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A novel phasor control design method:
application to MEMS gyroscopes

Fabrı́cio Saggin, Gérard Scorletti and Anton Korniienko

Abstract— In several applications, the main objective of the
controllers is to ensure some process variable to track (and/or
reject) a sinusoidal reference (disturbance) signal. To that
end, two control approaches are defined: those based on the
sinusoidal signals, and those based on the envelope (amplitude
and phase) of these signals. The former one, which we name
direct approach, corresponds to the classical architectures used
in control engineering. This approach offers a broad range of
methods to design linear controllers with guarantees of stability
and performance. In general, envelope-based approaches are
nonlinear and do not provide those guarantees. However, they
allow obtaining controllers with a bandwidth much smaller
than it would have in the direct approach. In this paper, we
use time-varying complex phasors to describe the envelopes of
the signals in the system. Then, we show that with a suitable
reformulation, the system remains linear. Hence, links between
these approaches are established under the assumption that
a phasor can be instantaneously defined from a modulated
signal (ideality). We propose thus two methods to design a
phasor-based controller: one considering the ideal case and
another where nonidealities are taken into account. Numerical
examples, based on the operation of MEMS gyroscopes, show
the effectiveness of these methods.

I. INTRODUCTION

In numerous applications, the primary objective of a
controller is to compute a control signal such that the output y
of a (linear) process follows a sinusoidal reference trajectory
yr with a given frequency and/or reject sinusoidal distur-
bances with the same frequency. An emerging application
illustrating this is the control of micro-electro-mechanical
systems (MEMS) gyroscopes, where a proof mass shall
oscillate close to the resonance frequency with a controlled
amplitude, such that the angular rate can be accurately
estimated [1], [2]. Similar examples are found in other fields,
as in electrical machines and systems, inertial sensors, radio-
frequency accelerators, see e.g. [3], [4], [5] and references
therein.

In the literature, we may distinguish two main approaches
to achieve the goals above for linear time-invariant (LTI)
systems: the direct control, and the envelope or phasor-based
one. The direct control corresponds to the general practice in
control engineering: the control signal u is computed from
the measurements of the plant output y and a sinusoidal
reference signal yr, as in [6], [7]. In this case, the controller
can be designed by different methods, e.g. the H∞ synthesis.

In the phasor-based approach, the control signal is often
based on the envelope, i.e., the amplitude and phase shift,
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of the signals of interest. The main advantage of this ap-
proach is that the envelope of the signals of interest are
constant in steady-state. Hence, one can use, for instance,
PID controllers to track the reference amplitude and phase
shift, as in [8]. Another advantage is that the controller may
work at a lower frequency than it would have in the classical
architecture. Thus, in case of digital implementation, smaller
sampling frequencies can be used. For these (implementa-
tion) reasons, this approach is widely used, for instance,
in the control of MEMS gyroscopes [9]. Nevertheless, an
important drawback of the envelope-based approach is that
nonlinearities are included into the loop to compute the
amplitude and phase shift of the signals. The conventional
approach is then to linearize the system around operating
points [1], [10], leading to controllers whose performance is
not guaranteed.

In this paper, we show that by changing the signal repre-
sentation, a complex-valued linear model is obtained. This
modification is made by using the real and imaginary parts of
a time-varying complex phasor, described in [3], instead of
amplitude and phase shift representation. Even if the model
becomes complex-valued, this reformulation allows us to
design linear controllers with guarantees on the performance
of the closed-loop system.

In this paper, we also reveal that there exists a link
between the classical approach and the phasor one. This
link allows transforming a controller designed for the direct
approach into a controller for the phasor one, yielding
the same performance level. Hence, linear controllers from
the direct approach may be transposed to the phasor one.
The only condition for this property to hold is that the
phasor construction block is ideal, i.e., a phasor can be
instantaneously defined from a modulated/sinusoidal signal.

In practice, however, nonidealities are present in that
construction block and may yield to a significant perfor-
mance discrepancy and even instability of the closed-loop
system. Another contribution of this paper is, therefore, a
control design method, based on the H∞ synthesis [11], that
takes into account these nonidealities to compute a phasor-
based controller, ensuring the stability and an appropriate
performance level.

