|Zs|2ds] < +∞, P-a.s.

• For u, ū in the space L
0(B(E), ν) of all B(E)-measurable functions with the topology of

convergence in measure, we define

|u− ū|t = (

∫

E

|u− ū|2ζ(t, e)λ(de)) 1
2 .

• H
2
ν the set of all P̃-measurable processes Z such that

E[

∫ T

0

∫

E

|Vs(e)|2ν(de, ds)] < +∞, P-a.s.

3 Generalized Doubly reflected BSDE with jumps

3.1 Formulation

In this section, we aim to prove existence of solution of generalized doubly reflected BSDE with

jumps given by (f.ds + gdAs + dRs, ξ, L, U) under weaker assumption. Let us first introduce

the following definition of generalized doubly reflected backward stochastic differential equation

with jumps .

We are given the following objects:

– ξ an FT -measurable real valued random variable.

– A function f : Ω × [0, T ] × R
1+d × L

0(B(E), ν) → R such that f is P ⊗ B(R1+d) ⊗
B(L0(B(E), ν))-measurable.

– A function g : Ω× [0, T ]× R → R such that g is P ⊗ B(R)-measurable .

– Two continuous R-valued processes Lt and Ut such that Lt ≤ Ut satisfying Lt ≤ ξ ≤ Ut.

– A positive random measure dR and a non-decreasing continuous process A.

Definition 3.1. We say that a quintuple (Y, Z, V,K+,K−) is a solution to the generalized

doubly reflected BSDE with jumps associated to (f.ds+ gdAs + dRs, ξ, L, U), if

(E)















































Y ∈ D, Z ∈ L2,d, V ∈ L2,d
ν , K± ∈ K.

Yt = ξ +
∫ T

t
fs(Ys, Zs, Vs)ds+

∫ T

t
dRs+

∫ T

t
gs(Ys)dAs −

∫ T

t
ZsdBs −

∫ T

t

∫

E
Vs(e)µ̃(ds, de)

+
∫ T

t
dK+

s −
∫ T

t
dK−

s , 0 ≤ t ≤ T, P-a.s.

Lt ≤ Yt ≤ Ut and
∫ T

0 (Ys− − Us)dK
+
s =

∫ T

0 (Ys− − Ls)dK
−
s = 0, 0 ≤ t ≤ T, P-a.s.
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The last condition is called the Skorohod condition. It requires that the processes K+ and

K− are minimal in the sense that they only act when Y reaches the obstacles L and U. This

condition is crucial to obtain the wellposedness of generalized doubly reflected BSDEs with

jumps. Note that when there is no barrier, the system becomes an ordinary BSDE with jumps.

Definition 3.2. We say that dM1
t and dM2

t are two singular measure and we denote dM1
s⊥dM2

s

if
∫ T

0

1{As(w)}dM
1
t =

∫ T

0

1{Ac
s(w)}dM

2
s = 0, ∀A ∈ P . (3.3)

We shall make the following standing assumptions on the maps under consideration.

Assumption 3.1 (Assumptions on the drivers).

– The first assumption characterize the growth of the driver f with a lower and an upper

bound: For every (y, z, v) ∈ R × R
d × L

0(B(E), ν), there exist two positives processes η

and C respectively in L
1(Ω, [0, T ]) and Dc such that

q
s
(y, z, v) = −ηs(w) −

Cs(w)

2
|z|2 − 1

δ
J(v)

≤ fs(w, y, z, v) ≤ q̄s(y, z, v) = ηs(w) +
Cs(w)

2
|z|2 + 1

δ
J(v),

dt⊗ dP-a.s, (w, t) ∈ Ω× [0, T ], where

J(v) =

∫

E

(

eδv(e) − δv(e)− 1
)

ν(de).

– The second assumption consists in specifying a lower and upper bound for g: For all

y ∈ [Ls(w), Us(w)],

|gs(w, y)| ≤ 1 A(ds)⊗ P(dw)-a.s.

– The last assumption known as the ”Aγ-condition ” deals with the increments of the driver

f with respect to the jump component: For all (y, z, u, ū) ∈ R × R
d × L

0(B(E), ν) there

exists a P⊗B(Rd+2)⊗B(E)-measurable function γ where C1 ≤ γ ≤ C2 with −1 < C1 ≤
0, C2 ≥ 0,

ft(y, z, v)− ft(y, z, v̄) ≤
∫

E

γt(e)[v(e)− v̄(e)]ν(de), ∀t ∈ [0, T ],P-a.s

Remark 3.1. We emphasize that, usually the above structure condition is uniform that is the

constants in front of z and u are constants. However in our context, we look for solution of

generalized doubly reflected BSDEs where the driver has stochastic growth i.e. η and C are no

longer constants but predictable processes.

To conclude this part we introduce the following requirement on the obstacle processes.

Assumption 3.2 (Assumptions on the Obstacle).

(i) There exists a semimartingale S with the following decomposition

S = S0 + V +
. − V −

. +
∫ .

0
αsdBs, where S0 ∈ R, V +

. , V −
. ∈ K and αs ∈ L2,d, P-a.s.

(ii) Lt ≤ St ≤ Ut, Lt ≤ 0 ≤ Ut, t ∈ [0, T ],P-a.s.

(iii) For all R ∈ K, dRt ≥ 0, P-a.s.

Theorem 3.1. Under Assumptions 3.1 and 3.2, there exists a maximal solution (Y, Z, V,K+,K−)

for the doubly reflected BSDE with jumps associated to (f, ξ, L, U) satisfying the system (E).
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3.2 Exponential transformation and estimates

To achieve our main result, that is the existence of solutions of generalized doubly reflected

BSDEJs, we first introduce an auxiliary BSDEJ which is explicitly given in terms of exponential

transformation of the original one. We then establish a correspondence between solutions of the

auxilary one and those of BSDEJs given by (fds+ gdAs + dRs, ξ, L, U). To do so, we consider

the following Ft-adapted continuous increasing process

mt = 2 sup
0≤s≤t

|Cs|+ sup
0≤s≤t

|Us|+ |Rt|+At +
1

δ
+ 1. (3.4)

Then we have the following result.

Proposition 3.1. There exists a solution (Y, Z, V,K+,K−) ∈ D × L2,d × L2,d
ν × K2 to the

system (E) if and only if (Ȳ , Z̄, V̄ , K̄+, K̄−) is solution of (E) with data (f̄ , ξ̄, L̄, Ū)

where

Ȳt = emt(Yt−mt), Z̄t = mtȲtZt, V̄t = Ȳt[e
mtVt(e) − 1], K̄±

s = msȲsK
±
s .

f̄ = f̃s((ȳ ∧ L̄s) ∨ Ūs, z̄, v̄)− ηsms and ḡ =
1

8ms

g̃s((ȳ ∧ L̄s) ∨ Ūs)−
1

2

Ūt = emt(Ut−mt), L̄t = emt(Lt−mt), dR̄s =
1

2
dĀs + ηsmsds, dĀs = 8msdms. (3.5)

with






















g̃s(ȳ) = ȳ[msgs(
ln(ȳ)
ms

+ms)
dAs

dms
+ms

dRs

dms
+ms − ln(ȳ

ms
],

f̃s(ȳ, z̄, v̄) = msȳ[fs(
ln(ȳ)
ms

+ms,
z̄

msȳ
, 1
ms

ln( v̄
ȳ
+ 1)).

+msȳ − |z̄|2

2msȳ2 − 1
ms

∫

E
(eln(1+

v̄
ȳ
) − ln(1 + v̄

ȳ
)− 1)ν(de)].

Proof. Applying Itô’s formula to Ȳt = emt(Yt−mt), we obtain for all t ∈ [0, T ], P-a.s

Ȳt = ȲT +

∫ T

t

Ȳs− [msfs(Ys, Zs, Vs)−
1

2
|msZs|

2 −

∫

E

[emsVs(e) −msVs(e)− 1]ν(de)]ds

+

∫ T

t

msȲs−dK
+
s −

∫ T

t

msȲs−dK
−
s −

∫ T

t

msȲs−ZsdBs −

∫ T

t

∫

E

Ȳs− [emsVs(e) − 1]µ̃(de, ds)

+

∫ T

t

Ȳs− [2ms − Ys]dms +

∫ T

t

[Ȳs−msgs(Ys)
dAs

dms

]dms +

∫ T

t

[Ȳs−ms
dRs

dms

]dms.

Thus, taking f̄ , ḡ, Ā and dR̄ as in (3.5) yield to

Ȳt = ȲT +

∫ T

t

f̄s(Ȳs, Z̄s, V̄s)ds+

∫ T

t

ḡs(Ȳs)dĀs +

∫ T

t

dR̄s −

∫ T

t

Z̄sdBs −

∫ T

t

∫

E

V̄s(e)µ̃(ds, de)

+

∫ T

t

dK̄
+
s −

∫ T

t

dK̄
−
s .

We then deduce that if (Y, Z, V,K+,K−) is a solution of (E) then (Ȳ , Z̄, V̄ , K̄+, K̄−) is a

solution of the generalized doubly reflected BSDEJs associated to (f̄ds+ ḡdĀs + dR̄s, ξ̄, L̄, Ū).

Conversely, let (Ȳ , Z̄, V̄ , K̄+, K̄−) be the solution of (E) with data (f̄ , ξ̄, L̄, Ū). Applying Itô’s

formula to Yt =
ln(Ȳt)
mt

+mt, we obtain that (Y, Z, V,K+,K−) is a solution of (E).

The following lemma summarizes the properties satisfied by the transformed data.
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Lemma 3.1. The data (f̄ds+ dR̄s + ḡdĀs, ξ̄, L̄, Ū) obtained by the above exponential transfor-

mation satisfy the following properties

(i) 0 ≤ L̄t ≤ e−m2
t ≤ Ūt ≤ e−1 < 1 and L̄T ≤ ξ̄ ≤ ŪT , ∀t ∈ [0, T ], P-a.s.

(ii) f̄ is a P-measurable function such that for all (s, y, z, v) ∈ [0, T ]× [L̄s, Ūs]× R
1+d ×  L0(B(E), ν) :

−2msηs − |z|2

L̄s
− 1

δ
J(ln( v̄

L̄s
+ 1)) ≤ f̄s(w, y, z, v) ≤ 0, P-a.s.

(iii) − 1 ≤ gs(w, y) ≤ 0, ∀y ∈ [Ls, Us].

(iv) dR̄ is a random positive measure .

Proof. (i) Since Ut ≤ mt − 1, it follows directly that 0 ≤ L̄t ≤ e−m2
t ≤ Ūt ≤ e−1 < 1.

