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Generalized BSDE with jumps and stochastic quadratic growth *
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In this paper, we study a doubly Reflected Backward Stochastic Differential Equation with Jumps (DRBSDEs in short) when the driver have general quadratic growth. We extend the result of Essaky and Hassani [14] to the jump setting and a generator with general exponential quadratic growth.

Introduction

Motivation Our aim interest is to study backward stochastic differential equation with jumps (BSDEJs) and unbounded terminal condition where the driver has stochastic quadratic growth. We were inspired by the approach developed by Bahlali et al [START_REF] Bahlali | Quadratic bsdes with l 2 -terminal krylov's inequality, itô-krylov's formula and some existence results[END_REF]. This approach is fundamentally different and consists in deriving the existence of the solution via quadratic BSDEs with two reflecting barriers. More precisely, the upper and lower bound in the structure condition of the driver will play the role of obstacles processes. In this regard, there is no longer any need to impose stronger integrability condition on the terminal condition ξ. The solution is then obtained by proving that the constrained processes are equal to zero. Unfortunately, as far as we know, there is no existing result on this subject. Hence, as a first step, we concerns our self to the well-posedness of doubly reflected BSDEJ's where the driver has a general stochastic growth and unbounded terminal condition. Literature review on doubly reflected BSDEs The notion of doubly reflected BSDEs (DRBSDE in short) were first introduced and studied by Cvitanic and Karatzas [START_REF] Cvitanic | Backward stochastic differential equations with reflection and dynkin games[END_REF] in the Brownian setting. However the theory of BSDEs with constrains started with the seminal paper of El Karoui, Kapudjian, Pardoux, Peng and Quenez [START_REF] El Karoui | Reflected solutions of backward sde's, and related obstacle problems for pde's[END_REF] as the generalization of the work of Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]. Intuitively, the solution of these equation are constrained to stay in the region surrounded by two given obstacles. This is achieved via two processes K -and K + under a minimality condition that is the process K + and K -only act when Y reaches the obstacle L and U .

Several works have been obtained in this subject since they are encountered in various fields such as financial problem and mixed game problem. In [START_REF] Hamadene | Double barrier backward sdes with continuous coefficient[END_REF], Hamadene Lepeltier and Matoussi investigated the existence of solution for DRBSDE when the driver has linear growth by assuming regularity condition on the one barrier and also the existence of a positive semimartingale between the barriers constraints. Later Hamadene and Hassani [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF] generalize the result of [START_REF] Hamadene | Double barrier backward sdes with continuous coefficient[END_REF] and proved the existence of the solution when the barriers are completely separated. Under the Mokobodski condition, Bahlali et al. [START_REF] Bahlali | Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient[END_REF] treated the case where the driver has linear growth in y and quadratic in z. This result was followed by Hdhiri and Hamadene [START_REF] Hamadene | Backward stochastic differential equations with two distinct reflecting barriers and quadratic growth generator[END_REF], they establish an existence result by assuming that the barriers are completely separated. Essaki and Hassani [START_REF] Essaky | Generalized bsde with 2-reflecting barriers and stochastic quadratic growth[END_REF] proved existence and uniqueness of the solution of doubly reflected BSDE under more general assumption on the data by considering a driver with quadratic stochastic growth i.e |f (t, y, z)| ≤ ζ s (w) + Cs(w) 2 |z| 2 without imposing any integrability condition on the terminal condition. This result was generalized later by Essaky, Hassani and Ouknine to the case of RCLL obstacles.

More recently, Baadi and Ouknine [START_REF] Baadi | Reflected bsdes with two completely separated barriers and regulated trajectories in general filtration[END_REF] have studied doubly reflecting barrier BSDEs when the noise is driven by a Brownian motion. They showed existence and uniqueness of the solution when the reflecting barrier don't satisfy any regularity assumption. Several authors have been regarding to extend these results to the discontinuous setting. Crepey and Matoussi [START_REF] Crépey | Reflected and doubly reflected bsdes with jumps: a priori estimates and comparison[END_REF] considered the case when the driver f is Lipschitz the Obstacles satisfy the Mokobodski's condition. When the obstacles are completely separated, Hamadene and Hassani [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF] showed that the DRBSDE driven by a Brownian motion and a Poisson noise has a unique solution under weaker integrability assumption. Let us mention that, in their study the proces Y has only inaccessible jumps. This result was generalized later by Hamadene and Wang [START_REF] Hamadène | Bsdes with two rcll reflecting obstacles driven by brownian motion and poisson measure and a related mixed zero-sum game[END_REF]. Doubly reflected BSDE is further developed to different framework, such work includes that of [START_REF] Hamadène | Backward sdes with two rcll reflecting barriers without mokobodski's hypothesis[END_REF][START_REF] Choukroun | Reflected bsdes with nonpositive jumps, and controller-and-stopper games[END_REF][START_REF] Dumitrescu | Generalized dynkin games and doubly reflected bsdes with jumps[END_REF][START_REF] Dumitrescu | Reflected scheme for doubly reflected bsdes with jumps and rcll obstacles[END_REF] among others. Main contributions The main objective of this paper is to deal with generalized doubly reflected BSDEs when the noise comes from a Brownian motion and an independent jump random measure.

           Y t = ξ + T t f (Y s , Z s , V s )ds + dR s + T t g(s, Y s )dA s - T t Z s dB s -
T t E V s (e)μ(ds, de)

+ T t dK + s - T t dK - s , P-a.s. L t ≤ Y t ≤ U t and T 0 (Y s --U s )dK + s = T 0 (Y s --L s )dK - s = 0, P-a.s.
where t ∈ [0, T ], B is a standard Brownian motion, μ is a random jump measure, A is a non decreasing process and R is positive measure. In our study we consider the case when the driver has stochastic quadratic growth, unbounded terminal condition and that the two barriers are completely separated. We extend the result of [START_REF] Essaky | Generalized bsde with 2-reflecting barriers and stochastic quadratic growth[END_REF] and show existence and uniqueness of the solution.

The main motivation of our work is that the assumptions on the driver that we consider here are much involved in finance. If we look for the simplest example of a pricing problem in a Black and Scholes market problem we can see that the fair price of an European options is given by the solution of a linear BSDE where f (t, y, z) := r(t)y t + θ(t)z t , where θ is the risk premium.

Unfortunately, the interest rate and the risk premium are in general not bounded in the market. Indeed, we want to investigated the solvability of generalized DRBSDE when the noise is governed by a Brownian motion and random jump measure. Similar to [START_REF] Essaky | Generalized bsde with 2-reflecting barriers and stochastic quadratic growth[END_REF], our approach combines exponential transformation and monotone approximation by mean of sup convolution. The first transformation enables us to obtain the doubly reflected BSDEJs with bounded terminal condition and a driver with uniform structure condition. However the exponential transformation as it has been used in Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] cannot be applied singularly since we can not get a Lipschitz one.

We are thus led naturally to a trancature procedure. We construct an approximation sequence of globally Lipschitz doubly reflected BSDEJs by mean of sup convolution for which the solution exists. The solution of the DRBSDE with jumps is constructed by proving a monotone limit theorem and achieving the convergence of the Lipschitz DRBSDEs constructed by the above trucation procedure. Then we show that the limit of those solution indeed solves the original DRBSDEJ. As a final step we comeback to our initial system and prove that admit a solution using a logarithmic transformation. The paper is organized as follow. In section 2, we describe our setting and we recall briefly some preliminary notations. In section 3 we give a precise definition of the solution of BRBSDEJ and show by an exponential transformation how they are connected to another general doubly reflected BSDEJ with more tractable coefficients. Then, we prove that these equations admit a unique solution. Last section contains technical results. Furthermore, the special case of generalized DRBSDEjs when the driver is Lipschitz is established .

Framework

We consider a filtered probability space (Ω, F , F, P) on which the filtration F = (F t ) 0<t<T satisfies the usual conditions of completeness and right continuity and that F T = F and F 0 be trivial. Due to these usual conditions, we can take all semimartingales to have right continuous paths with left limits. On this stochastic basis, let W a d-dimensional Brownian motion and µ(ω, dt, de) an independent integer valued random measure defined on Finally, we will denote by μ the compensated measure of µ as μ(ω, dt, de) = µ(ω, dt, de)ν(ω, dt, de).

([0, T ] × E, B([0, T ]) ⊗ B(E)),
(2.2)

Let f be a P ⊗ E-measurable function, the integral with respect to the random measure and the compensator are defined as follow

(f ⋆ µ) t = t 0 E f (s, e)µ(ds, de) , (f ⋆ µ) t = t 0 E f (s, e)ν(ds, de).
In particular, the stochastic integral U ⋆ μ = U s (e)μ(ds, de) is a local square integrable martingale, for any predictable locally integrable process U . We will assume that W and μ satisfies the following weak representation property with respect to (F t ) 0≤t≤T

M = M 0 + . 0 Z s .dW s + . 0 E
U s (e)μ(de, ds).

We will now introduce the specific spaces corresponding to our framework.

• L 2,d is the spaces of R d -valued and P-measurable processes such that

Z 2 L 2 := T 0 |Z s | 2 ds < +∞, P-a.s.
• L 2,d ν is the space of P-measurable processes such that

U 2 L 2 ν := T 0 E
|U s (e)| 2 ν(de, ds) < +∞, P-a.s.

• K the space of P-measurable continuous non decreasing process such that K 0 = 0.

• D (respectively D c ) the space of R-valued P-measurable càdlàg processes resp. (∆Y t = 0).

We also introduce the following classical spaces • H 2 the set of all P-measurable processes Z such that E[ T 0 |Z s | 2 ds] < +∞, P-a.s.