This paper is structured as follows. Section II states the
phasor control problem. Section III presents the (linear)
complex phasor model of an LTI system and some of its
properties. In Section IV, links between the direct and the
phasor approach are established, allowing to design a phasor-
based controller from a direct one. Section V discusses
how to implement the phasor construction block and the



nonidealities entailed by it. Then, a novel phasor control
design approach is presented, allowing one to take into
consideration those nonidealities. Numerical examples, based
on MEMS gyroscope operation, illustrate our main results in
Section VI and conclusions are drawn in Section VII.

Notation: Subscripts R and I indicate respectively the real
and imaginary parts of a complex variable; j2 =−1. In is the
identity matrix of Rn×n and 0n×m is the zero matrix of Rn×m

(subscripts are omitted if obvious from context). For two
matrices A, B, diag(A,B) is their diagonal concatenation. AT

is the transpose of A. M⊥ denotes the orthogonal complement
of M. In linear matrix inequalities (LMI), � represents terms
that can be deduced from symmetry. For a complex matrix
M, σ(M) denotes its maximum singular value. The ? denotes
the Redheffer (star) product [11]. For a given LTI system
F , ‖F‖∞ denotes its H∞-norm. The L2-norm of a signal v
from R+ to Rnv is defined as ‖v‖2

2 =
∫ ∞

0 v(t)T v(t)dt and
the set of signals for which the L2-norm is bounded is
denoted L2. The L2-gain of an operator Σ is defined as
‖Σ‖i2 = supv∈L2, v6=0 ‖Σv‖2/‖v‖2.

II. PHASOR CONTROL PROBLEM

Let us consider the linear time-invariant (LTI) plant

G :
{

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t) (1)

with x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny , and real matrices A,
B, C and D of appropriate dimensions. The original control
objective is to compute u such that y tracks a sinusoidal
reference yr with frequency ω0 and/or reject sinusoidal
disturbances with the same frequency.

In control theory, this problem is usually solved by design-
ing an LTI controller using, for instance, the H∞ synthesis,
see [11]. This controller computes u from the measurement
of y and the reference yr. We name this approach direct
control problem.

An alternative approach, named phasor control problem,
is considered. In this case, the control signal has the form:

u(t) =U(t)cos(φexc(t)+φu(t)) , (2)

where φexc(t), called the excitation phase, is a given differen-
tiable function. The couple (U, φu) is referred to as a phasor
of the signal u, from where a complex phasor can be similarly
defined: u(t) =U(t)e jφu(t). Then, instead of computing u, the
controller Kph computes U and φu from the measurement of
Y and φy, similarly defined as:

y(t) = Y (t)cos(φexc(t)+φy(t)) , (3)

that is the measure of the phasor of y. The control problem
is then recast as the tracking and/or the rejection of phasor
signals: compute the phasor (U, φu) such that the defined
phasor (Y, φy) tracks a reference phasor (Yr, φyr).

The above description is illustrated in Fig. 1. The nonlinear
block p2s transforms a phasor into a modulated signal, as
in (2), and s2p transforms a modulated signal into a phasor
(amplitude and phase shift) with respect to φexc.

Kph p2s G s2p

φexc(t)

(Yr, φr) (U, φu) u y (Y, φy)

To-be-controlled system

Fig. 1. Block-diagram of the phasor-based control architecture.

In the phasor control problem, the to-be-controlled plant is
defined by (1), (2) and s2p, i.e., (dropping time dependency)





ẋ = Ax+BU cos(φexc +φu)[
Y
φy

]
= s2p(Cx+DU cos(φexc +φu))

. (4)

Since s2p and (2) are nonlinear functions of the phasor, the
design of the controller is, a priori, a difficult problem. In
the next section, we reveal that if the signals are replaced by
their complex phasor, the plant (4) becomes linear.

III. COMPLEX PHASOR MODELING

A. Complex phasor model

The following theorem introduces a (linear) model of the
plant based on the complex phasors.