Let us now prove that f̄ satisfies the property(ii). Recalling the expression of f̃ and using

Assumption (3.1), we aim to determine an upper bound to f̃

f̃s(w, ȳ, z̄, v̄)

≤ msȳ[ηs +
Cs

2

|z̄|2
m2

sȳ
2
+

1

δ
J(

1

ms

ln(1 +
v̄

ȳ
))− |z̄|2

2msȳ2
− 1

ms

∫

E

(eln(1+
v̄
ȳ
) − ln(1 +

v̄

ȳ
)− 1)ν(de)]

≤ ȳms.ηs +

(

Cs

2ms

− 1

2

) |z|2
ȳ

+
ms

δ
ȳJ(

1

ms

ln(1 +
v̄

ȳ
))−

∫

E

(eln(1+
v̄
ȳ
) − ln(1 +

v̄

ȳ
)− 1)ν(de).

Using the following inequality J(ku) ≥ kJ(u), ∀k ≥ 1 and ȳ ≤ Ū ≤ e−1, we obtain

f̃s(w, ȳ, z̄, v̄) ≤ e−1msηs +

(

Cs

2ms

− 1

2

) |z|2
ȳ

.

Since Cs ≤ ms yield to Cs

2ms
− 1

2 ≤ 0, we see that f̃s(w, ȳ, z̄, v̄) ≤ ηsms.

Now we aim to find a lower bound of f̃ . In fact

f̃s(w, ȳ, z̄, v̄) ≥ msȳ
[(

− ηs −
Cs

2

|z̄|2
m2

sȳ
2
− 1

δ
Js
( 1

ms

ln(1 +
v̄

ȳ
)
)

)

− |z̄|2
2msȳ2

− 1

ms

∫

E

(eln(1+
v̄
ȳ
) − ln(1 +

v̄

ȳ
)− 1)ν(de)

]

≥ −e−1msηs −
(

Cs

2ms

+
1

2

) |z|2
ȳ

−
∫

E

(eln(1+
v̄
ȳ
) − ln(1 +

v̄

ȳ
)− 1)ν(de).

Using once again J(ku) ≥ kJ(u) together with L̄s ≤ ȳ ≤ Ūs and Cs

2ms
+ 1

2 ≤ 1, we finally get

f̃s(w, ȳ, z̄, v̄) ≥ −e−1msηs −
(

Cs

2ms

+
1

2

) |z|2
ȳ

− 1

δ
Js(ln(1 +

v̄

ȳ
))

≥ msηs −
|z|2
L̄s

− 1

δ
Js(ln(1 +

v̄

L̄s

)).

Similar arguments can be used to prove that g satisfy −1 ≤ gs(w, y) ≤ 0.

The property (iv) follows from Assumption 3.2 and the definition 3.4.

3.3 Auxiliary generalized doubly reflected BSDE with jumps: Exis-

tence and uniqueness results

Our problem is then reduced to find a maximal solution for generalized doubly reflected BSDEJs

under the following weaker assumptions.
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Assumption 3.3.

1. There exist two positives processes η ∈ L
1(Ω, [0, T ]), C ∈ Dc such that

q := −ηt(w) −
Ct(w)

2
|z|2 − 1

δ
j(v) ≤ ft(w, y, z, v) ≤ 0, ∀t ∈ [0, T ].

2. For all y ∈ R, −1 ≤ gt(w, y) ≤ 0, 0 ≤ t ≤ T.

3. There exists a continuous non decreasing process S = S0 − V., where S0 ∈ R, V ∈
K such that Lt ≤ St ≤ Ut, P-a.s.

4. ∀t ∈ [0, T ], ∀R ∈ K, dRt ≥ 0 and 0 ≤ Lt ≤ Ut < 1, P-a.s.

Theorem 3.2. Assume that Assumption 3.3 and Aγ-condition are fulfilled then the generalized

DRBSDE with jumps (E) associated to (fds+ dRs + gdAs, ξ, L, U) has a maximal solution.

Classically, when we want to manage a quadratic BSDE, it seems natural to start by an expo-

nential change of variable to obtain a Lipschitz BSDE. However in general, this method may

fail as it can be seen in lemma (3.1). A possible way to do so is to approximate the BSDE by

mean of sup-convolution. This technique was introduced by Lepeltier and San Martin [26] in

the backward theory.

To be a little bit more precise, the scheme of our proof is the following.

• The first step consists on introducing an auxiliary generator (fn)n globally Lipschitz with

respect to (y, z, u) as follows

fn
t (y, z, u) := sup

(p,q,r)∈R×Rd×L0(B(E),ν)

{ft(p, q, r) + n|y − p|+ n|z − q|+ n|v − r|t}

Moreover, since the integrability conditions on the data are weaker, we will introduce a family of

stopping times (τi)i≥0. Hence, using the existence results of Appendix, we justify the existence

of a unique processes (Y n,i, Zn,i, Un,i,K−,n,i,K+,n,i) solution for the truncated generalized

doubly reflected BSDEJs.

In the last step, we prove a stability result for the approximating sequence of this type of

BSDEJs and hence we deduce from it that the limit exists and solves the original one.

Before proceeding in the proof, we will need the following lemma which provides essential

properties of the truncated drivers. Define

fn(t, y, z, v) = sup
(p,q,r)∈R×Rd×L0(B(E),ν)

{f(t, p, q, r)− n|p− y| − n|q − z|+ n|r − v|t} .

qn(t, y, z, v) = sup
(p,q,r)∈R×Rd×L0(B(E),ν)

{

q(t, p, q, r) − n|p− y| − n|q − z|+ n|r − v|t
}

.

gn(t, y) = sup
p∈R

{g(t, p)− n|p− y|} .

Lemma 3.2. [27] Under Assumption 3.3 and Aγ-condition, we have

– The sequences (fn)n, (gn)n are Lipschitz with respect to (y, z, u).

– For all (t, ω, y, z, u) ∈ [0, T ]× Ω× R× R
d ×  L0(B(E), ν), ∀n ∈ N

q
t
(y, z, u) ≤ qn

t
(y, z, u) ≤ fn

t (y, z, u) ≤ 0.

– For all (t, ω, y) ∈ [0, T ]× Ω× R, ∀n ∈ N, −1 ≤ gnt (w, y) ≤ 0.

– The sequences (fn)n and (gn)n are increasing and converges uniformly in every compact

set respectively to f and g P-a.s.
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proof of Theorem 3.2. The proof falls naturally into four steps

First step: Construction of the sequence of generalized doubly reflected BSDE with jumps:

Let j, i, p ∈ N such that j ≤ i ≤ p and t ∈ [0, τj ] where τj is a stationary family of stop-

ping times defined as follow

τj = inf

{

t ≥ 0;At +Rt + Ct +

∫ t

0

ηsds ≥ j

}

∧ T.

Let us now introduce the doubly reflected BSDEJ associated to the truncated driver(fn)n

(E1)



























































(i) Y n,i
t = ξ +

∫ T

t
fn
s (Y

n,i
s , Zn,i

s , V n,i
s )ds+

∫ T

t
dRi

s +
∫ T

t
gns (Y

n,i
s )dAn

s +
∫ T

t
dKn,i,+

s

−
∫ T

0
dKn,i,−

s −
∫ T

t
Zn,i
s dBs −

∫ T

t

∫

E
V n,i
s (e)µ̃(ds, de), 0 ≤ t ≤ T,P-a.s,

(ii) Ln,i
t ≤ Y

n,i
t ≤ U

n,i
t , 0 ≤ t ≤ T,P-a.s,

(iii)
∫ T

0 (Y n,i

s−
− Ln,i

s )dKn,i,+
s =

∫ T

0 (Un,i
s − Y

n,i

s−
)dKn,i,−

s = 0, P-a.s.

(iv) dKn,i,+
s ⊥dKn,i,−

s .

.

where dRi = 1{s≤τi}dRs and dAn = 1{s≤τn}dAs.

First, we have to justify the existence of the solution for the system (E1). Using both Lemma

(3.2) and the associate Aγ-condition, it follows from Theorem 4.4, the existence of a unique

solution (Y n,i, Zn,i, V n,i,Kn,i,−,Kn,i,+). Moreover, we have the following estimate: ∀n, i ∈ N

E
[

sup
0≤t≤T

|Y n,i
t |2+

∫ T

0

|Zn,i
t |2dt+

∫ T

0

∫

E

|V n,i
t (e)|2ν(de, dt)+(Kn,i,+

T )2+(Kn,i,−
T )2

]

< +∞. (3.6)

In the other hand, since (τi)i≥0 is an increasing family of stopping times, we deduce from the

comparison Theorem 4.3 and (3.6), that the solution satisfy the following properties

For all i, n ∈ N, dRi ≤ dRi+1, Lt ≤ Y
n+1,i
t ≤ Y

n,i
t ≤ Y

n,i+1
t ≤ Ut, ∀t ∈ [0, T ], P-a.s

(3.7)

and

dK
n,i+1,+
t ≤ dK

n,i,+
t ≤ dK

n+1,i,+
t , dK

n+1,i,−
t ≤ dK

n,i,−
t ≤ dK

n,i+1,−
t , ∀t ∈ [0, T ], P-a.s. (3.8)

For a fixed n, since (Y n,i)i is increasing we can define Y n as follows

Y n
t = lim

i→+∞
ր Y

n,i
t , ∀t ∈ [0, T ], P-a.s.

From (3.6), the sequences (Zn,i) and (V n,i) are bounded which entails the weak convergence.

We denote respectively (Zn) and (V n) their weak limits .

In the next step we prove a stability result for the approximating sequence of generalized doubly

reflected BSDEJs. We define an order for the convergence: first we will send i to infinity and

then in the third step we let n goes to infinity.

Step2: The convergence of the approximating generalized doubly reflected BSDEJ.

In this part we shall freeze n ∈ N and let i goes to ∞. For simplicity, we shall make the

following notations δY = Y n,i − Y n,p, δZ = Zn,i − Zn,p and δV = V n,i − V n,p.
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Consider ent := e2nA
n
t +(2n2+2n)t, we obtain by applying Itô’s formula to ens (Y

n,i
s −Y n,p

s )2 between

t and τj , the following

ent (δY )2t = enτj(δY )2τj +

∫ τj

t

2ens δYs

[

fn
s (Y

n,i
s , Zn,i

s , V n,i
s )− fn

s (Y
n,p
s , Zn,p

s , V n,p
s )

]

ds−
∫ τj

t

dRp
s

+ 2

∫ τj

t

ens δYsdδK
+
s − 2

∫ τj

t

ens δYsdδK
−
s − 2

∫ τj

t

ens δYs

[

gns (Y
n,i
s )− gns (Y

n,p
s )

]

dAn
s

− 2

∫ τj

t

ens δYsδZsdBs −
∫ τj

t

ens |δZs|2ds− 2

∫ τj

t

∫

E

ens δYsδVs(e)µ̃(de, ds) +

∫ τj

t

dRi
s

−
∫ τj

t

∫

E

ens |δVs(e)|2ν(de, ds) −
∫ τj

t

ens δY
2
s

(

2ndAn
s + (2n+ n2)ds

)

.