• For u, ū in the space L 0 (B(E), ν) of all B(E)-measurable functions with the topology of convergence in measure, we define

|u -ū| t = ( E |u -ū| 2 ζ(t, e)λ(de)) 1 2 .
• H 2 ν the set of all P-measurable processes Z such that

E[ T 0 E
|V s (e)| 2 ν(de, ds)] < +∞, P-a.s.

3 Generalized Doubly reflected BSDE with jumps

Formulation

In this section, we aim to prove existence of solution of generalized doubly reflected BSDE with jumps given by (f.ds + gdA s + dR s , ξ, L, U ) under weaker assumption. Let us first introduce the following definition of generalized doubly reflected backward stochastic differential equation with jumps .

We are given the following objects:

ξ an F T -measurable real valued random variable.

-

A function f : Ω × [0, T ] × R 1+d × L 0 (B(E), ν) → R such that f is P ⊗ B(R 1+d ) ⊗ B(L 0 (B(E), ν))-measurable. -A function g : Ω × [0, T ] × R → R such that g is P ⊗ B(R)-measurable . -Two continuous R-valued processes L t and U t such that L t ≤ U t satisfying L t ≤ ξ ≤ U t .
-A positive random measure dR and a non-decreasing continuous process A.

Definition 3.1. We say that a quintuple (Y, Z, V, K + , K -) is a solution to the generalized doubly reflected BSDE with jumps associated to (f.ds + gdA s + dR s , ξ, L, U ), if

(E)                        Y ∈ D, Z ∈ L 2,d , V ∈ L 2,d ν , K ± ∈ K. Y t = ξ + T t f s (Y s , Z s , V s )ds + T t dR s + T t g s (Y s )dA s - T t Z s dB s -
T t E V s (e)μ(ds, de)

+ T t dK + s - T t dK - s , 0 ≤ t ≤ T, P-a.s. L t ≤ Y t ≤ U t and T 0 (Y s --U s )dK + s = T 0 (Y s --L s )dK - s = 0, 0 ≤ t ≤ T, P-a.s.
The last condition is called the Skorohod condition. It requires that the processes K + and K -are minimal in the sense that they only act when Y reaches the obstacles L and U. This condition is crucial to obtain the wellposedness of generalized doubly reflected BSDEs with jumps. Note that when there is no barrier, the system becomes an ordinary BSDE with jumps.

Definition 3.2. We say that dM 1 t and dM 2 t are two singular measure and we denote dM 1 s ⊥dM 2

s if T 0 1 {As(w)} dM 1 t = T 0 1 {A c s (w)} dM 2 s = 0, ∀A ∈ P. (3.3) 
We shall make the following standing assumptions on the maps under consideration.

Assumption 3.1 (Assumptions on the drivers).

-The first assumption characterize the growth of the driver f with a lower and an upper bound: For every (y, z, v) ∈ R × R d × L 0 (B(E), ν), there exist two positives processes η and C respectively in L 1 (Ω, [0, T ]) and D c such that

q s (y, z, v) = -η s (w) - C s (w) 2 |z| 2 - 1 δ J(v) ≤ f s (w, y, z, v) ≤ qs (y, z, v) = η s (w) + C s (w) 2 |z| 2 + 1 δ J(v), dt ⊗ dP-a.s, (w, t) ∈ Ω × [0, T ],
where

J(v) = E
e δv(e)δv(e) -1 ν(de).

-The second assumption consists in specifying a lower and upper bound for g: For all y ∈ [L s (w), U s (w)], |g s (w, y)| ≤ 1 A(ds) ⊗ P(dw)-a.s.

-The last assumption known as the "A γ -condition " deals with the increments of the driver f with respect to the jump component: For all (y, z, u, ū) ∈ R × R d × L 0 (B(E), ν) there exists a P ⊗ B(R d+2 ) ⊗ B(E)-measurable function γ where

C 1 ≤ γ ≤ C 2 with -1 < C 1 ≤ 0, C 2 ≥ 0, f t (y, z, v) -f t (y, z, v) ≤ E γ t (e)[v ( 
e) -v(e)]ν(de), ∀t ∈ [0, T ], P-a.s Remark 3.1. We emphasize that, usually the above structure condition is uniform that is the constants in front of z and u are constants. However in our context, we look for solution of generalized doubly reflected BSDEs where the driver has stochastic growth i.e. η and C are no longer constants but predictable processes.

To conclude this part we introduce the following requirement on the obstacle processes.

Assumption 3.2 (Assumptions on the Obstacle).

(i) There exists a semimartingale S with the following decomposition

S = S 0 + V + . -V - . + . 0 α s dB s , where S 0 ∈ R, V + . , V - . ∈ K and α s ∈ L 2,d , P-a.s. (ii) L t ≤ S t ≤ U t , L t ≤ 0 ≤ U t , t ∈ [0, T ], P-a.s.
(iii) For all R ∈ K, dR t ≥ 0, P-a.s.

Theorem 3.1. Under Assumptions 3.1 and 3.2, there exists a maximal solution (Y, Z, V, K + , K -) for the doubly reflected BSDE with jumps associated to (f, ξ, L, U ) satisfying the system (E).

Exponential transformation and estimates

To achieve our main result, that is the existence of solutions of generalized doubly reflected BSDEJs, we first introduce an auxiliary BSDEJ which is explicitly given in terms of exponential transformation of the original one. We then establish a correspondence between solutions of the auxilary one and those of BSDEJs given by (f ds + gdA s + dR s , ξ, L, U ). To do so, we consider the following F t -adapted continuous increasing process

m t = 2 sup 0≤s≤t |C s | + sup 0≤s≤t |U s | + |R t | + A t + 1 δ + 1. (3.4)
Then we have the following result.

Proposition 3.1. There exists a solution (Y, Z, V, K

+ , K -) ∈ D × L 2,d × L 2,d ν × K 2 to the system (E) if and only if ( Ȳ , Z, V , K+ , K-) is solution of (E) with data ( f , ξ, L, Ū ) where Ȳt = e mt(Yt-mt) , Zt = m t Ȳt Z t , Vt = Ȳt [e mtVt(e) -1], K± s = m s Ȳs K ± s . f = fs ((ȳ ∧ Ls ) ∨ Ūs , z, v) -η s m s and ḡ = 1 8m s gs ((ȳ ∧ Ls ) ∨ Ūs ) - 1 2
Ūt = e mt(Ut-mt) , Lt = e mt(Lt-mt) , d Rs = 1 2 d Ās + η s m s ds, d Ās = 8m s dm s .

(3.5)

with            gs (ȳ) = ȳ[m s g s ( ln(ȳ) ms + m s ) dAs dms + m s dRs dms + m s -ln(ȳ ms ], fs (ȳ, z, v) = m s ȳ[f s ( ln(ȳ) ms + m s , z ms ȳ , 1 ms ln( v ȳ + 1)). +m s ȳ -|z| 2 2ms ȳ2 -1 ms E (e ln(1+ v ȳ ) -ln(1 + v ȳ ) -1)ν(de)].
Proof. Applying Itô's formula to Ȳt = e mt(Yt-mt) , we obtain for all t ∈ [0, T ], P-a.s 

+ T t ms Ȳs -dK + s - T t ms Ȳs -dK - s - T t ms Ȳs -ZsdBs - T t E
Ȳs -[e ms Vs(e) -1]μ(de, ds)

+ T t Ȳs -[2ms -Ys]dms + T t [ Ȳs -msgs(Ys) dAs dms ]dms + T t [ Ȳs -ms dRs dms ]dms.
Thus, taking f , ḡ, Ā and d R as in (3.5) yield to

Ȳt = ȲT + T t fs( Ȳs, Zs, Vs)ds + T t ḡs( Ȳs)d Ās + T t d Rs - T t ZsdBs - T t E
Vs(e)μ(ds, de)

+ T t d K+ s - T t d K- s .
We then deduce that if (Y, Z, V, K + , K -) is a solution of (E) then ( Ȳ , Z, V , K+ , K-) is a solution of the generalized doubly reflected BSDEJs associated to ( f ds + ḡd Ās + d Rs , ξ, L, Ū ). Conversely, let ( Ȳ , Z, V , K+ , K-) be the solution of (E) with data ( f , ξ, L, Ū ). Applying Itô's formula to Y t = ln ( Ȳt) mt + m t , we obtain that (Y, Z, V, K + , K -) is a solution of (E).

The following lemma summarizes the properties satisfied by the transformed data.

Lemma 3.1. The data ( f ds + d Rs + ḡd Ās , ξ, L, Ū ) obtained by the above exponential transformation satisfy the following properties

(i) 0 ≤ Lt ≤ e -m 2 t ≤ Ūt ≤ e -1 < 1 and LT ≤ ξ ≤ ŪT , ∀t ∈ [0, T ], P-a.s. (ii) f is a P-measurable function such that for all (s, y, z, v) ∈ [0, T ] × [ Ls , Ūs ] × R 1+d × L 0 (B(E), ν) : -2m s η s -|z| 2 Ls -1 δ J(ln( v Ls + 1)) ≤ fs (w, y, z, v) ≤ 0, P-a.s. (iii) -1 ≤ g s (w, y) ≤ 0, ∀y ∈ [L s , U s ]. (iv) d R is a random positive measure . Proof. (i) Since U t ≤ m t -1, it follows directly that 0 ≤ Lt ≤ e -m 2 t ≤ Ūt ≤ e -1 < 1.
Let us now prove that f satisfies the property(ii). Recalling the expression of f and using Assumption (3.1), we aim to determine an upper bound to f fs (w, ȳ, z, v)