Theorem 1. Given a differentiable function φexc(t) and a
couple (U,φu), the output y of the system (1), for u(t) =
U(t)cos(φexc(t)+φu(t)), is given by

y(t) = Y (t)cos(φexc(t)+φy(t)) ,

where (Y,φy) is such that Y (t) = |y(t)|, φy(t) = arg(y(t)) and
y is the output of the system G, defined by

G :
{

ẋ(t) =
(
A− jφ̇exc(t)In

)
x(t)+Bu(t)

y(t) = Cx(t)+Du(t) (5)

for the input u(t) =U(t)e jφu(t).

Proof. Let y(t) and x(t) be solutions of (5) for the input
u(t) = U(t)e jφu(t). By multiplying (5) by e jφexc(t), we have,
after simplifications
{

d
dt

(
x(t)e jφexc(t)

)
= Ax(t)e jφexc(t)+Bu(t)e jφexc(t)

y(t)e jφexc(t) = Cx(t)e jφexc(t)+Du(t)e jφexc(t)
.

By taking the real part, since A, B, C and D are real-valued
matrices, we obtain
{ d

dt

(
ℜ
(
xe jφexc

))
= Aℜ

(
xe jφexc

)
+Bℜ

(
ue jφexc

)

ℜ
(
ye jφexc

)
= Cℜ

(
xe jφexc

)
+Dℜ

(
ue jφexc

) .

This system corresponds to (1) when the input signal is given
by u(t) =U(t)cos(φexc(t)+φu(t)).

Note that the system G, see (5), computes the complex
phasors of x and y from the complex phasor of the input u.
Thus, G is referred to as the Complex Phasor Model (CPM)
of G. Furthermore, G is linear parameter varying (LPV).
However, when φexc(t) = ω0t, it is actually an LTI system.



The CPM is a system with complex-valued parameters.
Nonetheless, by splitting the signals into real and imaginary
parts, G is equivalently represented by the real-valued system
below, denoted Complex Phasor Real Model (CPRM):

Gcp :
{

ẋcp(t) = Acp
(
φ̇exc(t)

)
xcp(t)+Bcpucp(t)

ycp(t) =Ccpxcp(t)+Dcpucp(t)
(6)

with xcp = [xT
R xT

I ]
T , ucp = [uT

R uT
I ]

T , ycp = [yT
R yT

I ]
T ,

Acp
(
φ̇exc(t)

)
=

[
A φ̇exc(t)In

−φ̇exc(t)In A

]
,

Bcp = diag(B, B), Ccp = diag(C,C) and Dcp = diag(D, D).
Note that this model corresponds to
{

ẋ = Ax+B
[
cos(φexc) − sin(φexc)

]
ucp

ycp = s2cp
(
Cx+D

[
cos(φexc) − sin(φexc)

]
ucp
) , (7)

where x is the state vector of (4) and s2cp is an operator that
associates ycp with y.

Based on the CPRM, we define a new control problem,
named complex phasor control problem. In this problem,
the plant is defined by Gcp of (6); the controller, denoted Kcp,
has to compute ucp from ycp and yrcp such that ycp tracks
the reference signal yrcp .

For the sake of simplicity, in this work, we focus on the
case where φexc(t) = ω0t, i.e., Gcp is an LTI system. The
general case can be similarly discussed using the LPV control
approach, see e.g. [12].

Before to proceed with the solution for the complex phasor
control problem, we present some relevant properties of the
complex phasor model in the LTI case.

B. Properties of the complex phasor model in the LTI case

The systems G and Gcp have poles with the same real part
that the poles of G. Then, the stability of one is equivalent
to the stability of the others. Moreover, since G can be
defined as G(s) = G(s+ jω0), the frequency response of G
corresponds to a frequency shift of the frequency response
of G. Thus, ‖G(s)‖∞ = ‖G(s)‖∞ =

∥∥Gcp(s)
∥∥

∞ [5].

IV. CONTROL DESIGN BASED ON THE DIRECT PROBLEM

In this section, we intend to answer two key questions.
(i) Besides the implementation-related advantages of pha-

sor control approach over the direct control one [9], does
any of them ensure a better performance level?

(ii) Is it possible to compute a direct controller and
transform it into a complex phasor controller?

We define the performance level as an upper bound on
the H∞-norm of the interconnection of the augmented plant,
i.e., the plant augmented with weighting functions, and the
controller [11].