(3.9)

Before going any further, we need to estimate the following difference

∫ τj

t

2ens δYs

[

fn
s (Y

n,i
s , Zn,i

s , V n,i
s )− fn

s (Y
n,p
s , Zn,p

s , V n,p
s )

]

ds.

We first rely on the classical inequality: ∀ǫ > 0, a.b ≤ ǫa2 + 1
ǫ
b2 and the fact that both (fn)n

and (gn)n are uniformly Lipschitz in (y, z, v). In this way we obtain what follows

∫ τj

t

2ens δYs

[

fn
s (Y

n,i
s , Zn,i

s , V n,i
s )− fn

s (Y
n,p
s , Zn,p

s , V n,p
s )

]

ds

≤
∫ τj

t

2.n.ens δYs [|δYs|+ |δZs|+ |δVs|s] ds.

≤ ǫ

∫ τj

t

nens |δYs|2ds+
1

ǫ

∫ τj

t

nens
[

|δYs|2 + |δZs|2 + |δVs|2s
]

ds. (3.10)

Besides, we have

∫ τj

t

2ens δYs

(

gns (Y
n,i
s )− gns (Y

n,p
s )

)

dAn
s ≤

∫ τj

t

2.n.ens |δYs|2dAn
s . (3.11)

On the other hand, it follow from (3.8)

∫ τj

t

ens δYsdδK
+
s ≤ 0 and

∫ τj

t

ens δYsdδK
−
s ≥ 0. (3.12)

Besides, Notice that if we use the standard localization procedure we can prove that the local

martingale
∫ τj

t
ens δYsδZsdBs −

∫ τj

t

∫

E
ens δYsδVs(e)µ̃(de, ds) is in fact a true (F ,P)-martingale.

Now notice that since the family of stopping time τj is increasing then,

∫ τj

t

dRi
s −

∫ τi

t

dRp
s =

∫ τj∧τi

t

dRs −
∫ τj∧τp

t

dRs

=

∫ τj

t

dRs −
∫ τj

t

dRs = 0 (3.13)

Combining (3.10), (3.11), (3.12) and (3.13) and putting all terms containing δZ and δV in the

left-hand side, we can rewrite (3.9) as follow

E
[

ent |δYt|2 +
∫ τj

t

ens [|δZs|2 + |δVs|2s]ds
]

≤ E[enτj |δYτj |2].

Now in order to justify the passage to the limit in the right hand side as i goes to +∞, we apply

Lebesgue’s Dominated convergence theorem for a fixed n, since we know that the process Y n,i

10



is bounded E
[

|δYτj |2
]

goes to 0 as i goes to infinity.

Hence there exits Zn ∈ L2,d and V n ∈ L2,d
ν such that for any n ∈ N we have

lim
i→+∞

E
[

∫ τn

0

(

|Zn,i
s − Zn

s |2 +
∫

E

|V n,i
s (e)− V n

s (e)|2ν(de)
)

ds
]

= 0.

Now apply Itô formula to |Y n,i
t − Y

n,p
t |2 and taking first the supremum over t ∈ [0, τj ] then the

conditional expectation we get using the Burkholder-Davis-Gundy inequality

E
[

sup
t≤τj

|Y n,i
t − Y

n,p
t |2

]

≤ E
[

|Y n,i
τj

− Y n,p
τj

|2
]

+ 2cE
[

∫ τj

0

|Y n,i
s − Y n,p

s |2|Zn,i
s − Zn,p

s |2ds
]

1
2

+ 2cE
[

∫ τj

0

∫

E

|Y n,i
s − Y n,p

s |2|V n,i
s (e)− Zn,p

s (e)|2ν(de, ds)
]

1
2 .

Letting n goes to infinity in the above inequality, we can deduce from the monotone convergence

theorem and dominated convergence

lim
i→+∞

E
[

sup
t≤τj

|Y n,i
t − Y

n,p
t |2

]

= 0.

To conclude that the process Y n is càdlàg and hence belongs to D, the idea is to define Y p̃ the

projection of Y as the unique predictable process such that Yτ̃ = Eτ̃− [Yτ ] on {τ̃ < ∞} for all

predictable time τ̃ and then (Y n,i)p̃ = Y
n,i
− .

Putting Y n = lim
i→∞

Y n,i together with the fact that Y n,i is càdlàg from [4] we deduce by the

weak convergence of Zn,i and V n,i that Y n,i
− = (Y n,i)p̃ ↑ (Y n)p̃ as i → ∞.

Similar to the arguments used in [13] we can prove that the processes K+ and K− belongs to

K. From (3.8), we deduce that Kn,i,+ converges weakly to the continuous increasing process

Kn,+. Furthermore, using Fatou lemma :for fixed n ∈ N and for all i ∈ N

E
[

(Kn,+)2
]

≤ E
[

(Kn,i,+)2
]

≤ E
[

(Kn,0,+)2
]

< +∞.

Hence, we get that E
[

(Kn,+)2
]

< ∞ which proves that Kn,+ belongs to K.

Now since τj is a stationary family of stopping times , it follows from the system (E1) with

monotone convergence theorem that for a fixed n ∈ N, K
n,−
T < +∞, P-a.s.

Finally, letting i goes to infinity for fixed n ∈ N in the system (E1) we get that the quintuple

(Y n, Zn, V n,Kn,+,Kn,−) solves the following system

Y n
t = ξ +

∫ T

t

fn
s (Y

n
s , Zn

s , U
n
s )ds+ dRn

s + gns (Y
n
s )dAn

s −
∫ T

t

Zn
s dBs (3.14)

+

∫ T

t

dKn,+
s −

∫ T

t

dKn,−
s −

∫ T

t

Zn
s dBs −

∫ T

t

∫

E

V n
s (e)µ̃(ds, de),

with Ln
t ≤ Y n

t ≤ Un
t , 0 ≤ t ≤ T,P-a.s. (3.15)

Note that Y n satisfies the above system for all t ∈ [0, τj ]. However , since the family of stopping

time τj satisfies P [∪∞
i=1(τj = T )] = 1, we have immediately that Y n satisfies the system (3.14)

for all t in [0, T ].

To complete this step, it remains to prove the Skorohod condition of Y n. Since 0 ≤ Ut − Y n
t ≤

Ut − Y
n,i
t , we clearly have

∫ T

0

(Ut − Y n
t−)dK

n,i,−
t = 0, P-a.s.
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Therefore, since the processKn,i,− converges to the continuous increasing processKn, we obtain

the weak convergence of the measure dKn,i. Hence it follows that

∫ T

0

(Ut − Y n
t−)dK

n,−
t = 0, P-a.s.

The proof of
∫ T

0 (Y n
t−

−Lt)dK
n,+
t = 0 is in the same spirit, we only have to notice that we have

the weak convergence of the measure dKn,i to obtain that

0 ≤
∫ T

0

(Y n,i

t−
− Lt)dK

n,i,+
t ≤

∫ T

0

(Y n,i

t−
− Lt)dK

n,+
t = 0, P-a.s.

With the help of Fatou lemma we get the desired result.

The 5-uplet (Y n, Zn, V n,Kn,+,Kn,−) is solution of the following generalized doubly reflected

BSDEs with jumps.

(E2)







































(i) Y n
t = ξ +

∫ T

t
fn
s (Y

n
s , Zn

s , V
n
s )ds+

∫ T

t
dRn

s +
∫ T

t
gns (Y

n
s )dAn

s −
∫ T

t
Zn
s dBs

+
∫ T

t
dKn,+

s −
∫ T

0 dKn,−
s −

∫ T

t
Zn
s dBs −

∫ T

t

∫

E
V n
s (e)µ̃(ds, de), 0 ≤ t ≤ T, P-a.s.

(ii) Ln
t ≤ Y n

t ≤ Un
t , 0 ≤ t ≤ T, P-a.s.

(iii)
∫ T

0 (Y n
s−

− Ln
s )dK

n,+
s =

∫ T

0 (Y n
s−

− Un
s )dK

n,−
s = 0, P-a.s.

.

Moreover the processes Zn, V n,Kn,+ and Kn,− inherits what follows : for all n ∈ N

E
[

∫ τj

0

|Zn
s |2ds+

∫ τj

0

∫

E

|V n
s (e)|2ν(de, ds) + (Kn,+

T )2 + (Kn,−
T )2

]

< +∞.

To conclude this step, since dKn,+ = inf
i
dKn,i,+ and dKn,− = sup

i

dKn,i we have that dKn,+

and dKn,− are singular.

Step 3 : In this part, we will derive a stability result of the system (E2). We proceed ex-

actly as in the second step. To this end, since we know that the sequence (Y n)n is decreasing

and uniformly bounded, we only need to prove that there exits a Z and V in L2,d and L2,d
ν such

that

lim
n→∞

E
[

∫ T

0

|Zn
s − Zs|2ds+

∫ T

0

∫

E

|V n
s (e)− Vs(e)|2ν(de, ds)

]

= 0. (3.16)

As in [25, 14], we first consider the function φ : R+ → R
+ defined by φ(x) = 1

4j (e
4jx − 4jx− 1)

with the following properties















0 ≤ x ≤ 1, φ(0) = 0, φ
′

(0) = 0, φ
′

(x), φ
′′

(x) ≥ 0,

φ
′

(x) = e4jx − 1, φ
′′

(x) = 4je4jx,

φ
′′

(x) = 4jφ
′

(x) + 4j.

(3.17)

For the sake of clarity we define the processes Ȳ ,Z̄ and V̄

∀n ≤ m, Ȳ := Y n − Y m, Z̄ := Zn − Zm, V̄ := V n − V m.
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Since φ is C2 , by Itô’s formula we get

φ(Ȳt) = φ(Ȳτj )−
∫ τj

t

φ
′

(Ȳs)dK̄
−
s +

∫ τj

t

φ
′

(Ȳs)dK̄
+
s −

∫ τj

t

φ
′

(Ȳs)Z̄sdBs

− 1

2

∫ τj

t

φ
′′

(Ȳs)|Z̄s|2ds−
∫ τj

t

∫

E

φ
′

(Ȳs)V̄s(e)µ̃(de, ds) +

∫ τj

t

φ
′

(Ȳs)g
n
s (Y

n
s )dAn

s

−
∫ τj

t

φ
′

(Ȳs)g
m
s (Y m

s )dAm
s −

∫ T

t

∫

E

(φ(Ȳs + V̄s)− φ(Ȳs)− φ
′

(Ȳs)V̄s)µ(de, ds)

+

∫ τj

t

φ
′

(Ȳs) [(f
n
s (Y

n
s , Zn

s , V
n
s )− fm

s (Y m
s , Zm

s , Vm
s )] ds (3.18)

Clearly fn ≤ f . By the growth assumption on f we get for all n ∈ N

−ηs −
Cs

2
|Zn

s |2 −
1

δ
Js(V

n
s ) ≤ fn

s (Y
n
s , Zn

s , V
n
s ) ≤ 0.