≤ m s ȳ[η s + C s 2 |z| 2 m 2 s ȳ2 + 1 δ J( 1 m s ln(1 + v ȳ )) - |z| 2 2m s ȳ2 - 1 m s E (e ln(1+ v ȳ ) -ln(1 + v ȳ ) -1)ν(de)] ≤ ȳm s .η s + C s 2m s - 1 2 |z| 2 ȳ + m s δ ȳJ( 1 m s ln(1 + v ȳ )) - E (e ln(1+ v ȳ ) -ln(1 + v ȳ ) -1)ν(de).
Using the following inequality J(ku) ≥ kJ(u), ∀k ≥ 1 and ȳ ≤ Ū ≤ e -1 , we obtain

fs (w, ȳ, z, v) ≤ e -1 m s η s + C s 2m s - 1 2 |z| 2 ȳ .
Since C s ≤ m s yield to Cs 2ms -1 2 ≤ 0, we see that fs (w, ȳ, z, v) ≤ η s m s . Now we aim to find a lower bound of f . In fact

fs (w, ȳ, z, v) ≥ m s ȳ -η s - C s 2 |z| 2 m 2 s ȳ2 - 1 δ J s 1 m s ln(1 + v ȳ ) - |z| 2 2m s ȳ2 - 1 m s E (e ln(1+ v ȳ ) -ln(1 + v ȳ ) -1)ν(de) ≥ -e -1 m s η s - C s 2m s + 1 2 |z| 2 ȳ - E (e ln(1+ v ȳ ) -ln(1 + v ȳ ) -1)ν(de).
Using once again J(ku) ≥ kJ(u) together with Ls ≤ ȳ ≤ Ūs and Cs 2ms + 1 2 ≤ 1, we finally get

fs (w, ȳ, z, v) ≥ -e -1 m s η s - C s 2m s + 1 2 |z| 2 ȳ - 1 δ J s (ln(1 + v ȳ )) ≥ m s η s - |z| 2 Ls - 1 δ J s (ln(1 + v Ls )).
Similar arguments can be used to prove that g satisfy -1 ≤ g s (w, y) ≤ 0. The property (iv) follows from Assumption 3.2 and the definition 3.4.

Auxiliary generalized doubly reflected BSDE with jumps: Existence and uniqueness results

Our problem is then reduced to find a maximal solution for generalized doubly reflected BSDEJs under the following weaker assumptions.

Assumption 3.3.

There exist two positives processes

η ∈ L 1 (Ω, [0, T ]), C ∈ D c such that q := -η t (w) - C t (w) 2 |z| 2 - 1 δ j(v) ≤ f t (w, y, z, v) ≤ 0, ∀t ∈ [0, T ].
2. For all y ∈ R, -1 ≤ g t (w, y) ≤ 0, 0 ≤ t ≤ T.

3. There exists a continuous non decreasing process S = S 0 -V . , where

S 0 ∈ R, V ∈ K such that L t ≤ S t ≤ U t , P-a.s. 4. ∀t ∈ [0, T ], ∀R ∈ K, dR t ≥ 0 and 0 ≤ L t ≤ U t < 1, P-a.s.
Theorem 3.2. Assume that Assumption 3.3 and A γ -condition are fulfilled then the generalized DRBSDE with jumps (E) associated to (f ds + dR s + gdA s , ξ, L, U ) has a maximal solution.

Classically, when we want to manage a quadratic BSDE, it seems natural to start by an exponential change of variable to obtain a Lipschitz BSDE. However in general, this method may fail as it can be seen in lemma (3.1). A possible way to do so is to approximate the BSDE by mean of sup-convolution. This technique was introduced by Lepeltier and San Martin [START_REF] Lepeltier | Backward stochastic differential equations with continuous coefficient[END_REF] in the backward theory.

To be a little bit more precise, the scheme of our proof is the following.

• The first step consists on introducing an auxiliary generator (f n ) n globally Lipschitz with respect to (y, z, u) as follows

f n t (y, z, u) := sup (p,q,r)∈R×R d ×L 0 (B(E),ν) {f t (p, q, r) + n|y -p| + n|z -q| + n|v -r| t }
Moreover, since the integrability conditions on the data are weaker, we will introduce a family of stopping times (τ i ) i≥0 . Hence, using the existence results of Appendix, we justify the existence of a unique processes (Y n,i , Z n,i , U n,i , K -,n,i , K +,n,i ) solution for the truncated generalized doubly reflected BSDEJs.

In the last step, we prove a stability result for the approximating sequence of this type of BSDEJs and hence we deduce from it that the limit exists and solves the original one. Before proceeding in the proof, we will need the following lemma which provides essential properties of the truncated drivers. Define -For all (t, ω, y, z, u)

f n (t, y, z, v) = sup (p,q,r)∈R×R d ×L 0 (B(E),ν) {f (t, p, q, r) -n|p -y| -n|q -z| + n|r -v| t } . q n (t, y, z, v) = sup (p,q,r)∈R×R d ×L 0 (B(E),ν) q(t, p, q, r) -n|p -y| -n|q -z| + n|r -v| t . g n (t, y) = sup p∈R {g(t, p) -n|p -y|} .
∈ [0, T ] × Ω × R × R d × L 0 (B(E), ν), ∀n ∈ N q t (y, z, u) ≤ q n t (y, z, u) ≤ f n t (y, z, u) ≤ 0.
-For all (t, ω, y)

∈ [0, T ] × Ω × R, ∀n ∈ N, -1 ≤ g n t (w, y) ≤ 0.
-The sequences (f n ) n and (g n ) n are increasing and converges uniformly in every compact set respectively to f and g P-a.s.

proof of Theorem 3.2. The proof falls naturally into four steps First step: Construction of the sequence of generalized doubly reflected BSDE with jumps:

Let j, i, p ∈ N such that j ≤ i ≤ p and t ∈ [0, τ j ] where τ j is a stationary family of stopping times defined as follow

τ j = inf t ≥ 0; A t + R t + C t + t 0 η s ds ≥ j ∧ T.
Let us now introduce the doubly reflected BSDEJ associated to the truncated driver

(f n ) n (E 1 )                              (i) Y n,i t = ξ + T t f n s (Y n,i s , Z n,i s , V n,i s )ds + T t dR i s + T t g n s (Y n,i s )dA n s + T t dK n,i,+ s - T 0 dK n,i,- s - T t Z n,i s dB s - T t E V n,i s (e)μ(ds, de), 0 ≤ t ≤ T, P-a.s, (ii) L n,i t ≤ Y n,i t ≤ U n,i t , 0 ≤ t ≤ T, P-a.s, (iii) 
T

0 (Y n,i s --L n,i s )dK n,i,+ s = T 0 (U n,i s -Y n,i s -)dK n,i,- s = 0, P-a.s. (iv) dK n,i,+ s ⊥dK n,i,- s .
.

where dR i = 1 {s≤τi} dR s and dA n = 1 {s≤τn} dA s . First, we have to justify the existence of the solution for the system (E 1 ). Using both Lemma (3.2) and the associate A γ -condition, it follows from Theorem 4.4, the existence of a unique solution (Y n,i , Z n,i , V n,i , K n,i,-, K n,i,+ ). Moreover, we have the following estimate:

∀n, i ∈ N E sup 0≤t≤T |Y n,i t | 2 + T 0 |Z n,i t | 2 dt+ T 0 E |V n,i t (e)| 2 ν(de, dt)+(K n,i,+ T ) 2 +(K n,i,- T ) 2 < +∞. (3.6)
In the other hand, since (τ i ) i≥0 is an increasing family of stopping times, we deduce from the comparison Theorem 4.3 and (3.6), that the solution satisfy the following properties

For all i, n ∈ N, dR i ≤ dR i+1 , L t ≤ Y n+1,i t ≤ Y n,i t ≤ Y n,i+1 t ≤ U t , ∀t ∈ [0, T ], P-a.s (3.7) and dK n,i+1,+ t ≤ dK n,i,+ t ≤ dK n+1,i,+ t , dK n+1,i,- t ≤ dK n,i,- t ≤ dK n,i+1,- t , ∀t ∈ [0, T ], P-a.s. (3.8)
For a fixed n, since (Y n,i ) i is increasing we can define Y n as follows

Y n t = lim i→+∞ ր Y n,i t , ∀t ∈ [0, T ], P-a.s.
From (3.6), the sequences (Z n,i ) and (V n,i ) are bounded which entails the weak convergence. We denote respectively (Z n ) and (V n ) their weak limits .

In the next step we prove a stability result for the approximating sequence of generalized doubly reflected BSDEJs. We define an order for the convergence: first we will send i to infinity and then in the third step we let n goes to infinity.

Step2: The convergence of the approximating generalized doubly reflected BSDEJ.

In this part we shall freeze n ∈ N and let i goes to ∞. For simplicity, we shall make the following notations δY = Y n,i -Y n,p , δZ = Z n,i -Z n,p and δV = V n,i -V (3.9)

Before going any further, we need to estimate the following difference

τj t 2e n s δY s f n s (Y n,i s , Z n,i s , V n,i s ) -f n s (Y n,p s , Z n,p s , V n,p s ) ds.
We first rely on the classical inequality: ∀ǫ > 0, a.b ≤ ǫa 2 + 1 ǫ b 2 and the fact that both (f n ) n and (g n ) n are uniformly Lipschitz in (y, z, v). In this way we obtain what follows | 2 and taking first the supremum over t ∈ [0, τ j ] then the conditional expectation we get using the Burkholder-Davis-Gundy inequality

τj t 2e n s δY s f n s (Y n,i s , Z n,i s , V n,i s ) -f n s (Y n,p s , Z n,p s , V
E sup t≤τj |Y n,i t -Y n,p t | 2 ≤ E |Y n,i τj -Y n,p τj | 2 + 2cE τj 0 |Y n,i s -Y n,p s | 2 |Z n,i s -Z n,p s | 2 ds 1 2 + 2cE τj 0 E |Y n,i s -Y n,p s | 2 |V n,i s (e) -Z n,p s (e)| 2 ν(de, ds) 1 2 
.