A. Solving the direct control problem and the complex pha-
sor control problem

The controller for the direct control problem can be com-
puted by solving the standard H∞ problem. We consider an

augmented plant P, composed of the plant G and weighting
functions, usually defined by a state-space representation

P :





ẋP = APxP + BuuP + Bww
yP = CyxP + Dyww
z = CzxP + DzuuP + Dzww

(8)

with xP(t) ∈ RnP , uP(t) ∈ RnuP , w(t) ∈ Rnw , yP(t) ∈ RnyP ,
z(t) ∈Rnz , and real matrices of appropriate dimensions. The
problem is: given γ > 0, compute a controller

K :
{

ẋK = AKxK + BKyP
uP = CKxK + DKyP

, (9)

where xK(t) ∈ RnP , if there is any, such that ‖P ?K‖∞ < γ ,
i.e., the closed-loop system defined by (8) and (9) has an
H∞ norm smaller than γ . The feasibility of this problem is
assessed by the following theorem.

Theorem 2 ([13]). Consider the system (8). Then, there is
a dynamic output feedback, in the form of (9), such that
‖P ?K‖∞ < γ if and only if there exist R,S ∈ RnP×nP such
that R = RT , S = ST ,

[
�
]T
⊥




SAT
P +APS Bw SCT

z
BT

w −γI DT
zw

CzS Dzw −γI


[BT

u 0 DT
zu
]
⊥ ≺ 0,

[
�
]T
⊥




AT
PR+RAP RBw CT

z
BT

wR −γI DT
zw

Cz Dzw −γI


[Cy Dyw 0

]
⊥ ≺ 0

and
[

R I
I S

]
� 0.

The complex phasor control problem can be addressed
as a special case of the H∞ control problem, but with an
augmented plant Pcp, which is the CPRM associated to P.
Nevertheless, the solution K˜ of this H∞ control problem does
not necessarily admit a state-space representation with the
structure of a CPRM.

Since the direct control problem and the complex phasor
one can be formulated as H∞ control problems, we consider
this formalism to investigate the links between them.

B. Connections between the direct control problem and the
complex phasor real control problem

We now investigate the connections between the direct
control problem and the complex phasor one.

Theorem 3. Let P be the plant defined in (8) and K the
controller defined by (9). Let Pcp and Kcp be respectively the
CPRM of P and K for φexc(t) = ω0t. Hence, given γ > 0,

1) if K is such that ‖P?K‖∞ < γ , then ‖Pcp ?Kcp‖∞ < γ;
2) (P?K)cp = Pcp ?Kcp;
3) there exists a controller K˜ such that ‖Pcp ?K˜‖∞ < γ if

and only if there exists K such that ‖P?K‖∞ < γ .

Proof. Here, we just present the sketch of the proof. Details
for the property 3 are developed in [14], and, for the sake of
briefness, the details based on routine algebra are omitted.

Properties 1) & 2): By building the state-space realizations
of (P?K)cp and Pcp ?Kcp from those of P and K and by



observing that they are equal, we prove the property 2. From
section III-B, ‖(P?K)cp ‖∞ = ‖P ? K‖∞, then ‖P ? K‖∞ =
‖Pcp ?Kcp‖∞, which proves property 1.

Property 3): The proof consists in first applying the H∞
problem associated to the complex phasor control problem.
The existence of K˜ such that ‖Pcp ?K˜‖∞ < γ is equivalent to
the fact that the feasibility problem defined by Theorem 2
has a solution. The second step consists in using the solution
of this feasibility problem to construct the solution of the
feasibility problem defined by Theorem 2 when this theorem
is applied to the direct control problem, which implies that
there exists K such that ‖P?K‖∞ < γ .

The first property claims that if a direct controller K
achieves a performance level γ , then Kcp is a solution of
the complex phasor control problem, ensuring the same per-
formance level. The second property states that the complex
phasor model of the interconnection P ?K is equal to the
interconnection of each complex phasor model.

The third property reveals that if a solution K˜ of the com-
plex phasor control problem achieves a given performance
level, then, necessarily, the same level of performance can
be obtained by a direct controller and vice-versa. In other
words, even with an augmented degree of freedom (number
of variables), the complex phasor control cannot ensure better
performance level than that of the direct control.