Then we have

0 ≤ −fm
s (Y m

s , Zm
s , Vm

s ) ≤ ηs +
Cs

2
|Zm

s |2 + 1

δ
J(V m

s ).

Now the elementary inequality |Zm|2 = |Zm − Zn + Zn|2 ≤ 2|Z̄|2 + 2|Zn|2 yield to an upper

bound of fn − fm.

−ηs −
Cs

2
|Zn

s |2 −
1

δ
Js(V

n
s ) ≤ fn

s (Y
n
s , Zn

s , V
n
s )− fm

s (Y m
s , Zm

s , V m
s )

≤ ηs + Cs(w)
(

|Z̄s|2 + |Zn
s |2

)

+
1

δ
Js(V

n)

≤ ηs + Cs(w)
(

|Z̄s|2 + |Zn
s |2

)

+ ǫ|Vm
s |2s

≤ ηs + Cs(w)
(

|Z̄s|2 + |Zn
s |2

)

+ 2ǫ|V n
s |2s + 2ǫ|V̄s|2s. (3.19)

In the other hand
∫ τj

t

gns (Y
n
s )dAn

s −
∫ τj

t

gms (Y m
s )dAm

s =

∫ τj

t

gns (Y
n
s )1{s≤τn}dAs −

∫ τj

t

gms (Y m
s )1{s≤τm}dAs

=

∫ τj

t

(gns (Y
n
s )− gms (Y m

s ))1{s≤τn}dAs −
∫ τj

t

φ
′

(Ȳs)g
m
s (Y m

s )1{τn≤s≤τm}dAs.

By lemma (3.2), we have
∫ τj

t

φ
′

(Ȳs)(g
n
s (Y

n
s )− gms (Y m

s ))1{s≤τn}dAs ≤ −
∫ τj

t

φ
′

(Ȳs)g
m
s (Y m

s )1{s≤τn}dAs

≤
∫ τj

t

φ
′

(Ȳs)1{s≤τn}dAs

≤
∫ τj

t

4je4jȲsdAs. (3.20)

Hence, reporting (3.19 ) and (3.20) in (3.18) yield to

φ(Ȳt) +

∫ T

t

∫

E

(φ(Ȳs + V̄s)− φ(Ȳs)− φ
′

(Ȳs)V̄s)µ(de, ds)

≤ φ(Ȳτj )−
∫ τj

t

∫

E

V̄s(e)φ
′

(Ȳs)µ̃(de, ds)−
∫ τj

t

φ
′

(Ȳs)Z̄sdBs

− 1

2

∫ τj

t

φ
′′

(Ȳs)|Z̄s|2ds−
∫ τj

t

φ
′

(Ȳs)dK̄
−
s +

∫ τj

t

φ
′

(Ȳs)dK̄
+
s

+

∫ τj

t

φ
′

(Ȳs)
[

ηs + Cs(w)
(

|Z̄s|2 + |Zn
s |2

)

+ 2ǫ|V n
s |2s + 2ǫ|V̄s|2s

]

ds

+ 4j

∫ τj

t

e4j ȲsdAs + 4j

∫ τj

t

e4jȲs1{τn≤s≤τm}dAs.

(3.21)
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Now, since the process Cs(w) is bounded by j for all s ∈ [0, τj ] it follows

∫ τj

t

φ
′

(Ȳs)Cs(w)|Z̄s|2ds−
1

2

∫ τj

t

φ
′′

(Ȳs)|Z̄s|2ds

≤
∫ τj

t

jφ
′

(Ȳs)|Z̄s|2ds−
1

2

∫ τj

t

(

4jφ
′

(Ȳs) + 4j
)

|Z̄s|2ds

≤ j

∫ τj

t

φ
′

(Ȳs)|Z̄s|2ds− 2j

∫ τj

t

φ
′

(Ȳs)|Z̄s|2ds− 2j

∫ τj

t

|Z̄s|2ds

≤ −j

∫ τj

t

|Z̄s|2ds− 2j

∫ τj

t

φ
′

(Ȳs)|Z̄s|2ds. (3.22)

Using the same argument as in [15], we obtain

C̃|V̄s(e)|2 ≤ φ(Ȳs− + V̄s(e))− φ(Ȳs− )− φ
′

(Ȳs−)V̄s(e), dνa.e. (3.23)

Plugging (3.22) and (3.23) in the previous Itô equation (3.21) yields

φ(Ȳt) + C̃

∫ T

t

∫

E

|V̄s(e)|2ν(de, ds) ≤

φ(Ȳτj )− 2ǫ

∫ τj

t

φ
′

(V̄s)|V̄s|2sds− 2ǫ

∫ τj

t

φ
′

(V̄s)|V n
s |2sds− 2j

∫ τj

t

|Z̄s|2ds− j

∫ τj

t

φ
′

(Ȳs)|Z̄s|2ds

− j

∫ τj

t

φ
′

(Ȳs)|Zn
s |2ds+

∫ τj

t

(ejȲs − 1)dAs +

∫ τj

t

(

ejȲs − 1
)

dK̄−
s +

∫ τj

t

(

ejȲs − 1
)

dK̄+
s

−
∫ τj

t

(ejȲs − 1)Z̄sdBs + dRn,m
s + 4j

∫ τj

t

ηse
4jȲsds−

∫ τj

t

∫

E

V̄s(e)φ
′

(Ȳs)µ̃(de, ds). (3.24)

Let us underline that the process K̄ acts only when Ȳ reaches the obstacles L and U , it is

easy to see that Km,+ only increases when Y n
t−

= St and K̄n,− only increases when Y m
t−

= Lt.

Therefore, we have

φ(Ȳt) + C̃

∫ T

t

∫

E

|V̄s(e)|2ν(de, ds) ≤ φ(Ȳτj )− 2ǫ

∫ τj

t

φ
′

(V̄s)|V̄s|2sds− 2ǫ

∫ τj

t

φ
′

(V̄s)|V n
s |2sds

− 2j

∫ τj

t

[
1

2
+ φ

′

(Ȳs)]|Z̄s|2ds− j

∫ τj

t

φ
′

(Ȳs)|Zn
s |2ds+

∫ τj

t

4je4j
(

Ȳs + 1{τn≤s≤τm}

)

dAs

+

∫ τj

t

j (Y n
s− − Ls) dK

m,+
s + dRn,m

s +

∫ τj

t

j (−Y m
s− + Us) dK

n,−
s −

∫ τj

t

∫

E

V̄s(e)φ
′

(Ȳs)µ̃(de, ds)

−
∫ τj

t

(ejȲs − 1)Z̄sdBs + 4j

∫ τj

t

ηse
4j Ȳsds.

where

dR̃n,m
s = dRn,m

s +
(

e4j(Y
n

s−
−Ls) − 4j (Y n

s− − Ls)
)

dKm,+
s −

(

e4j(−Y m

s−
+Us) − 4j (−Y m

s− + Us)
)

dKn,−
s .

Taking in the left sides all the terms containing either Z̄ or V̄ , we get

φ(Ȳt) + C̃

∫ T

t

∫

E

|V̄s(e)|2ν(de, ds) + 2ǫ

∫ τj

t

φ
′

(V̄s)|V̄s|2sds+ 2j

∫ τj

t

[1 + φ
′

(Ȳs)]|Z̄s|2ds

+ 4j

∫ τj

t

j. (Y n
s− − Ls) dK

m,+
s + 4j

∫ τj

t

j. (−Y m
s− + Us) dK

n,−
s +

∫ τj

t

dR̃n,m
s .

≤ φ(Ȳτj ) + j

∫ τj

t

φ
′

(Ȳs)|Zn
s |2ds− 2ǫ

∫ τj

t

φ
′

(V̄s)|V n
s |2sds+

∫ τj

t

4je4j
(

Ȳs + 1{τn≤s≤τm}

)

dAs

+ 4j

∫ τj

t

ηse
4j Ȳsds−

∫ τj

t

φ
′

(Ȳs)Z̄sdBs −
∫ τj

t

∫

E

V̄s(e)φ
′

(Ȳs)µ̃(de, ds). (3.25)
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Then using the fact that Y n − Y m ≤ 1 we obtain for t = 0,

E
[

2j(1 + φ
′

(1))

∫ τj

0

|Zn
s − Zm

s |2ds+ (2ǫφ
′

(1) + C̃)

∫ τj

0

∫

E

|V n
s − V m

s |2ν(de, ds)
]

≤ φ(1) + E
[

4je4j
∫ τj

t

ηsds+ φ
′

(1)

∫ τj

0

dAs +

∫ τj

0

dR̃n,m
s

]

+ E[

∫ τj

0

j.φ
′

(Ȳ )|Zn
s |2 − 2ǫφ

′

(1)E

∫ τj

t

|V n
s |2sds]. (3.26)

Let us underline that since φ(Y n,m) is uniformly bounded process, the conditional expectation

of the martingale part of equation (3.25) vanishes. Now, taking n = 0 we get from the apriori

estimates of (Y n, Zn,Kn,+,Kn,−) that

E
[

∫ τj

0

|Z0
s − Zm

s |2ds+
∫ τj

0

∫

E

|V 0
s − V m

s (e)|2ν(de, ds)
]

≤ C
′

j . (3.27)

and

sup
m∈N

E
[

∫ τj

0

|Zm
s |2ds+

∫ τj

0

∫

E

|V m
s (e)|ν(ds, de)

]

< +∞. (3.28)

For all t ∈ [0, τj ], we can then extract a subsequence (mj
k)k∈N such that Z

m
j

k

t and V
m

j

k

t converges

weakly respectively to an Ft-adapted processes Ẑt and V̂t in H
2 and H

2
ν . It is obvious that

(φ
′

(Y n
s − Y

m
j

k
s ))

1
2 1[0,τj](Z

n
s − Z

m
j

k
s ) respectively (φ

′

(Y n
s − Y

m
j

k
s ))

1
2 1[0,τj](V

n
s − V

m
j

k
s ) converge

weakly in H
2 and in H

2
ν to (φ

′

(Y n
s −Y

m
j

k
s ))

1
2 1[0,τj](Z

n
s −Zs) and (φ

′

(Y n
s −Y

m
j

k
s ))

1
2 1[0,τj](V

n
s −Vs).

Hence, recalling the Itô equation (3.25 ) we obtain

E
[

∫ τj

0

2j(
1

2
+ φ

′

(Ȳs))|Zn
s − Z

m
j

k
s |2ds+

∫ τj

0

∫

E

(2ǫφ
′

(Ȳs) + C̃)|V n
s − V

m
j

k
s (e)|2ν(de, ds)

]

≤ E
[

φ(Ȳτj ) + 4je4j
∫ τj

0

ηsds+

∫ τj

0

4je4j
(

Ȳs + 1{τn≤s≤τm}

)

dAs +

∫ τj

0

j.φ
′

(Ȳs)|Zn
s |2ds

]

− 2ǫE
[

∫ τj

0

φ
′

(Ȳs)|V n
s |sds

]

.