Letting n goes to infinity in the above inequality, we can deduce from the monotone convergence theorem and dominated convergence

lim i→+∞ E sup t≤τj |Y n,i t -Y n,p t | 2 = 0.
To conclude that the process Y n is càdlàg and hence belongs to D, the idea is to define Y p the projection of Y as the unique predictable process such that

Y τ = E τ -[Y τ ] on {τ < ∞} for all predictable time τ and then (Y n,i ) p = Y n,i -. Putting Y n = lim i→∞ Y n,i
together with the fact that Y n,i is càdlàg from [START_REF] Barlow | On convergence of semimartingales[END_REF] we deduce by the weak convergence of Z n,i and

V n,i that Y n,i -= (Y n,i ) p ↑ (Y n ) p as i → ∞.
Similar to the arguments used in [START_REF] Essaky | Reflected backward stochastic differential equation with jumps and rcll obstacle[END_REF] we can prove that the processes K + and K -belongs to K. From (3.8), we deduce that K n,i,+ converges weakly to the continuous increasing process K n,+ . Furthermore, using Fatou lemma :for fixed n ∈ N and for all i ∈ N E (K n,+ ) 2 ≤ E (K n,i,+ ) 2 ≤ E (K n,0,+ ) 2 < +∞.

Hence, we get that E (K n,+ ) 2 < ∞ which proves that K n,+ belongs to K. Now since τ j is a stationary family of stopping times , it follows from the system (E 1 ) with monotone convergence theorem that for a fixed n ∈ N, K n,- T < +∞, P-a.s.

Finally, letting i goes to infinity for fixed n ∈ N in the system (E 1 ) we get that the quintuple (Y n , Z n , V n , K n,+ , K n,-) solves the following system

Y n t = ξ + T t f n s (Y n s , Z n s , U n s )ds + dR n s + g n s (Y n s )dA n s - T t Z n s dB s (3.14) + T t dK n,+ s - T t dK n,- s - T t Z n s dB s - T t E
V n s (e)μ(ds, de),

with L n t ≤ Y n t ≤ U n t , 0 ≤ t ≤ T, P-a.s. (3.15)
Note that Y n satisfies the above system for all t ∈ [0, τ j ]. However , since the family of stopping time τ j satisfies P [∪ ∞ i=1 (τ j = T )] = 1, we have immediately that Y n satisfies the system (3.14) for all t in [0, T ]. To complete this step, it remains to prove the Skorohod condition of Y n . Since 0

≤ U t -Y n t ≤ U t -Y n,i t , we clearly have T 0 (U t -Y n t -)dK n,i,- t = 0, P-a.s.
Therefore, since the process K n,i,-converges to the continuous increasing process K n , we obtain the weak convergence of the measure dK n,i . Hence it follows that T 0 (U t -Y n t -)dK n,- t = 0, P-a.s.

The proof of T 0 (Y n t --L t )dK n,+ t = 0 is in the same spirit, we only have to notice that we have the weak convergence of the measure dK n,i to obtain that

0 ≤ T 0 (Y n,i t --L t )dK n,i,+ t ≤ T 0 (Y n,i t --L t )dK n,+ t = 0, P-a.s.
With the help of Fatou lemma we get the desired result.

The 5-uplet (Y n , Z n , V n , K n,+ , K n,-) is solution of the following generalized doubly reflected BSDEs with jumps.

(E 2 )                    (i) Y n t = ξ + T t f n s (Y n s , Z n s , V n s )ds + T t dR n s + T t g n s (Y n s )dA n s - T t Z n s dB s + T t dK n,+ s - T 0 dK n,- s - T t Z n s dB s - T t E V n s (e)μ(ds, de), 0 ≤ t ≤ T, P-a.s. (ii) L n t ≤ Y n t ≤ U n t , 0 ≤ t ≤ T, P-a.s. (iii) T 0 (Y n s --L n s )dK n,+ s = T 0 (Y n s --U n s )dK n,- s = 0, P-a.s.
.

Moreover the processes Z n , V n , K n,+ and K n,-inherits what follows : for all n ∈ N E τj 0 |Z n s | 2 ds + τj 0 E |V n s (e)| 2 ν(de, ds) + (K n,+ T ) 2 + (K n,- T ) 2 < +∞.
To conclude this step, since dK n,+ = inf i dK n,i,+ and dK n,-= sup i dK n,i we have that dK n,+ and dK n,-are singular.

Step 3 : In this part, we will derive a stability result of the system (E 2 ). We proceed exactly as in the second step. To this end, since we know that the sequence (Y n ) n is decreasing and uniformly bounded, we only need to prove that there exits a Z and V in L 2,d and L 2,d ν such that

lim n→∞ E T 0 |Z n s -Z s | 2 ds + T 0 E |V n s (e) -V s (e)| 2 ν(de, ds) = 0. (3.16)
As in [START_REF] Kobylanski | Reflected bsde with superlinear quadratic coefficient[END_REF][START_REF] Essaky | Generalized bsde with 2-reflecting barriers and stochastic quadratic growth[END_REF], we first consider the function φ : R + → R + defined by φ(x) = 1 4j (e 4jx -4jx -1) with the following properties

       0 ≤ x ≤ 1, φ(0) = 0, φ ′ (0) = 0, φ ′ (x), φ ′′ (x) ≥ 0, φ ′ (x) = e 4jx -1, φ ′′ (x) = 4je 4jx , φ ′′ (x) = 4jφ ′ (x) + 4j.
(3.17)

For the sake of clarity we define the processes Ȳ , Z and V (φ( Ȳs + Vs )φ( Ȳs )φ ′ ( Ȳs ) Vs )µ(de, ds)

∀n ≤ m, Ȳ := Y n -Y m , Z := Z n -Z m , V := V n -V m . Since φ is C 2 ,
+ τj t φ ′ ( Ȳs ) [(f n s (Y n s , Z n s , V n s ) -f m s (Y m s , Z m s , V m s )] ds (3.18)
Clearly f n ≤ f . By the growth assumption on f we get for all n ∈ N

-η s - C s 2 |Z n s | 2 - 1 δ J s (V n s ) ≤ f n s (Y n s , Z n s , V n s ) ≤ 0. Then we have 0 ≤ -f m s (Y m s , Z m s , V m s ) ≤ η s + C s 2 |Z m s | 2 + 1 δ J(V m s ). Now the elementary inequality |Z m | 2 = |Z m -Z n + Z n | 2 ≤ 2| Z| 2 + 2|Z n | 2 yield to an upper bound of f n -f m . -η s - C s 2 |Z n s | 2 - 1 δ J s (V n s ) ≤ f n s (Y n s , Z n s , V n s ) -f m s (Y m s , Z m s , V m s ) ≤ η s + C s (w) | Zs | 2 + |Z n s | 2 + 1 δ J s (V n ) ≤ η s + C s (w) | Zs | 2 + |Z n s | 2 + ǫ|V m s | 2 s ≤ η s + C s (w) | Zs | 2 + |Z n s | 2 + 2ǫ|V n s | 2 s + 2ǫ| Vs | 2 s . (3.19) 
In the other hand 

= dR n,m s + e 4j(Y n s --Ls) -4j (Y n s --L s ) dK m,+ s -e 4j(-Y m s -+Us) -4j (-Y m s -+ U s ) dK n,- s .
Taking in the left sides all the terms containing either Z or V , we get Vs (e)φ ′ ( Ȳs )μ(de, ds).

φ( Ȳt ) + C T t E | Vs (e)|
(3.25)

Then using the fact that Y n -Y m ≤ 1 we obtain for t = 0,

E 2j(1 + φ ′ (1)) τj 0 |Z n s -Z m s | 2 ds + (2ǫφ ′ (1) + C) τj 0 E |V n s -V m s | 2 ν(de, ds) ≤ φ(1) + E 4je 4j τj t η s ds + φ ′ (1) τj 0 dA s + τj 0 d Rn,m s + E[ τj 0 j.φ ′ ( Ȳ )|Z n s | 2 -2ǫφ ′ (1)E τj t |V n s | 2 s ds]. (3.26)
Let us underline that since φ(Y n,m ) is uniformly bounded process, the conditional expectation of the martingale part of equation (3.25) vanishes. Now, taking n = 0 we get from the apriori estimates of (Y n , Z n , K n,+ , K n,-) that 

E τj 0 |Z 0 s -Z m s | 2 ds + τj 0 E |V 0 s -V m s (e)| 2 ν(de, ds) ≤ C ′ j . ( 3 
(φ ′ (Y n s -Y m j k s )) 1 2 1 [0,τj] (Z n s -Z m j k s ) respectively (φ ′ (Y n s -Y m j k s )) 1 2 1 [0,τj] (V n s -V m j k s ) converge weakly in H 2 and in H 2 ν to (φ ′ (Y n s -Y m j k s )) 1 2 1 [0,τj] (Z n s -Z s ) and (φ ′ (Y n s -Y m j k s )) 1 2 1 [0,τj] (V n s -V s ).
Hence, recalling the Itô equation (3.25 ) we obtain Notice that |V n s (e) -Vs (e)| 2 ν(de, ds)

E τj 0 2j( 1 2 + φ ′ ( Ȳs ))|Z n s -Z m j k s | 2 ds + τj 0 E (2ǫφ ′ ( Ȳs ) + C)|V n s -V m j k s ( 
jE τj 0 φ ′ ( Ȳs )|Z n s | 2 ds ≤ 2jE τj 0 φ ′ ( Ȳs )|Z n s -Ẑs | 2 ds + τj 0 φ ′ ( Ȳs )| Ẑs | 2 ds , and 2ǫE[ τj t φ ′ (Y n s -Ŷs )|V n s | 2 s ds] ≤ 2ǫE[ τj t φ ′ (Y n s -Ŷs )|V n s -Vs | 2 s ds] + 2ǫE[ τj t φ ′ (Y n s -Ŷs )| Vs | 2 s ds].