All these results are based on the fact that (7) is exactly
described by Gcp. However, the (ideal) s2cp block cannot
be implemented. To extract amplitude and phase of a signal
(or real and imaginary parts), additional nonlinear operators
and filters are introduced into the loop. These elements,
that were not considered in this section, may deteriorate
the performance of the closed-loop system or even make
it unstable. In the sequel, we discuss how to implement the
s2cp block and how to model its nonidealities. Then, we
propose an approach to take into account these nonidealities
during the control design.

V. IMPLEMENTATION OF S2CP AND CONTROL DESIGN

Up to this point, we have considered the s2cp block
as an operator that allows to extract ycp from a signal y.
Nonetheless, by observing (3), one can notice that, for a
given φexc and y, an infinity number of couples (Y, φy), and
consequently (yR, yI), satisfies the equation. This ambiguity
problem is recurrent in communication theory and signal
processing, and can be solved by means of the Hilbert
transform [15]. In practice, this operation is performed by
a synchronous demodulation, introducing constraints on the
signals and nonidealities into the s2cp block. In this section,
we discuss the implementation of the s2cp block and how to
model its nonidealities. Then, we propose a control design
method that takes them into account.

A. Implementation of the s2cp block

In practice (with φexc(t) = ω0t), the operator s2cp is
implemented by a synchronous demodulation if the power
spectrum of y is in the interval (0, 2ω0) [15]. Fig. 2 shows

×

×

FLP

FLP

2cos(ω0t)

−2sin(ω0t)

y

yc ŷR

ys ŷI

Fig. 2. Block-diagram of the synchronous demodulation.

the scheme of the demodulator, which includes ideal low-
pass filters FLP with cutoff frequency ωc = ω0. This scheme
is motivated by the following point. Let y be the complex
phasor of y, i.e., y(t) = yR(t)cos(ω0t)−yI(t)sin(ω0t). Then,
yc(t) = 2y(t)cos(ω0t) and ys(t) =−2y(t)sin(ω0t) are recast:

yc(t) = yR(t)+

δyR(t)︷ ︸︸ ︷(
yR(t)cos(2ω0t)− yI(t)sin(2ω0t)

)

ys(t) = yI(t)−
(

yR(t)sin(2ω0t)+ yI(t)cos(2ω0t)
)

︸ ︷︷ ︸
δyI(t)

(10)

As the power spectrum support of the signal y is assumed
to be included in the frequency interval (0, 2ω0), the power
spectrum support of yR(t) and yI(t) is in (0, ω0), and the
power spectrum support of δyR(t) and δyI(t) is in (ω0, 3ω0).
As a consequence, since FLP is an ideal filter with ωc = ω0,
ŷR(t) = yR(t) and ŷI(t) = yI(t).

In practice, the low-pass filters are not ideal. Indeed, they
present a transition band between the pass band and the
stop band. Since the power spectrum support of δyR(t) and
the power spectrum support of yR(t) can be very close, the
existence of the transition band can dramatically change the
behavior of the closed-loop system. Then, it is crucial to:

1) evaluate the effect of this nonideal filter when the
controller was computed as described in section IV; this
a posteriori analysis is investigated in [9];

2) consider this nonideality when designing the control
law; this point is developed in the sequel.

B. Modeling the nonidealities of s2cp

The question now is how to model the nonideal s2cp.
From (10), yc and ys can be rewritten in matrix form as

[
yc(t)
ys(t)

]
= (I +∆(ω0))

[
yR(t)
yI(t)

]

with ∆(ω0) =

[
cos(2ω0t) −sin(2ω0t)
−sin(2ω0t) −cos(2ω0t)

]
.

Then, the nonideal s2cp (synchronous demodulation) is mod-
eled as the series connection of an ideal s2cp, the block
(I +∆(ω0)) and the nonideal filters FLP, as in Fig. 3. In the
sequel, this modeling is used to compute a CPRM controller.

C. Solution to the complex phasor control problem with
nonideal s2cp

Here, we briefly present how to compute a controller
which ensures performance and robust stability with respect
to the nonidealities of s2cp using H∞ criterion.