Notice that

jE
[

∫ τj

0

φ
′

(Ȳs)|Zn
s |2ds

]

≤ 2jE
[

∫ τj

0

φ
′

(Ȳs)|Zn
s − Ẑs|2ds+

∫ τj

0

φ
′

(Ȳs)|Ẑs|2ds
]

,

and

2ǫE[

∫ τj

t

φ
′

(Y n
s − Ŷs)|V n

s |2sds] ≤ 2ǫ̃E[

∫ τj

t

φ
′

(Y n
s − Ŷs)|V n

s − V̂s|2sds]

+ 2ǫ̃E[

∫ τj

t

φ
′

(Y n
s − Ŷs)|V̂s|2sds].

Now since we have

E
[

2j(1 + φ
′

(Y n
s − Ŷs))

∫ τj

0

|Zn
s − Ẑs|2ds+

∫ τj

0

∫

E

(2ǫφ
′

(Y n
s − Ŷs) + C̃)|V n

s (e)− V̂s(e)|2ν(de, ds)
]

≤ lim inf
k
E
[

2j(1 + φ
′

(Y n
s − Y

m
j

k
s ))

∫ τj

0

|Zn
s − Z

m
j

k
s |2ds

]

+ lim inf
k
E
[

(2ǫφ
′

(Y n
s − Y

mk
j

s ) + C̃)

∫ τj

0

∫

E

|V n
s (e)− V

m
j

k
s (e)|2ν(de, ds)

]

,
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letting k goes to infinity allows us to obtain

E
[

2j

∫ τj

0

|Zn
s − Ẑs|2ds+ C̃

∫ τj

0

∫

E

|V n
s (e)− V̂s(e)|2ν(de, ds)

]

≤ lim inf
k

[

E[2j(1 + φ
′

(Y n
s − Y m

j

k))

∫ τj

0

|Zn
s − Z

m
j

k
s |2ds

+ (2ǫφ
′

(Y n
s − Y

mk
j

s ) + C̃)

∫ τj

0

∫

E

|V n
s (e)− V

m
j

k
s (e)|2ν(de, ds)]

]

.

≤ E[φ(Ȳτj ) + 4je4j
∫ τj

t

ηsds+

∫ τj

0

φ
′

(Ȳs)dAs + 2j

∫ τj

0

φ
′

(Ȳs)|Ẑs|2ds
]

+ 2ǫ̃E[

∫ τj

t

φ
′

(Y n
s − Ŷs)|V n

s |2sds].

Since φ
′

(Y n − Ŷs) goes to zero as k goes to infinity, we conclude by the dominated convergence

theorem, that

E
[

∫ τj

0

|Zn
s − Ẑj

s |2ds+
∫ τj

0

∫

E

|V n
s (e)− V̂ j

s (e)|2ν(de, ds)
]

−→n→∞ 0. (3.29)

Therefore by the uniqueness of the limit we have , Ẑj
s (w) = Ẑj+1

s (w) and V̂ j
s (w) = V̂ j+1

s (w),

P-a.s.

We then denote by Z and V their respective limits when j goes to infinity. Finally since τj = T ,

we obtain

lim
n→∞

E
[

∫ T

0

|Zn
s − Zs|2ds+

∫ T

0

∫

E

|V n
s (e)− Vs(e)|2ν(de, ds)

]

= 0. (3.30)

Hence, it remains to prove that the limit process Y is càdlàg.

|Ys − Y n
s | ≤

∫ τj

t

|(fs(Ys, Zs, Vs)− fn
s (Y

n
s , Zn

s , V
n
s )|ds+

∫ τj

t

|gs(Ys)− gns (Y
n
s )|dAn

s

+

∫ τj

t

|gs(Ys)1{s≥τn}|dAs + |
∫ τj

t

(Zs − Zm
s )dBs|+ |

∫ τj

t

∫

E

(Vs(e)− V m
s (e))µ̃(de, ds)|.

Taking the supremum over t and the conditional expectation yields to

E

[

sup
0≤t≤τj

|Ys − Y n
s |

]

≤ E

[

∫ τj

0

|(fs(Ys, Zs, Vs)− fn
s (Y

n
s , Zn

s , V
n
s )|ds

]

(3.31)

+E

[

∫ τj

0

|gs(Ys)1{s≥τn}|dAs

]

+ E
[

∫ τj

0

|gs(Ys)− gns (Y
n
s )|dAn

s

]

+E
[

sup
0≤t≤τj

|
∫ τj

t

(Zs − Zm
s )dBs|+ sup

0≤t≤τj

|
∫ τj

t

∫

E

(Vs(e)− Vm
s (e))µ̃(de, ds)|

]

.

Furthermore, the Burkholder-Davis-Gundy inequality allows us to deduce that

E
[

sup
0≤t≤τj

∫ τj

0

(Zs − Zm
s )dBs

]

≤ 2E
[

∫ τj

0

|Zs − Zn
s |2ds

]
1
2 . (3.32)

and

E
[

sup
0≤t≤τj

∫ τj

0

∫

E

(Vs(e)− V n
s (e))µ̃(de, ds)

]

≤ 2E
[

∫ τj

0

∫

E

|Vs(e)− V n
s (e)|2ν(de, ds)

]
1
2 . (3.33)

Reporting (3.32), (3.33) in the previous inequality yields to

E
[

sup
0≤t≤τj

|Yt − Y n
t |

]

→n 0.
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Step 4: Identification of the limit

In this part we aim to prove that quintuple (Y, Z, V,K−,K+) is the solution of the generalized

doubly reflected BSDEJ (E). To do so we first prove that

lim
n→∞

E
[

∫ τj

0

|fn
t (Y

n
t , Zn

t , U
n
t )− ft(Yt, Zt, Ut)|dt

]

= 0 and lim
n→∞

E
[

∫ τj

0

|gnt (Y n
t )− gt(Yt)|dt

]

= 0.

By Lemma 3.2, fn
s (y, z, v) converges to fs(y, z, v), ∀s ∈ [0, T ],P-a.s. Moreover, from the

càdlàg version of Dini’s theorem, fn
s (y, z, v) converges uniformly on every compact set. Thus,

fn
s (y, z, v)1[0,τj] converges uniformly to fs(y, z, v)1[0,τj] as n goes to infinity, dt⊗ dP⊗ dν a.s.

In fact as Zn
j

k and Un
j

k are unbounded, one can decompose the expression above in the following
way

E
[
∫ τj

0

|fn
t (Y

n
t , Z

n
t , U

n
t )− ft(Yt, Zt, Ut)|dt

]
= E[

∫ τj

0

|fn
t (Y

n
t , Z

n
t , U

n
t )− ft(Yt, Zt, Ut)|1

{|Z
n
j
k

s |+|U
n
j
k

s |≤C}

dt]

+ E
[
∫ τj

0

|fn
t (Y

n
t , Z

n
t , U

n
t )− ft(Yt, Zt, Ut)|1

{|Z
n
j
k

s |+|U
n
j
k

s |≥C}

dt
]

The first term in the right-hand side goes to zero as k goes to infinity since Y n
j

k is bounded

over [0, τj ] and

|fn
j

k

t (Y
n
j

k

t , Z
n
j

k

t , V
n
j

k

t )− ft(Yt, Zt, Vt)| ≤ ηt +
j

2
|Zn

j

k

t |2 + 1

δ
J(V

n
j

k

t ).

For the last one, using Markov inequality we have

E
[

1
{|Zn

j
k |+|V n

j
k |≥C }

]

≤ 2

C2
E
[

|Zn
j

k |2 + |V n
j

k |2t
]

.

Hence, using the dominated convergence theorem we obtain that f
n
j

k

t (Y
n
j

k

t , Z
n
j

k

t , U
n
j

k

t ) converge

to ft(Yt, Zt, Ut) in L
1(dt⊗ dP⊗ dν) for all t ≤ τj .

Using the same argument we can prove that E
[∫ τj

0 |gnt (Y n
t )− gt(Yt)|dt

]

goes to zero as n goes

to infinity.

Now, notice from the system (E2) that sup
n
E[Kn,+

τj
] < ∞. By Fatou lemma we deduce that

E
[

K+
τj

]

< ∞. Thus, we obtain that K+
T < ∞, P-a.s. We can show similarly that K−

T < ∞.

In order to finish the proof we need to show that the limit process Y satisfies the following

minimality condition
∫ T

0

(Ys− − Ls)dK
+
s =

∫ T

0

(Us − Ys−)dK
−
s = 0, 0 ≤ t ≤ T, P-a.s.

This is deduced from the following facts :

• From the system (4.1) we have
∫ T

0 (Y n
s − Ln

s )dK
n,+
s =

∫ T

0 (Un
s − Y n

s )dKn,−
s = 0, P-a.s.

• Kn,+ respectively Kn,− converges uniformly to K+, K−.

The only point remaining concerns the singularity of the measures dK+ and dK−. The result

follows from the singularity of dKn,− and dKn,+ with dK− = infn dK
n,−, dK+ = supn dK

n,+.

We can hence conclude that the 5-uplet (Y, Z, V,K+,K−) is a solution of the system (E1).

Proof of Theorem 3.1. As already explained, the existence is obtained directly from a logarith-

mic change of variable. Let Yt =
ln(Ȳt)
mt

+mt, Zt =
Z̄t

msȲt
and Vt =

1
mt

ln( V̄t

Ȳt
+1). Then applying

Itô’s formula, we obtain

Yt = ξ +

∫ T

t

fs(Ys, Zs, Vs)ds+

∫ T

t

dRs +

∫ T

t

gs(Ys)dAs +

∫ T

t

dK+
s −

∫ T

t

dK−
s

−
∫ T

t

ZsdBs −
∫ T

t

∫

E

Vs(e)µ̃(ds, de), 0 ≤ t ≤ T,P-a.s,.

In addition, since
∫ T

0 (Ȳs− − L̄s)dK̄
+
s =

∫ T

0 (Ȳs− − Ūs)dK̄
−
s = 0. we have

∫ T

0 (Ys− − Ls)dK
+
s =

∫ T

0 (Ys− − Us)dK
−
s = 0, P-a.s.
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4 Appendix

4.1 Existence and uniqueness result: The Lipschitz case.

In this section, we extend some of the results of Pardoux and Zhang [29] concerning generalized

BSDEs with no reflection to the case of doubly reflected BSDEJs. Let us note that the majority

of the following proofs follows straightforwardly from the original proofs of[29], [21] [30] and

[12] with some minor modifications due to jumps and reflection. However, we still provide the

proof of existence since it will be needed in the construction of stochastic quadratic BSDEJ’s

solution. To the best of our knowledge, they do not appear anywhere else in the literature.

We look for the solution of the following generalized doubly reflected BSDE with jumps,

(S)



















Yt = ξ +
∫ T

t
fs(Ys, Zs, Vs)ds+

∫ T

t
gs(Ys)dAs −

∫ T

t
ZsdBs −

∫ T

t

∫

E
Vs(e)µ̃(ds, de)

+
∫ T

t
dK+

s −
∫ T

t
dK−

s 0 ≤ t ≤ T, P-a.s.