Now since we have

E 2j(1 + φ ′ (Y n s -Ŷs )) τj 0 |Z n s -Ẑs | 2 ds + τj 0 E (2ǫφ ′ (Y n s -Ŷs ) + C)|V n s (e) -Vs (e)| 2 ν(de, ds) ≤ lim inf k E 2j(1 + φ ′ (Y n s -Y m j k s )) τj 0 |Z n s -Z m j k s | 2 ds + lim inf k E (2ǫφ ′ (Y n s -Y m k j s ) + C) τj 0 E |V n s (e) -V
≤ lim inf k E[2j(1 + φ ′ (Y n s -Y m j k )) τj 0 |Z n s -Z m j k s | 2 ds + (2ǫφ ′ (Y n s -Y m k j s ) + C) τj 0 E |V n s (e) -V m j k s (e)| 2 ν(de, ds)] . ≤ E[φ( Ȳτj ) + 4je 4j τj t η s ds + τj 0 φ ′ ( Ȳs )dA s + 2j τj 0 φ ′ ( Ȳs )| Ẑs | 2 ds + 2ǫE[ τj t φ ′ (Y n s -Ŷs )|V n s | 2 s ds].
Since φ ′ (Y n -Ŷs ) goes to zero as k goes to infinity, we conclude by the dominated convergence theorem, that

E τj 0 |Z n s -Ẑj s | 2 ds + τj 0 E |V n s (e) -V j s (e)| 2 ν(de, ds) -→ n→∞ 0. (3.29)
Therefore by the uniqueness of the limit we have , Ẑj s (w) = Ẑj+1 s (w) and V j s (w) = V j+1 s (w), P-a.s. We then denote by Z and V their respective limits when j goes to infinity. Finally since τ j = T , we obtain

lim n→∞ E T 0 |Z n s -Z s | 2 ds + T 0 E |V n s (e) -V s (e)| 2 ν(de, ds) = 0. (3.30)
Hence, it remains to prove that the limit process Y is càdlàg.

|Y s -Y n s | ≤ τj t |(f s (Y s , Z s , V s ) -f n s (Y n s , Z n s , V n s )|ds + τj t |g s (Y s ) -g n s (Y n s )|dA n s + τj t |g s (Y s )1 {s≥τn} |dA s + | τj t (Z s -Z m s )dB s | + | τj t E (V s (e) -V m s (e))μ(de, ds)|.
Taking the supremum over t and the conditional expectation yields to

E sup 0≤t≤τj |Y s -Y n s | ≤ E τj 0 |(f s (Y s , Z s , V s ) -f n s (Y n s , Z n s , V n s )|ds (3.31) +E τj 0 |g s (Y s )1 {s≥τn} |dA s + E τj 0 |g s (Y s ) -g n s (Y n s )|dA n s +E sup 0≤t≤τj | τj t (Z s -Z m s )dB s | + sup 0≤t≤τj | τj t E (V s (e) -V m s (e))μ(de, ds)| .
Furthermore, the Burkholder-Davis-Gundy inequality allows us to deduce that

E sup 0≤t≤τj τj 0 (Z s -Z m s )dB s ≤ 2E τj 0 |Z s -Z n s | 2 ds 1 2 . (3.32) and E sup 0≤t≤τj τj 0 E (V s (e) -V n s (e))μ(de, ds) ≤ 2E τj 0 E |V s (e) -V n s (e)| 2 ν(de, ds) 1 2 . (3.33)
Reporting (3.32), (3.33) in the previous inequality yields to

E sup 0≤t≤τj |Y t -Y n t | → n 0.
Step 4: Identification of the limit In this part we aim to prove that quintuple (Y, Z, V, K -, K + ) is the solution of the generalized doubly reflected BSDEJ (E). To do so we first prove that

lim n→∞ E τj 0 |f n t (Y n t , Z n t , U n t ) -f t (Y t , Z t , U t )|dt = 0 and lim n→∞ E τj 0 |g n t (Y n t ) -g t (Y t )|dt = 0.
By Lemma 3.2, f n s (y, z, v) converges to f s (y, z, v), ∀s ∈ [0, T ], P-a.s. Moreover, from the càdlàg version of Dini's theorem, f n s (y, z, v) converges uniformly on every compact set. Thus, f n s (y, z, v)1 [0,τj] converges uniformly to f s (y, z, v)1 [0,τj] as n goes to infinity, dt ⊗ dP ⊗ dν a.s. In fact as Z n j k and U n j k are unbounded, one can decompose the expression above in the following way

E τ j 0 |f n t (Y n t , Z n t , U n t ) -ft(Yt, Zt, Ut)|dt = E[ τ j 0 |f n t (Y n t , Z n t , U n t ) -ft(Yt, Zt, Ut)|1 {|Z n j k s |+|U n j k s |≤C} dt] + E τ j 0 |f n t (Y n t , Z n t , U n t ) -ft(Yt, Zt, Ut)|1 {|Z n j k s |+|U n j k s |≥C} dt
The first term in the right-hand side goes to zero as k goes to infinity since Y n j k is bounded over [0, τ j ] and

|f n j k t (Y n j k t , Z n j k t , V n j k t ) -f t (Y t , Z t , V t )| ≤ η t + j 2 |Z n j k t | 2 + 1 δ J(V n j k t ).
For the last one, using Markov inequality we have

E 1 {|Z n j k |+|V n j k |≥C } ≤ 2 C 2 E |Z n j k | 2 + |V n j k | 2 t .
Hence, using the dominated convergence theorem we obtain that f

n j k t (Y n j k t , Z n j k t , U n j k t ) converge to f t (Y t , Z t , U t ) in L 1 (dt ⊗ dP ⊗ dν) for all t ≤ τ j .
Using the same argument we can prove that E τj 0 |g n t (Y n t )g t (Y t )|dt goes to zero as n goes to infinity. Now, notice from the system (E 2 ) that sup n E[K n,+ τj ] < ∞. By Fatou lemma we deduce that E K + τj < ∞. Thus, we obtain that K + T < ∞, P-a.s. We can show similarly that K - T < ∞. In order to finish the proof we need to show that the limit process Y satisfies the following minimality condition

T 0 (Y s --L s )dK + s = T 0 (U s -Y s -)dK - s = 0, 0 ≤ t ≤ T, P-a.s.
This is deduced from the following facts : • From the system (4.1) we have

T 0 (Y n s -L n s )dK n,+ s = T 0 (U n s -Y n s )dK n,- s = 0, P-a.s. • K n,+ respectively K n,-converges uniformly to K + , K -.
The only point remaining concerns the singularity of the measures dK + and dK -. The result follows from the singularity of dK n,-and dK n,+ with dK -= inf n dK n,-, dK + = sup n dK n,+ . We can hence conclude that the 5-uplet (Y, Z, V, K + , K -) is a solution of the system (E 1 ).

Proof of Theorem 3.1. As already explained, the existence is obtained directly from a logarithmic change of variable. Let Y t = ln( Ȳt) mt + m t , Z t = Zt ms Ȳt and V t = 1 mt ln( Vt Ȳt + 1). Then applying Itô's formula, we obtain

Y t = ξ + T t f s (Y s , Z s , V s )ds + T t dR s + T t g s (Y s )dA s + T t dK + s - T t dK - s - T t Z s dB s - T t E
V s (e)μ(ds, de), 0 ≤ t ≤ T, P-a.s,.

In addition, since

T 0 ( Ȳs --Ls )d K+ s = T 0 ( Ȳs --Ūs )d K- s = 0. we have T 0 (Y s --L s )dK + s = T 0 (Y s --U s )dK - s = 0, P-a.s.

Appendix

4.1 Existence and uniqueness result: The Lipschitz case.

In this section, we extend some of the results of Pardoux and Zhang [START_REF] Pardoux | Generalized bsdes and nonlinear neumann boundary value problems[END_REF] concerning generalized BSDEs with no reflection to the case of doubly reflected BSDEJs. Let us note that the majority of the following proofs follows straightforwardly from the original proofs of [START_REF] Pardoux | Generalized bsdes and nonlinear neumann boundary value problems[END_REF], [START_REF] Hamadène | Reflected backward stochastic differential equation with jumps and random obstacle[END_REF] [30] and [START_REF] El Otmani | Generalized bsde with two reflecting barriers[END_REF] with some minor modifications due to jumps and reflection. However, we still provide the proof of existence since it will be needed in the construction of stochastic quadratic BSDEJ's solution. To the best of our knowledge, they do not appear anywhere else in the literature. We look for the solution of the following generalized doubly reflected BSDE with jumps, (S)

         Y t = ξ + T t f s (Y s , Z s , V s )ds + T t g s (Y s )dA s - T t Z s dB s - T t E V s (e)μ(ds, de) + T t dK + s - T t dK - s 0 ≤ t ≤ T, P-a.s. L t ≤ Y t ≤ U t and T 0 (Y s --U s )dK + s = T 0 (Y s --L s )dK - s = 0, 0 ≤ t ≤ T, P-a.s.
under the following assumption

(H1)                  (i) There exists a positive constant L f such that ∀y, y ′ ∈ R, z, z ′ ∈ R d , u, u ′ ∈ L 0 (B(E), ν), |f t (y, z, u) -f t (y ′ , z ′ , u ′ )| ≤ L f (|y -y ′ | + |z -z ′ | + |k -k ′ | t ), ∀t ∈ [0, T ], P-a.s.
(ii) There exists a positive constant L g such that ∀y, y ′ ∈ R,

|g t (y) -g t (y ′ )| ≤ L g |y -y ′ |, and -1 ≤ g t (y) ≤ 0, ∀t ∈ [0, T ]. (iii)∀R ∈ K, dR t ≥ 0 and 0 ≤ L t ≤ U t < 1, ∀t ∈ [0, T ], P-a.s. Comparison result Theorem 4.3. Let (Y 1 , Z 1 , V 1 , K 1,-, K 1,+
) and (Y 2 , Z 2 , V 2 , K 2,-, K 2,+ ) be to two solutions of (S) associated to (f i , ξ i , L i , U i ) i=1,2 , such that, for (i = 1, 2) Assumption (H1) is satisfied. Assume moreover that

          
• ξ 1 ≤ ξ 2 , P-a.s.