Lt ≤ Yt ≤ Ut and
∫ T

0
(Ys− − Us)dK

+
s =

∫ T

0
(Ys− − Ls)dK

−
s = 0, 0 ≤ t ≤ T, P-a.s.

under the following assumption

(H1)



































(i) There exists a positive constant Lf such that ∀y, y′ ∈ R, z, z
′ ∈ R

d, u, u
′ ∈ L

0(B(E), ν),

|ft(y, z, u)− ft(y
′

, z
′

, u
′

)| ≤ Lf(|y − y′|+ |z − z′|+ |k − k
′ |t), ∀t ∈ [0, T ],P-a.s.

(ii) There exists a positive constant Lg such that ∀y, y′ ∈ R,

|gt(y)− gt(y
′)| ≤ Lg|y − y′|, and − 1 ≤ gt(y) ≤ 0, ∀t ∈ [0, T ].

(iii)∀R ∈ K, dRt ≥ 0 and 0 ≤ Lt ≤ Ut < 1, ∀t ∈ [0, T ],P-a.s.

Comparison result

Theorem 4.3. Let (Y 1, Z1, V 1,K1,−,K1,+) and (Y 2, Z2, V 2,K2,−,K2,+) be to two solutions

of (S) associated to (f i, ξi, Li, U i)i=1,2, such that, for (i = 1, 2) Assumption (H1) is satisfied.

Assume moreover that






















• ξ1 ≤ ξ2, P-a.s.

• L1
t ≤ L2

t and S1
t ≤ S2

t , ∀t ∈ [0, T ],P-a.s.

• f1
s (Y

2
s , Z

2
s , V

2
s ) ≤ f2

s (Y
2
s , Z

2
s , V

2
s ), ∀t ∈ [0, T ],P-a.s.

• g1s(Y
2
s ) ≤ g2s(Y

2
s ), ∀t ∈ [0, T ],P-a.s,

then we have Y 1
t ≤ Y 2

t , ∀t ∈ [0, T ],P-a.s.

Furthermore, if U1
t = U2

t , L1
t = L2

t , Lt ≤ Ut, ∀t ∈ [0, T ], P-a.s, then K
−,1
t ≤ K

−,2
t and

K
+,2
t ≤ K

+,1
t , ∀t ∈ [0, T ],P-a.s.

Proof. The proof follows the lines of the proof of the theorem (1.3) in [?] in the continuous

setting . For simplicity, we shall make the following notations.

(δYt, δZt, δVt) = (Y 1
t − Y 2

t , Z
1
t − Z2

t , V
1
t − V 2

t ), δξ = ξ1 − ξ2

δft = f1
t (Y

2
t , Z

2
t , V

2
t )− f2

t (Y
2
t , Z

2
t , V

2
t ) δgt = g1t (Y

2
t )− g2t (Y

2
t )

Let us define the following bounded processes

αs =
f2
s (Y

1
s , Z

1
s , V

1
s )− f2

s (Y
2
s , Z

1
s , V

1
s )

Y 1
s − Y 2

s

1{Y 1
s 6=Y 2

s }, α̃s =
g2s(Y

1
s )− g2s(Y

2
s )

Y 1
s − Y 2

s

1{Y 1
s 6=Y 2

s }.

βs =
f2
s (Y

2
s , Z

1
s , V

1
s )− f2

s (Y
2
s , Z

1
s , V

1
s )

‖Z1
s − Z2

s‖2
(Z1

s − Z2
s )1{Z1

s 6=Z2
s}
.
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Consider the following stopping times

τk = inf

{

t ≥ 0,

∫ t

0

(

|Z1
s |2 + |Z2

s |2
)

ds+

∫ t

0

∫

E

(

|V 1
s (e)|2 + |V 2

s (e)|2
)

ν(de, ds) ≥ k

}

∧ T.

We start by applying Itô formula to RtδYt = eαt(Y 1
t − Y 2

t )
+ where Rt = eαt .

Rt∧τk(δYt∧τk)
+ = Rτk(δYτk)

+ +

∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }RsδYs

[

f1
s (Y

1
s , Z

1
s , V

1
s )− f2

s (Y
2
s , Z

2
s , V

2
s )

]

ds

+

∫ τk

t∧τk

RsδYs[gs(Y
1
s )− gs(Y

2
s )]dAs −

∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }δYsRsδZsdBs

−
∫ τk

t∧τk

∫

E

RsδYsδVs(e)µ̃(de, ds)−
∫ τk

t∧τk

αsRsδYsds

+

∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }Rs(dK
+,1
s − dK−,1

s )−
∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }Rs(dK
+,2
s − dK−,2

s ).

Notice that when Y 1 ≥ Y 2 we have U2
t ≥ Y 2

t and Y 1
t ≥ L1

t , we obtain

∫ τk

t∧τk

1{Y 1

s−
≥Y 2

s−
}δYs(dK

+,1
s − dK+,2

s )−
∫ τk

t∧τk

1{Y 1

s−
≥Y 2

s−
}δYs(dK

−,1
s − dK−,2

s ) ≤ 0.

Hence, using Assumption (H1), we get

Rt∧τj (δYt∧τk)
+ ≤ Rτk(δYτk)

+ +

∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }
αsRs|δYs|ds

−

∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }
RsδZsdBs −

∫ τk

t∧τk

∫

E

1{Y 1
s ≥Y 2

s }
RsδVs(e))µ̃(de)ds+

∫ τk

t∧τk

Rsα̃s1{Y 1
s ≥Y 2

s }
|δYs|dAs

︸ ︷︷ ︸

M

+

∫ τk

t∧τk

1{Y 1
s ≥Y 2

s }
Rs|δZs|βsds+

∫ τk

t∧τk

∫

E

1{Y 1
s ≥Y 2

s }
Rsγs(e)δVs(e)νs(de, ds).

︸ ︷︷ ︸

M−<M,N>

(4.34)

Now we define the probability measure P̃ such that dP̃
dP

= E(N)T . Since −1+δK ≤ γ(U1
s , U

2
s ) ≤

CK and |βt(Z
1
s , Z

2
s )| ≤ C̄ since Z1 and Z2 are of BMO types.

Hence E(M) is a BMO-martingale with M =
∫ t

0 Rsα̃sδYsdAs+
∫ t

0 Rs(Z
1
s −Z2

s )dBs+
∫

.
Rs(V

1
s −

V 2
s )µ̃(de) and N =

∫ t

0 βsdBs +
∫ t

0

∫

E
γ(e)µ̃(de, ds). Using Girsanov theorem, we obtain that

M − 〈M,N〉 are locale P̃ -martingale.

Hence, taking the conditional expectation in (4.1) between t and τn when τk converges to T as

long as k goes to infinity yield

Rt(Y
1
t − Y 2

t )
+ ≤ E

P̃
[

Rτk(Y
1
τk

− Y 2
τk
)+|Ft

]

.

Sending k to ∞ we get δYt = Y 1
t − Y 2

t = 0, ∀t ∈ [0, T ], P-a.s.

• Let as now prove that

K
−,1
t ≤ K

−,2
t , K

+,2
t ≤ K

+,1
t , ∀t ∈ [0, T ], P-a.s.

Exactly as (Theorem (1.3), [21]), we define the following family of stopping times τ

τ = inf
{

t ≥ 0, K
−,1
t ≥ K

−,2
t

}

∧ T.

Suppose that P(τ < T ) > 0 . Hence, K−,1
τ = K−,2

τ on {τ < T } . Moreover

Y 1
τ = Y 2

τ = Uτ on {τ < T } .
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if Y 1
τ(w)(w) 6= Uτ(w)(w) then Yt(w) < Ut(w) for all t ∈]τ(w) − p(w), τ + p(w)[ where p(w) is a

positive real number.

Thus, it follows that for all t ∈]τ(w) − p(w), τ + p(w)[, K−,1
t(w)(w) = K

−,2
t(w)(w) = Y 2

t(w)(w) which

contradicts the definition of the stopping family τ(w). Hence

Y 1
t(w)(w) = Ut(w)(w) = Y 2

t(w)(w).

In the other hand, we consider the family of stopping times δ = inf
{

t ≥ τ ;Y 1
t = Lt

}

∧ T such
that {τ < T } ⊂ {δ < T }. Notice that
- if τw < T then Y 1

τ(w) = Uτ(w)(w).

- if δ(w) = τ(w) then Yδ(w)(w) = Lδ(w) = Ut(w) = Lt(w)(w) which contradicts the fact that the
process Ut remain above the process Lt . We can deduce that P [δ < τ ] > 0 .
This implies that K

+,1
δ = K

+,1
t and K

+,2
δ = K

+,2
t , ∀t ∈ [τ, δ], P-a.s, since Y 1 ≤ Y 2 and K+

(resp. K−) moves when Y 1 (resp. Y 2 reaches the lower obstacles L. Henceforth, we have

Y
1
t = Y

1
δ +

∫ δ

t

f
1
s (Y

1
s , Z

1
s , V

1
s )ds+

∫ T

t

g
1
s(Y

1
s )dAs −K

1,−
δ +K

1,+
t −

∫ δ

t

Z
1
sdBs −

∫ δ

t

∫

E

V
1
s (e)µ̃(de, ds).

Y
2
t = Y

2
δ +

∫ δ

t

f
2
s (Y

2
s , Z

2
s , V

2
s )ds+

∫ T

t

g
2
s(Y

2
s )dAs −K

2,−
δ +K

2,+
t −

∫ δ

t

Z
2
sdBs −

∫ δ

t

∫

E

V
2
s (e)µ̃(de, ds).

Now in order to conclude, we define (Ȳ 1
t , Z̄

1
t , V̄

1
t , K̄

1
t )t≤δ (resp. (Ȳ

2
t , Z̄

2
t , V̄

2
t , K̄

2
t )t≤δ) solution of

the reflected BSDE with jumps in the upper obstacle L associated to (f̄1ds+ ḡ1dAs, Y
1
δ ) (resp.

(f2ds+ ḡ2dAs, Y
2
δ )). Then by the comparison theorem given in [30], we have

Ȳ 1
t ≤ Ȳ 2

t , and K̄
1,−
t − K̄1,−

s ≥ K̄
2,+
t − K̄2,+

s , ∀t ∈ [s, δ], P-a.s.

Using the growth property of f̄1 (resp. ḡ1) and f̄2(resp. ḡ1), we obtain that Ȳ 1
t = Y 1

t , Ȳ
2
t = Y 2

t ,

Z̄1
t = Z1

t , Z̄
2
t = Z2

t , V̄
1
t = V 1

t and V̄ 2
t = V 2

t , ∀t ∈ [τ, δ], P-a.s. Hence, we immediately get

K̄1
δ − K̄1

t = K1
δ −K1

t , K̄2
δ − K̄2

t = K2
δ −K2

t , ∀t ∈ [τ, δ], P-a.s,

which contradicts the definition of the stopping time τ . Therefore, P [τ < T ] which implies that

K−,1 ≤ K−,2, P-a.s. To conclude the proof, we can show similarly thatK+,2 ≤ K+,1, P-a.s..

Theorem 4.4. Under Assumption (H1), there exists a unique solution (Y, Z, V,K+,K−) to

the generalized doubly reflected backward stochastic differential equation with jumps associated

to (fds+ gdAs, ξ). Moreover, it satisfies

E
[

sup
t≤T

|Yt|2 +
∫ T

0

|Zt|2dt+
∫ T

0

∫

E

|Vt(e)|2ν(de)dt+ |K+
T |2 + |K−

T |2
]

< +∞. (4.35)

Proof. The uniqueness is a simple consequence of the above comparison theorem. Let us prove

the existence of the solution. We consider the following penalized generalized BSDEJ: for any

n,m ∈ N
∗

Y
n,m
t = ξ +

∫ T

t

fs(Y
n,m
s , Zn,m

s , V n,m
s )ds+

∫ T

t

gs(Y
n,m
s )dAs +m

∫ T

t

(Y n,m
s − Ls)

−ds

− n

∫

t

(TUs − Y n,m
s )−ds−

∫ T

t

Zn,m
s dWs −

∫ T

t

∫

E

V n,m
s µ̃(de, ds), ∀t ∈ [0, T ],P-a.s,

(4.36)

were fn,m(s, y, z, v) = f(s, y, z, v) +m(y − Ls)
− − n(Us − y)−. Referring to the results of [23],

we obtain existence and uniqueness for a solution (Y n,m, Zn,m, V n,m) to the BSDEs given by
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(fn,m, ξ). We set Kn,m+
t = m

∫ t

0
(Y n,m

s−
− Ls)

−ds and K
n,m−
t = n

∫ t

0
(Us − Y

n,m

s−
)−ds.

Step1. we aim to prove the following estimate. There exists a constant C such that

sup
n,m∈N∗

E
[
sup
t≤T

|Y n,m
t |2 +

∫ T

0

|Zn,m
t |2dt+

∫ T

0

∫

E

|V n,m
t (e)|2ν(de, dt) + |Kn,m,+

T |2 + |Kn,m,−
T |2

]
< +∞.

(4.37)

As usual we start by applying Itô formula to eλAt |Y n,m
t |2, relying on the Lipschitz property of

f and g and using Young’s inequality we obtain

eλAt |Y n,m
t |2 ≤ eλAT |Y n,m

T |2 −
∫ T

t

λeλAs |Y n,m
s |2dAs +

∫ T

t

eλAs [gs(0)dAs + fs(0, 0, 0)ds]

− 1

2

∫ T

t

eλAs [|Zn,m
s |2 + |V n,m

s |2s]ds+ (1 + 6L2
f)

∫ T

t

eλAs |Y n,m
s |2ds

+ (1 + 2Lg)

∫ T

t

eλAs |Y n,m
s |2dAs + 2

∫ T

t

eλAsY n,m
s dKn,m+

s − 2

∫ T

t

eλAsY n,m
s dKn,m−

s

− 2

∫ T

t

eλAsY n,m
s [Zn,m

s dBs +

∫

E

V n,m
s (e)µ̃(de, ds)].

From the Skorokhod condition and Young inequality we have

2

∫ T

t

YsdK
−
s =

∫ T

t

LsdK
−
s ≤ 1

ǫ
sup

0≤s≤T

|Ls|2 + ǫ|K−
T −K−

0 |2. (4.38)

2

∫ T

t

YsdK
+
s =

∫ T

t

UsdK
+
s ≤ 1

ǫ̃
sup

0≤s≤T

|Us|2 + ǫ̃|K+
T −K+

0 |2. (4.39)

Therefore taking the conditional expectation we get

E[eλAt |Y n,m
t |2 + 1

2

∫ T

t

eλAs [|Zn,m
s |2 + |V n,m

s |2s]ds]

≤ E[eλAT |Y n,m
T |2] +

∫ T

t

eλAs [gs(0)dAs + fs(0, 0, 0)ds] + (−λ+ 1 + 2Lg)E[

∫ T

t

eλAs |Y n,m
s |2dAs]

+ (1 + 6L2
f)E[

∫ T

t

eλAs |Y n,m
s |2ds] + 1

ǫ
(E sup

0≤s≤T

|Ls|2 + E[ sup
0≤s≤T

|Us|2]) + ǫ(E[|K−
T |2 + E|K+

T |2])

− 2E[

∫ T

t

eλAsY n,m
s [Zn,m

s dBs +

∫

E

V n,m
s (e)µ̃(de, ds)]. (4.40)

In the other hand, we consider a sequence of stopping time τn such that

τn+1 = inf {t ≥ τn, Y
n,m
t ≤ Lt} ∧ T

τn+2 = inf {t ≥ τn+1, Y
n,m
t ≥ Ut} ∧ T.

Using the same argument as in [18] or [22] we can rewrite the penalized generalized BSDEJ as

follow

eλAτnY n,m
τn

= eλAτn+1Y n,m
τn+1

+

∫ τn+1

τn

eλAs [fs(Y
n,m
s , Zn,m

s , V n,m
s )ds+ gs(Y

n,m
s )dAs] (4.41)

− n

∫ τn+1

τn

eλAs(Us − Y n,m
s )−ds−

∫ τn+1

τn

eλAsZn,m
s dWs −

∫ τn+1

τn

∫

E

eλAsV n,m
s µ̃(de, ds).

Relying on assumption (H1) we get

Y n,m
τn

≥ Sτn on {τn < T } ; Y n,m
τn

= Sτn on {τn = T } .
Y n,m
τn+1

≤ Sτn+1
on {τn+1 < T } ; Y n,m

τn+1
= Sτn+1

on {τn+1 = T } .
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Hence from (4.41) with the help of the Lipschitz assumption of f and g we derive the following

estimate

n

∫ τn+1

τn

eλAs(Us − Y n,m
s )−ds ≤ −

∫ τn+1

τn

eλAs(αs − Zn,m
s )dWs −

∫ τn+1

τn

∫

E

eλAsV n,m
s µ̃(de, ds)

+

∫ τn+1

τn

eλAs
[

fs(0, 0, 0) + Lf(|Y n,m
s |+ |Zn,m

s |+ |V n,m
s |s)

]

ds

+

∫ τn+1

τn

(

eλAs
[

gs(0) + Lg|Y n,m
s |dAs

]

+ eλAsdṼ +
s − eλAsdṼ −

s

)

.

Hence, since τn is stationary sequence [18] we obtain from assumption (H1)

E
[

n

∫ T

t

eλAs(Us − Y n,m
s )−ds

]2 ≤ C{1 + E[

∫ T

t

[eλAs |Y n,m
s |2ds] + E[

∫ T

t

eλAs |Zn,m
s |2ds

+ E[

∫ T

t

eλAs |V n,m
s |2s]ds] + E[

∫ T

t

eλAs |Y n,m
s |2dAs]}. (4.42)

Similarly we obtain

E
[

m

∫ T

t

(Y n,m
s − Ls)

−ds
]2 ≤ C{1 + E[

∫ T

t

[eλAs |Y n,m
s |2ds] + E[

∫ T

t

eλAs |Zn,m
s |2ds

+ E[

∫ T

t

eλAs |V n,m
s |2s]ds] + E[

∫ T

t

eλAs |Y n,m
s |2dAs]}. (4.43)

where C is a generic constant. Plugging (4.42) and (4.43) in (4.40) we obtain

E[eλAt |Y n,m
t |2 + 1

2

∫ T

t

eλAs [|Zn,m
s |2 +

∫

E

|V n,m
s (e)|2ν(de)]ds] (4.44)

≤ E[eλAT |Y n,m
T |2 +

∫ T

t

eλAs [gs(0)dAs + fs(0, 0, 0)ds]] +
1

ǫ
(E[ sup

0≤s≤T

|Ls|2] + E[ sup
0≤s≤T

|Us|2])

+ E[

∫ T

t

(−λ+ 1 + 2Lg)e
λAs |Y n,m

s |2dAs] + (1 + 6L2
f)E[

∫ T

t

eλAs |Y n,m
s |2ds]

+ 2ǫC
[

1 + E[

∫ T

t

[eλAs |Y n,m
s |2ds] + E[

∫ T

t

eλAs(|Zn,m
s |2 + |V n,m

s |2s)ds] + E[

∫ T

t

eλAs |Y n,m
s |2dAs]

]

Hence, using Gronwall inequality we get

sup
0≤t≤T

E|Y n,m
t |2 + E

∫ T

0

|Zs|2ds+ E

∫ T

0

∫

E

|Vs(e)|2ν(de, ds) ≤ C,

which implies the desired result.

Step 2: There exists a constant C such that for any n ∈ N
∗ we have E

[

supt |Y n
t |2

]

≤ C and

there exists an Ft-adapted process (Yt)t such that lim
n→+∞

E
[

∫ T

0

|Y n
t − Yt|2dt

]

= 0.

We know that all the requirements of existence result of [30] are fullfilled. Thus we know that

for fixed m ∈ N Y n,m, Zn,m and V n,m converge respectively to Y n , Zn and V n as m goes

to infinity. Moreover the limit process (Y n, Zn, V n) is the unique solution of the generalized

reflected BSDEJs associated to (ξ, fn, g,Kn+) where fn(y, z, v) = f(y, z, v) − n(Us − y)−.

Moreover the limit process inherits the property (4.37).

Notice that for all n ∈ N and ∀(s, y, z, v)

fn
s (y, z, v) ≤ fn+1

s (y, z, v).
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Therefore by comparison Theorem [21] we have, Y n
t ≤ Y n+1

t , ∀t ∈ [0, T ], P-a.s.

Hence, Y n
t ր Yt P-a.s. Now from the property (4.37) and Fatou’s lemma we deduce that

E
[

|Yt|2
]

≤ C and then by Dominated convergence theorem we obtain that

lim
n
E
[

∫ T

0

|Y n
t − Yt|2

]

= 0.

Step3 In this step, we aim to prove lim
n→+∞

[

sup
0≤t≤T

|(Y n
t − Ut)

+|2
]

= 0.

Let (Ȳ n
t , Z̄n

t , V̄
n
t , K̄n

t ) be the solution of the following reflected generalized BSDE with jumps























Ȳ n
t = ξ +

∫ T

t
[fs(Ȳ

n
s , Z̄n

s , V̄
n
s ) + n(Us − Y n

s )]ds+
∫ T

t
gs(Ȳ

n
s )dAs + K̄n+

T − K̄n−
t

−
∫ T

t
Z̄n
s dWs −

∫ T

t

∫

E
V̄ n
s (e)µ̃(de, ds), ∀t ∈ [0, T ],P-a.s,

Ȳ n
t ≥ Lt,

∫ T

0
(Ȳ n

t − Lt)dK̄
n+
t = 0, P-a.s.