• L 1 t ≤ L 2 t and S 1 t ≤ S 2 t , ∀t ∈ [0, T ], P-a.s. • f 1 s (Y 2 s , Z 2 s , V 2 s ) ≤ f 2 s (Y 2 s , Z 2 s , V 2 s ), ∀t ∈ [0, T ], P-a.s. • g 1 s (Y 2 s ) ≤ g 2 s (Y 2 s ), ∀t ∈ [0, T ], P-a.s, then we have Y 1 t ≤ Y 2 t , ∀t ∈ [0, T ], P-a.s. Furthermore, if U 1 t = U 2 t , L 1 t = L 2 t , L t ≤ U t , ∀t ∈ [0, T ], P-a.s, then K -,1 t ≤ K -,2 t and K +,2 t ≤ K +,1 t , ∀t ∈ [0, T ], P-a.s.
Proof. The proof follows the lines of the proof of the theorem (1.3) in [?] in the continuous setting . For simplicity, we shall make the following notations. 

(δY t , δZ t , δV t ) = (Y 1 t -Y 2 t , Z 1 t -Z 2 t , V 1 t -V 2 t ), δξ = ξ 1 -ξ 2 δf t = f 1 t (Y 2 t , Z 2 t , V 2 t ) -f 2 t (Y 2 t , Z 2 t , V 2 t ) δg t = g 1 t (Y 2 t ) -g 2 t (Y 2 
) + = R τ k (δY τ k ) + + τ k t∧τ k 1 {Y 1 s ≥Y 2 s } R s δY s f 1 s (Y 1 s , Z 1 s , V 1 s ) -f 2 s (Y 2 s , Z 2 s , V 2 s ) ds + τ k t∧τ k R s δY s [g s (Y 1 s ) -g s (Y 2 s )]dA s - τ k t∧τ k 1 {Y 1 s ≥Y 2 s } δY s R s δZ s dB s - τ k t∧τ k E R s δY s δV s (e)μ(de, ds) - τ k t∧τ k α s R s δY s ds + τ k t∧τ k 1 {Y 1 s ≥Y 2 s } R s (dK +,1 s -dK -,1 s ) - τ k t∧τ k 1 {Y 1 s ≥Y 2 s } R s (dK +,2 s -dK -,2 s ).
Notice that when

Y 1 ≥ Y 2 we have U 2 t ≥ Y 2 t and Y 1 t ≥ L 1 t , we obtain τ k t∧τ k 1 {Y 1 s -≥Y 2 s -} δY s (dK +,1 s -dK +,2 s ) - τ k t∧τ k 1 {Y 1 s -≥Y 2 s -} δY s (dK -,1 s -dK -,2 s ) ≤ 0.
Hence, using Assumption (H1), we get

Rt∧τ j (δYt∧τ k ) + ≤ Rτ k (δYτ k ) + + τ k t∧τ k 1 {Y 1 s ≥Y 2 s } αsRs|δYs|ds - τ k t∧τ k 1 {Y 1 s ≥Y 2 s } RsδZsdBs - τ k t∧τ k E 1 {Y 1 s ≥Y 2 s } RsδVs(e))μ(de)ds + τ k t∧τ k Rs αs1 {Y 1 s ≥Y 2 s } |δYs|dAs M + τ k t∧τ k 1 {Y 1 s ≥Y 2 s } Rs|δZs|βsds + τ k t∧τ k E 1 {Y 1 s ≥Y 2
s } Rsγs(e)δVs(e)νs(de, ds).

M -<M,N> (4.34)

Now we define the probability measure P such that d

P dP = E(N ) T . Since -1+δ K ≤ γ(U 1 s , U 2 s ) ≤ C K and |β t (Z 1 s , Z 2 s )| ≤ C since Z 1 and Z 2 are of BMO types. Hence E(M ) is a BMO-martingale with M = t 0 R s αs δY s dA s + t 0 R s (Z 1 s -Z 2 s )dB s + . R s (V 1 s - V 2 
s )μ(de) and N = t 0 β s dB s + t 0 E γ(e)μ(de, ds). Using Girsanov theorem, we obtain that M -M, N are locale P -martingale. Hence, taking the conditional expectation in (4.1) between t and τ n when τ k converges to T as long as k goes to infinity yield

R t (Y 1 t -Y 2 t ) + ≤ E P R τ k (Y 1 τ k -Y 2 τ k ) + |F t .
Sending k to ∞ we get

δY t = Y 1 t -Y 2 t = 0, ∀t ∈ [0, T ], P-a.s. • Let as now prove that K -,1 t ≤ K -,2 t , K +,2 t ≤ K +,1 t
, ∀t ∈ [0, T ], P-a.s.

Exactly as (Theorem (1.3), [START_REF] Hamadène | Reflected backward stochastic differential equation with jumps and random obstacle[END_REF]), we define the following family of stopping times τ

τ = inf t ≥ 0, K -,1 t ≥ K -,2 t ∧ T.
Suppose that P(τ < T ) > 0 . Hence, K -,1

τ = K -,2 τ on {τ < T } . Moreover Y 1 τ = Y 2 τ = U τ on {τ < T } .
if Y 1 τ (w) (w) = U τ (w) (w) then Y t (w) < U t (w) for all t ∈]τ (w)p(w), τ + p(w)[ where p(w) is a positive real number. Thus, it follows that for all t ∈]τ (w)p(w), τ + p(w)[, K -,1 t(w) (w) = K -,2 t(w) (w) = Y 2 t(w) (w) which contradicts the definition of the stopping family τ (w). Hence

Y 1 t(w) (w) = U t(w) (w) = Y 2 t(w) (w).
In the other hand, we consider the family of stopping times δ = inf t ≥ τ ;

Y 1 t = L t ∧ T such that {τ < T } ⊂ {δ < T }. Notice that -if τ w < T then Y 1 τ (w) = U τ (w) (w). -if δ(w) = τ (w) then Y δ(w) (w) = L δ(w) = U t(w) = L t(w) ( 
w) which contradicts the fact that the process U t remain above the process L t . We can deduce that P [δ < τ ] > 0 . This implies that K +,1

δ = K +,1 t and K +,2 δ = K +,2 t , ∀t ∈ [τ, δ], P-a.s, since Y 1 ≤ Y 2 and K + (resp. K -)
moves when Y 1 (resp. Y 2 reaches the lower obstacles L. Henceforth, we have

Y 1 t = Y 1 δ + δ t f 1 s (Y 1 s , Z 1 s , V 1 s )ds + T t g 1 s (Y 1 s )dAs -K 1,- δ + K 1,+ t - δ t Z 1 s dBs - δ t E V 1 s (e)μ(de, ds). Y 2 t = Y 2 δ + δ t f 2 s (Y 2 s , Z 2 s , V 2 s )ds + T t g 2 s (Y 2 s )dAs -K 2,- δ + K 2,+ t - δ t Z 2 s dBs - δ t E V 2 
s (e)μ(de, ds).

Now in order to conclude, we define ( Ȳ Using the growth property of f 1 (resp. ḡ1 ) and f 2 (resp. ḡ1 ), we obtain that Ȳ

1 t = Y 1 t , Ȳ 2 t = Y 2 t , Z1 t = Z 1 t , Z2 t = Z 2 t , V 1 t = V 1 t and V 2 t = V 2 t , ∀t ∈ [τ, δ], P-a.s. Hence, we immediately get K1 δ -K1 t = K 1 δ -K 1 t , K2 δ -K2 t = K 2 δ -K 2 t , ∀t ∈ [τ, δ], P-a.s,
which contradicts the definition of the stopping time τ . Therefore, P [τ < T ] which implies that K -,1 ≤ K -,2 , P-a.s. To conclude the proof, we can show similarly that K +,2 ≤ K +,1 , P-a.s.. Theorem 4.4. Under Assumption (H1), there exists a unique solution (Y, Z, V, K + , K -) to the generalized doubly reflected backward stochastic differential equation with jumps associated to (f ds + gdA s , ξ). Moreover, it satisfies

E sup t≤T |Y t | 2 + T 0 |Z t | 2 dt + T 0 E |V t (e)| 2 ν(de)dt + |K + T | 2 + |K - T | 2 < +∞. ( 4 

.35)

Proof. The uniqueness is a simple consequence of the above comparison theorem. Let us prove the existence of the solution. We consider the following penalized generalized BSDEJ: for any

n, m ∈ N * Y n,m t = ξ + T t f s (Y n,m s , Z n,m s , V n,m s )ds + T t g s (Y n,m s )dA s + m T t (Y n,m s -L s ) -ds -n t ( T U s -Y n,m s ) -ds - T t Z n,m s dW s - T t E V n,m s μ(de, ds), ∀t ∈ [0, T ], P-a.s, (4.36) 
were f n,m (s, y, z, v) = f (s, y, z, v) + m(y -L s ) -n(U sy) -. Referring to the results of [START_REF] Hu | Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes[END_REF], we obtain existence and uniqueness for a solution (Y n,m , Z n,m , V n,m ) to the BSDEs given by (f n,m , ξ). We set K In the other hand, we consider a sequence of stopping time τ n such that