(4.45)

In addition, we consider (Ȳ n,m
t , Z̄

n,m
t , V̄

n,m
t ) the solution of the penalized generalized BSDEJ

associated to the system (4.45). By comparison, since

f
n,m
t (y, z, v) ≤ ft(y, z, v) + n(Ut − y) +m(y − Lt)

−.

We have, for any n,m ∈ N
∗, Y n,m

t ≤ Ȳ
n,m
t , P-a.s. Letting m goes to infinity we obtain that

Y n
t ≤ Ȳ n

t . Now, applying Itô’s formula to Ȳ n
t e−nt, yield to

Ȳ n
τ = ess sup

τ
Eτ

[

e−n(T−t)ξ1{τ=T} + e−n(τ−t)Lτ1{τ<T}

+

∫ T

τ

e−n(s−t)[fs(Ȳ
n
s , Z̄n

s , V̄
n
s )ds+ gs(Ȳ

n
s )dAs] + n

∫ T

τ

e−n(s−t)Usds
]

, (4.46)

where τ is an Ft-family of stopping times τ ≤ T . Now since U is continuous then

e−n(T−t)ξ1{τ=T} + n

∫ T

τ

e−n(s−t)Usds
n→∞−→ ξ1{τ=T} + Uτ1{τ≤T} P-a.s and in H

2.

In addition, we have

Eτ [

∫ T

τ

e−n(s−τ |fs(Ȳ n
s , Z̄n

s , V̄
n
s )|ds] ≤ 1√

2n
E[

∫ T

0

|fs(Ȳ n
s , Z̄n

s , V̄
n
s )|2ds] 12 −→ 0. (4.47)

Eτ

[

∫ T

τ

e−n(s−τ |gs(Ȳ n
s )|dAs

]

≤ 1√
2n

E[

∫ T

0

|gs(Ȳ n
s )|2dAs]

1
2 −→ 0. (4.48)

Besides, since we have that Lt ≤ St ≤ Ut and

Eτ

[

∫ ν

τ

e−n(s−τ (dV +
s − dV −

s )
]

≤ 1√
2n

E[|V +
T |2 + |V +

T |2] −→ 0. (4.49)

where ν is a stopping time with τ ≤ ν ≤ T . Combining (4.47), (4.48) and (4.49), we finally

obtain

Ȳτ ≤ Ȳ n
τ

n−→ ξ1{τ=T} + U{τ≤T} in H
2. (4.50)

Henceforth, we deduce from (Theorem 86, [8]) that ∀t ∈ [0, T ] Yt ≤ Ut P-a.s. Consequently,

(Y n
t −Ut)

− ց 0, ∀t ∈ [0, T ], P-a.s. Then, from Dini’s theorem [8], we deduce that supt(Y
n
t −

Ut)
− ց 0.
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Therefore, since for any n ∈ N, (Y n
t −Ut) ≤ Y 0

t −St and (Y n−Ut)
+ ≤ |Y 0+ |Ut|, by dominated

convergence theorem, we obtain that

lim
n→∞

E
[

sup
0≤t≤T

|(Y n
t − Ut)

+|2
]

= 0, a.s.

Step 4 In this step, we aim to prove that lim
n→∞

E
[

sup
0≤t≤T

|Y n
t − Yt|2

]

= 0 and there exists Z , V

K+ and K− such that

lim
n

E
[

∫ T

0

|Zt|2dt+
∫ T

0

∫

E

|Vt(e)|2ν(de, dt) + |K+
T |2 + |K−

T |2
]

= 0 (4.51)

Let n, p ∈ N and consider the following processes δYt = Y n
t − Y

p
t , δZt = Zn

t − Z
p
t and δVt =

V n
t − V

p
t . Applying Itô’s formula to |∆Y |2 between t and T

|δYt|2 +
∫ T

t

|δZs|2ds+
∫ T

t

∫

E

|δVs(e)|2ν(de, ds) = |δYT |2 + 2

∫ T

t

δYs[gs(Y
n
s )− gs(Y

p
s )]dAs

+ 2

∫ T

t

∫

E

δYs [fs(Y
n
s , Zn

s , V
n
s )− fs(Y

p
s , Z

p
s , V

p
s )] ds− 2

∫ T

t

∫

E

δYsδVs(e)µ̃(de, ds)

− 2

∫ T

t

δYsδZsdBs + 2

∫ T

t

∫

E

δYs(dK
+,n
s − dK+,p

s )− 2

∫ T

t

δYs(dK
−,n
s − dK−,p

s ).

(4.52)

Since n ≤ p we have 2
∫ T

t

∫

E
δYt(dK

+,n
s − dK+,p

s ) ≤ 0 and

2

∫ T

t

∫

E

δYs(dK
−,n
s − dK−,p

s ) = 2

∫ T

t

∫

E

δYsdK
−,n
s − 2

∫ T

t

∫

E

δYtdK
−,p
s

≤ 2 sup
0≤t≤T

|Y p
t − Ut|K−,n

T + 2 sup
0≤t≤T

|Ut − Y n
t |K−,p

T .

In the other hand, from the growth assumption of g we have

2

∫ T

t

δYs[gs(Y
n
s )− gs(Y

p
s )]dAs ≤ 2C

∫ T

t

|δYs|2dAs.

Using step 2 and 3, we can deduce that

E[|δYt|2]−2LgE[

∫ T

t

|δYs|2dAs] + 2E[

∫ T

t

|δZs|2ds+
∫ T

t

∫

E

|δVs(e)|2ν(de, ds)]

≤ CE
[

∫ T

0

|δYs|2ds+ 2 sup
0≤t≤T

|Y p
t − Ut|K−,n

T + 2 sup
0≤t≤T

|Ut − Y n
t |K−,p

T

] n,p−→ 0.

Therefore (Zn) and (V n) are a Cauchy sequences in a complete spaces. Consequently there

exits two processes Z and V such that (Zn) and (V n) converge respectively to Z and V .

Since E[
∫ T

0 |δYs|2dAs] ≤ 2Lg

√
T
(

E[

∫ T

0

|δYs|2ds]
)

1
2 , using BDG inequality we can rewrite (4.52)

as follows,

E[ sup
0≤t≤T

|δYt|2] ≤ 2Lg

√
T
(

E[

∫ T

0

|δYs|2ds
)

1
2

+ CE
[

∫ T

0

|δYs|2ds+ 2 sup
0≤t≤T

|Y p
t − Ut|K−,n

T + 2 sup
0≤t≤T

|Ut − Y n
t |K−,p

T

]

.
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Therefore, lim
p→+∞

E
[

sup
0≤t≤T

|Y n
t − Y

p
t |2

]

= 0 and then lim
n→+∞

E
[

sup
0≤t≤T

|Y n
t − Y

p
t |2

]

= 0.

Moreover, since Kn+ is an increasing sequence then Kn,+ converges to the process K+. In

addition, E
[

K
n,+
T |2

]

≤ C we deduce that E
[

|K+
T |2

]

< +∞.

Besides, for any n ∈ N we have Lt ≤ Y n
t ≤ Yt ≤ Ut and lim

n
E[ sup

0≤t≤T

(Y n
t − Ut)

+]2 = 0.

Then Lt ≤ Yt ≤ Ut. In the other hand,
∫ T

0
(Y n

t − Lt)dK
n,+
t = 0 and lim

n

∫ T

0
(Y n

t − Lt)dK
n,+
t =

∫ T

0 (Yt − Lt)dK
+
t . Thus the Skorohod condition is satisfied and the proof of the Theorem (4.4)

is complete.
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flected solutions of backward sde’s, and related obstacle problems for pde’s. the Annals of

Probability (1997), 702–737.

[12] El Otmani, M., and Mrhardy, N. Generalized bsde with two reflecting barriers.

Random Operators and Stochastic Equations 16, 4 (2008), 357–382.

[13] Essaky, E. Reflected backward stochastic differential equation with jumps and rcll ob-

stacle. Bulletin des sciences mathematiques 132, 8 (2008), 690–710.

25



[14] Essaky, E., and Hassani, M. Generalized bsde with 2-reflecting barriers and stochastic

quadratic growth. Journal of Differential Equations 254, 3 (2013), 1500–1528.

[15] Fujii, M., and Takahashi, A. Quadratic–exponential growth bsdes with jumps and

their malliavin’s differentiability. Stochastic Processes and their Applications 128, 6 (2018),

2083–2130.

[16] Hamadene, S., L. J., and Matoussi, A. Double barrier backward sdes with continuous

coefficient. Pitman Research Notes in Mathematics Series (1997), 161–176.

[17] Hamadene, S., and Hassani, M. Bsdes with two reflecting barriers: the general result.

Probability Theory and Related Fields 132, 2 (2005), 237–264.

[18] Hamadene, S., and Hassani, M. Bsdes with two reflecting barriers: the general result.

Probability Theory and Related Fields 132, 2 (2005), 237–264.

[19] Hamadène, S., Hassani, M., and Ouknine, Y. Backward sdes with two rcll reflecting

barriers without mokobodski’s hypothesis. Bulletin des sciences mathematiques 134, 8

(2010), 874–899.

[20] Hamadene, S., and Hdhiri, I. Backward stochastic differential equations with two dis-

tinct reflecting barriers and quadratic growth generator. International Journal of Stochastic

Analysis 2006 (2006).

[21] Hamadène, S., and Ouknine, Y. Reflected backward stochastic differential equation

with jumps and random obstacle. Electronic Journal of Probability 8 (2003).

[22] Hamadène, S., and Wang, H. Bsdes with two rcll reflecting obstacles driven by brownian

motion and poisson measure and a related mixed zero-sum game. Stochastic Processes and

their Applications 119, 9 (2009), 2881–2912.

[23] Hu, L., and Ren, Y. Stochastic PDIEs with nonlinear Neumann boundary conditions

and generalized backward doubly stochastic differential equations driven by Lévy processes.

Journal of Computational and Applied Mathematics 229, 1 (2009), 230–239.

[24] Kobylanski, M. Backward stochastic differential equations and partial differential equa-

tions with quadratic growth. Annals of Probability (2000), 558–602.

[25] Kobylanski, M., Lepeltier, J., Quenez, M., and Torres, S. Reflected bsde with su-

perlinear quadratic coefficient. Probability and Mathematical Statistics-Wroclaw University

22, 1 (2002), 51–83.

[26] Lepeltier, J., and San Martin, J. Backward stochastic differential equations with

continuous coefficient. Statistics & Probability Letters 32, 4 (1997), 425–430.

[27] Matoussi, A., and Salhi, R. Exponential quadratic bsdes with infinite activity jumps.

arXiv preprint arXiv:1904.08666 (2019).

[28] Pardoux, E., and Peng, S. Adapted solution of a backward stochastic differential

equation. Systems & Control Letters 14, 1 (1990), 55–61.
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