τ n+1 = inf {t ≥ τ n , Y n,m t ≤ L t } ∧ T τ n+2 = inf {t ≥ τ n+1 , Y n,m t ≥ U t } ∧ T.
Using the same argument as in [START_REF] Hamadene | Bsdes with two reflecting barriers: the general result[END_REF] or [START_REF] Hamadène | Bsdes with two rcll reflecting obstacles driven by brownian motion and poisson measure and a related mixed zero-sum game[END_REF] we can rewrite the penalized generalized BSDEJ as follow 

E T 0 |Y n t -Y t | 2 dt = 0.
We know that all the requirements of existence result of [START_REF] Ren | Generalized reflected bsdes driven by a lévy process and an obstacle problem for pdies with a nonlinear neumann boundary condition[END_REF] are fullfilled. Thus we know that for fixed m ∈ N Y n,m , Z n,m and V n,m converge respectively to Y n , Z n and V n as m goes to infinity. Moreover the limit process (Y n , Z n , V n ) is the unique solution of the generalized reflected BSDEJs associated to (ξ, f n , g, K n+ ) where f n (y, z, v) = f (y, z, v)n(U sy) -. Moreover the limit process inherits the property (4.37). Notice that for all n ∈ N and ∀(s, y, z, v)

f n s (y, z, v) ≤ f n+1 s (y, z, v).
Therefore by comparison Theorem [START_REF] Hamadène | Reflected backward stochastic differential equation with jumps and random obstacle[END_REF] 

  (e) -msVs(e) -1]ν(de)]ds

Lemma 3 . 2 .

 32 [START_REF] Matoussi | Exponential quadratic bsdes with infinite activity jumps[END_REF] Under Assumption 3.3 and A γ -condition, we have -The sequences (f n ) n , (g n ) n are Lipschitz with respect to (y, z, u).

  e)| 2 ν(de, ds)≤ E φ( Ȳτj ) + 4je 4j )|V n s | s ds .

s

  (e)| 2 ν(de, ds) , letting k goes to infinity allows us to obtain

e

  λAτ n Y n,m τn = e λAτ n+1 Y n,m τn+1 + , ds). Relying on assumption (H1) we get Y n,m τn ≥ S τn on {τ n < T } ; Y n,m τn = S τn on {τ n = T } . Y n,m τn+1 ≤ S τn+1 on {τ n+1 < T } ; Y n,m τn+1 = S τn+1 on {τ n+1 = T } .

  Now notice that since the family of stopping time τ j is increasing then, is bounded E |δY τj | 2 goes to 0 as i goes to infinity. Hence there exits Z n ∈ L 2,d and V n ∈ L2,d ν such that for any n ∈ N we have

					τn			
		lim i→+∞	E		0	|Z n,i s -Z n s | 2 +	E	|V n,i s (e) -V n s (e)| 2 ν(de) ds = 0.
	Now apply Itô formula to |Y n,i t	-Y n,p t
		≤ ǫ	t	τj	ne n s |δY s | 2 ds +	1 ǫ	t	τj	ne n s |δY (3.10)
	Besides, we have						
		τj							τj
		t	2e n s δY s g n s (Y n,i s ) -g n s (Y n,p s ) dA n s ≤	t	2.n.e n s |δY s | 2 dA n s .	(3.11)
	On the other hand, it follow from (3.8)
		τj						τj
		t	e n s δY s dδK + s ≤ 0	and	t	e n s δY s dδK -s ≥ 0.	(3.12)
	Besides, Notice that if we use the standard localization procedure we can prove that the local
	martingale	τj t e n s δY s δZ s dB s -s δY τj τj t E e n τi	τj∧τi	τj ∧τp
					t	dR i s -	t	dR p s =	t	dR s -	t	dR s
									τj	τj
									=	t	dR s -	t	dR s = 0	(3.13)
	Combining (3.10), (3.11), (3.12) and (3.13) and putting all terms containing δZ and δV in the
	left-hand side, we can rewrite (3.9) as follow
		E e n t |δY t | 2 +	

n,p s ) ds ≤ τj t 2.n.e n s δY s [|δY s | + |δZ s | + |δV s | s ] ds. s | 2 + |δZ s | 2 + |δV s | 2 s ds. s δV s (e)μ(de, ds) is in fact a true (F , P)-martingale. τj t e n s [|δZ s | 2 + |δV s | 2 s ]ds ≤ E[e n τj |δY τj | 2 ].

Now in order to justify the passage to the limit in the right hand side as i goes to +∞, we apply Lebesgue's Dominated convergence theorem for a fixed n, since we know that the process Y n,i

  Now, since the process C s (w) is bounded by j for all s ∈ [0, τ j ] it follows

								t	τj	φ ′ ( Ȳs )C s (w)| Zs | 2 ds -	1 2	t	τj	φ ′′ ( Ȳs )| Zs | 2 ds
							≤		t	τj	jφ ′ ( Ȳs )| Zs | 2 ds -	1 2	t	τj	4jφ ′ ( Ȳs ) + 4j | Zs | 2 ds
							≤ j		t	τj	φ ′ ( Ȳs )| Zs | 2 ds -2j	t	τj	φ ′ ( Ȳs )| Zs | 2 ds -2j	t	τj	| Zs | 2 ds
							≤ -j			t	τj	| Zs | 2 ds -2j	t	τj	φ ′ ( Ȳs )| Zs | 2 ds.	(3.22)
	Using the same argument as in [15], we obtain
								C| Vs (e)| 2 ≤ φ( Ȳs -+ Vs (e)) -φ( Ȳs -) -φ ′ ( Ȳs -) Vs (e), dνa.e.	(3.23)
	Plugging (3.22) and (3.23) in the previous Itô equation (3.21) yields
	φ( Ȳt ) + C	t	T	E	| Vs (e)| 2 ν(de, ds) ≤
	φ( Ȳτj ) -2ǫ		t	τj	φ ′ ( Vs )| Vs | 2 s ds -2ǫ	t	τj	φ ′ ( Vs )|V n s | 2 s ds -2j	t	τj	| Zs | 2 ds -j	t	τj	φ ′ ( Ȳs )| Zs | 2 ds
	-j	t	τj	φ ′ ( Ȳs )|Z n s | 2 ds +
														s	+ 4j	t	τj	η s e 4j	Ȳs ds -	t	τj	E	Vs (e)φ
	τj											τj	τj	τj
	t Therefore, we have g n s (Y n s )dA n s -		t			g m s (Y m s )dA m s =	t	g n s (Y n s )1 {s≤τn} dA s -	t	g m s (Y m s )1 {s≤τm} dA s
	= By lemma (3.2), we have τj t (g n s (Y n s ) -g m s (Y m s ))1 {s≤τn} dA s -φ( Ȳt ) + C T t E τj t φ ′ ( Vs )| Vs | 2 τj t φ ′ ( Ȳs )g m s (Y m s )1 {τn≤s≤τm} dA s . s ds -2ǫ τj t φ ′ ( Vs )|V n s ds s | 2 τj t φ ′ ( Ȳs )(g n s (Y n s ) -g m s (Y m s ))1 {s≤τn} dA s ≤ -τj t φ ′ ( Ȳs )g m s (Y m -2j τj t [ 1 2 + φ τj t φ ′ ( Ȳs )|Z n s | 2 ds + τj t 4je 4j Ȳs + 1 {τn≤s≤τm} dA s s )1 {s≤τn} dA s ≤ τj t φ + τj t j (Y n s --L s ) dK m,+ s + dR n,m s + τj t j (-Y m s -+ U s ) dK n,-s -τj t E Vs (e)φ ′ ( Ȳs )1 {s≤τn} dA s τj 4je 4j Ȳs dA s . (3.20) τj t Ȳs ds. η s e 4j ≤ t Hence, reporting (3.19 ) and (3.20) in (3.18) yield to where
	d Rn,m s					φ( Ȳt ) +		t	T	E	(φ( Ȳs + Vs ) -φ( Ȳs ) -φ ′ ( Ȳs ) Vs )µ(de, ds)
							≤ φ( Ȳτj ) -	t	τj	E	Vs (e)φ ′ ( Ȳs )μ(de, ds) -	t	τj	φ ′ ( Ȳs ) Zs dB s
							-	1 2		t	τj	φ ′′ ( Ȳs )| Zs | 2 ds -	t	τj	φ ′ ( Ȳs )d K-s +	t	τj	φ ′ ( Ȳs )d K+
														n s | 2 + 2ǫ|V n s | 2 s + 2ǫ| Vs | 2 s ds
							+ 4j				τj	e 4j	Ȳs dA s + 4j	τj	e 4j	Ȳs 1 {τn≤s≤τm} dA s .
											t		t
														(3.21)

s + τj t φ ′ ( Ȳs ) η s + C s (w) | Zs | 2 + |Z τj t (e j Ȳs -1)dA s + τj t e j Ȳs -1 d Ks + τj t e j Ȳs -1 d K+ s τj t (e j Ȳs -1) Zs dB s + dR n,m ′ ( Ȳs )μ(de, ds). (3.24) Let us underline that the process K acts only when Ȳ reaches the obstacles L and U , it is easy to see that K m,+ only increases when Y n t -= S t and Kn,only increases when Y m t -= L t . | Vs (e)| 2 ν(de, ds) ≤ φ( Ȳτj ) -2ǫ ′ ( Ȳs )]| Zs | 2 dsj ′ ( Ȳs )μ(de, ds) -τj t (e j Ȳs -1) Zs dB s + 4j

  an F t -adapted processes Ẑt and Vt in H 2 and H 2 ν . It is obvious that

									.27)
	and		τj		τj			
	sup m∈N	E	0	|Z m s | 2 ds +	0	E	|V m s (e)|ν(ds, de) < +∞.		(3.28)
							m j k t	and V t m j k	converges
	weakly respectively to							

For all t ∈ [0, τ j ], we can then extract a subsequence (m j k ) k∈N such that Z

  + |V 2 s (e)| 2 ν(de, ds) ≥ k ∧ T. We start by applying Itô formula to R t δY t = e αt (Y 1 t -Y 2 t ) + where R t = e αt . R t∧τ k (δY t∧τ k

	Consider the following stopping times			
		t		t		
	τ k = inf t ≥ 0,	0	|Z 1 s | 2 + |Z 2 s | 2 ds +	0	E	|V 1 s (e)| 2
						t )
	Let us define the following bounded processes		

  ) t≤δ ) solution of the reflected BSDE with jumps in the upper obstacle L associated to ( f1 ds + ḡ1 dA s , Y 1 δ ) (resp. (f 2 ds + ḡ2 dA s , Y 2

	1 t , Z1 t , V 1 t , K1 t ) t≤δ (resp. ( Ȳ 2 t , Z2 t , V 2 t , K2

t δ )). Then by the comparison theorem given in

[START_REF] Ren | Generalized reflected bsdes driven by a lévy process and an obstacle problem for pdies with a nonlinear neumann boundary condition[END_REF]

, we have

Ȳ 1 t ≤ Ȳ 2 t ,

and K1,t -K1,s ≥ K2,+ t -K2,+ s , ∀t ∈ [s, δ], P-a.s.

  -Y n,m s -) -ds.Step1. we aim to prove the following estimate. There exists a constant C such that

	n,m+ t 0 (U s sup = m t 0 (Y n,m s --L s ) -ds and K n,m-t = n t n,m∈N * E sup 0 t≤T |Y n,m t | 2 + T |Z n,m t	
	(e)μ(de, ds)].	(4.40)

  There exists a constant C such that for any n ∈ N * we have E sup t |Y n t | 2 ≤ C and there exists an F t -adapted process (Y t ) t such that lim

	0	E	|V s (e)| 2 ν(de, ds) ≤ C,
	which implies the desired result.		
	Step 2: n→+∞	

  we have, Y n t ≤ Y n+1 t , ∀t ∈ [0, T ], P-a.s. Hence, Y n t ր Y t P-a.s. Now from the property (4.37) and Fatou's lemma we deduce that E |Y t | 2 ≤ C and then by Dominated convergence theorem we obtain that ) the solution of the penalized generalized BSDEJ associated to the system (4.45). By comparison, sincef n,m t (y, z, v) ≤ f t (y, z, v) + n(U ty) + m(y -L t ) -.We have, for any n, m ∈ N * , Y n,m t ≤ Ȳ n,m t , P-a.s. Letting m goes to infinity we obtain that Y n t ≤ Ȳ n t . Now, applying Itô's formula to Ȳ n t e -nt , yield to Besides, since we have that L t ≤ S t ≤ U t and Then, from Dini's theorem [8], we deduce that sup t (Y n t -U t ) -ց 0. Therefore, since for any n ∈ N, (Y n t -U t ) ≤ Y 0 t -S t and (Y n -U t ) + ≤ |Y 0 + |U t |, by dominated convergence theorem, we obtain that lim U t ) + | 2 = 0, a.s. Step 4 In this step, we aim to prove that lim |V t (e)| 2 ν(de, dt) + |K + T | 2 + |K - T | 2 = 0 (4.51) Let n, p ∈ N and consider the following processes δY t = Y n t -Y p t , δZ t = Z n t -Z p t and δV t = V n t -V p t . Applying Itô's formula to |∆Y | 2 between t and T |δY t | 2 + |δV s (e)| 2 ν(de, ds) = |δY T | 2 + 2 Using step 2 and 3, we can deduce thatE[|δY t | 2 ]-2L g E[Therefore (Z n ) and (V n ) are a Cauchy sequences in a complete spaces. Consequently there exits two processes Z and V such that (Z n ) and (V n ) converge respectively to Z and V . Y p t | 2 = 0. Moreover, since K n+ is an increasing sequence then K n,+ converges to the process K + . In addition,E K n,+ T | 2 ≤ C we deduce that E |K + T | 2 < +∞. Besides, for any n ∈ N we have L t ≤ Y n t ≤ Y t ≤ U t and lim n t -U t ) + ] 2 = 0.Then L t ≤ Y t ≤ U t . In the other hand, -L t )dK + t . Thus the Skorohod condition is satisfied and the proof of the Theorem (4.4) is complete.

	lim n E Step3 In this step, we aim to prove lim n→+∞ T 0 Let ( Ȳ n t , Zn t , V n t ) be the solution of the following reflected generalized BSDE with jumps |Y n t -Y t | 2 = 0. sup 0≤t≤T |(Y n t -U t ) + | 2 = 0. T T t , Kn n→∞ E sup 0≤t≤T |(Y n t -n→∞ E sup 0≤t≤T |Y n t -Y t | 2 = 0 and there exists Z , V K + and K -such that Therefore, lim p→+∞ E sup 0≤t≤T |Y n t -Y p t | 2 = 0 and then lim n→+∞ E sup 0≤t≤T |Y n t -T 0 (Y n t -L t )dK n,+ t = 0 and lim n T 0 (Y n t = t -L t )dK n,+ T 0 (Y
	    	Ȳ n t = ξ + lim n	T t [f s ( Ȳ n s , Zn s , V n s ) + n(U s -Y n s )]ds + E 0 |Z t | 2 dt + 0 E	T t g s ( Ȳ n s )dA s + Kn+ T -Kn-t
	 			-	T t	Zn s dW s -	T t	E	V n s (e)μ(de, ds),	∀t ∈ [0, T ], P-a.s,	(4.45)
												
	   In addition, we consider ( Ȳ n,m Ȳ n t ≥ L t , T 0 ( Ȳ n T T t -L t )d Kn+ t t , Zn,m t |δZ s | 2 ds + t E	= 0, P-a.s.	t	T	δY s [g s (Y n s ) -g s (Y p s )]dA s
						T							T
		+ 2	t			E	δY s [f s (Y n s , Z n s , V n s ) -f s (Y p s , Z p s , V p s )] ds -2	t	E	δY s δV s (e)μ(de, ds)
						T							T	T
		-2	t		δY s δZ s dB s + 2	t	E	δY s (dK +,n s	-dK +,p s ) -2	t	δY s (dK -,n s	-dK -,p s ).
													(4.52)
	Ȳ n τ = ess sup Since n ≤ p we have 2	T t	E δY t (dK +,n s	-dK +,p s ) ≤ 0 and
			T									T	T
		2	t		E	δY s (dK -,n s	-dK -,p s ) = 2	t	E	δY s dK -,n s	-2	t	E	δY t dK -,p s
													≤ 2 sup 0≤t≤T	|Y p t -U t |K -,n T	+ 2 sup
	In addition, we have	
		E τ [	τ	T	e -n(s-τ |f s ( Ȳ n s , Zn s , V n s )|ds] ≤ T T	1 √ 2n	E[	0	T	|f s ( Ȳ n s , Zn s , V n s )| 2 ds] T	1 2 -→ 0.	(4.47)
						E τ ≤ CE	T t τ	e -n(s-τ |g s ( Ȳ n s )|dA s ≤ |δY s | 2 dA s ] + 2E[ t |δZ s | 2 ds + 1 √ 2n E[ T 0 |δY s | 2 ds + 2 sup 0≤t≤T |Y p t -U t |K -,n t T 0 |g s ( Ȳ n E |δV s (e)| 2 ν(de, ds)] s )| 2 dA s ] 1 2 -→ 0. T + 2 sup 0≤t≤T |U t -Y n t |K -,p T	(4.48) -→ 0. n,p
	E τ where ν is a stopping time with τ ≤ ν ≤ T . Combining (4.47), (4.48) and (4.49), we finally ν τ e -n(s-τ (dV + s -dV -s ) ≤ 1 √ 2n E[|V + T | 2 + |V + T | 2 ] -→ 0. (4.49) obtain Since E[ T 0 |δY s | 2 dA s ] ≤ 2L g √ T E[ T 0 1 2 , using BDG inequality we can rewrite (4.52) |δY s | 2 ds] as follows,
	E[ sup										Ȳτ ≤ Ȳ n τ

t , V n,m t τ E τ e -n(T -t) ξ1 {τ =T } + e -n(τ -t) L τ 1 {τ <T } + T τ e -n(s-t) [f s ( Ȳ n s , Zn s , V n s )ds + g s ( Ȳ n s )dA s ] + n T τ e -n(s-t) U s ds , (4.46)

where τ is an F t -family of stopping times τ ≤ T . Now since U is continuous then

e -n(T -t) ξ1 {τ =T } + n T τ e -n(s-t) U s ds n→∞ -→ ξ1 {τ =T } + U τ 1 {τ ≤T } P-a.s and in H 2 . n -→ ξ1 {τ =T } + U {τ ≤T } in H 2 . (4.50)

Henceforth, we deduce from (Theorem 86,

[START_REF] Dellacherie | Probabilités et potentiel, chapitres ia iv[END_REF]

) that ∀t ∈ [0, T ] Y t ≤ U t P-a.s. Consequently, (Y n t -U t ) -ց 0, ∀t ∈ [0, T ], P-a.s.

0≤t≤T |U t -Y n t |K -,p T .

In the other hand, from the growth assumption of g we have

2 T t δY s [g s (Y n s )g s (Y p s )]dA s ≤ 2C T t |δY s | 2 dA s . 0≤t≤T |δY t | 2 ] ≤ 2L g √ T E[ T 0 |δY s | 2 ds

1 2 + CE T 0 |δY s | 2 ds + 2 sup 0≤t≤T |Y p t -U t |K -,n T + 2 sup 0≤t≤T |U t -Y n t |K -,p T . n E[ sup 0≤t≤T (Y t
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