K
˜ cp2s G s2cp

ω0t

yrR

yrI

uR

uI
u y

yR

yI

∆(ω0)

+

+

+

+

FLP

FLP

yc

ys

ŷR

ŷI

CPRM

Nonideal s2cp

Fig. 3. Scheme of the complex phasor architecture with nonideal s2cp.

K
˜

Wr I2
Gcp

Wd I2

w1

yrcp
+

ucp

ycp

Wn I2FLP I2

Wu I2

Wε I2

w3ncp++

w2

dcp

+

+

−
εcp

z2

z1

Fig. 4. Considered criterion for the H∞ synthesis.

Based on the H∞ synthesis [11], the solution is obtained
by finding K˜ , if there is any, such that
∥∥∥∥

Wε Tyrcp→εcpWr Wε Tdcp→εcpWd Wε Tncp→εcpWn
WuTyrcp→ucpWr WuTdcp→ucpWd WuTncp→ucpWn

∥∥∥∥
∞
< 1, (11)

where Wn(s) = Wε(s)−1, Ta→b denotes the transfer from
signal a to signal b, and scalar weighting functions Wi, with
i ∈ {r, d, n, ε, u}, express the control specifications, detailed
in the report [14]. This H∞ criterion is shown in Fig. 4.

Concerning the nonideal s2cp, note that (11) implies
‖Wε Tncp→εcpWn‖∞ < 1. Moreover, since Tncp→εcp =−Tncp→ycp

and Wn =Wε
−1, this inequality implies ‖Tncp→ycp‖∞ < 1. As

the L2 gain of an LTI system is equal to its H∞ norm [16],
the L2 gain of Tncp→ycp is strictly less than 1.

The system presented in Fig. 3 can be rewritten as the
interconnection of Tncp→ycp and ∆(ω0). Since ∀ t,ω0 ∈ R,
σ (∆(ω0)) ≤ 1, the L2 gain of the operator that associates
ycp with ∆(ω0)ycp is equal to 1. Then, since the product of
the L2 gain of this operator and the L2 gain of Tncp→ycp is
strictly less than 1, the stability of the overall interconnected
system is obtained by applying the small gain theorem [16].

VI. NUMERICAL EXAMPLES

In this section, we illustrate the different control ap-
proaches of this paper. To this end, we consider the operation
of a MEMS gyroscope, which is composed of a proof mass
with two perpendicular resonant modes. Oscillations are
driven on the so-called drive mode. Then, if the device is
submitted to an angular rate perpendicular to those axes,
due to the Coriolis effect, oscillations are produced on the
so-called sense mode. By measuring these secondary oscilla-
tions, the actual angular rate can be estimated. The accuracy
of the gyroscope depends (among other factors) on how well
controlled are the oscillations on the drive mode [1], [10].

Fig. 5. Case 1 - comparison between the tracking errors of direct approach
(G, K) and ideal CPRM (Gcp Kcp).

Thus, we focus on the control of the drive mode. For further
details on the MEMS gyroscopes operation, see e.g. [1], [2].

The model of a MEMS gyroscope drive mode is given by

(1) with A =

[
0 1
−ω2

n −ωn/Q

]
, B =

[
0 ωn

]T , C =
[
1 0

]
,

D = 0, ωn = 2π · 11500 rads−1 and Q = 50 [14]. Let us
consider the following specifications:

1) tracking of a reference signal yr(t) = Yr cos(ω0t) with
ω0 = ωn and an error ε(t) = yr(t)−y(t) such that ∀t ≥
0.5ms, |ε(t)|< 0.002Yr;

2) the closed-loop system is stable, i.e. the stability against
the nonidealities of the s2cp has to be guaranteed.

In the sequel, we consider two cases: (i) we design a
controller in the direct approach and take its corresponding
CPRM to apply in a phasor approach, as presented in
section IV; (ii) we design a phasor controller taking the s2cp
nonidealities into account, as discussed in section V.

Here, we discuss the main results. Details on the controller
design and numerical values are available in [14].

A. Case 1: design based on the direct control problem

In this first case, we design a controller for the direct ap-
proach by solving the standard H∞ problem. This controller is
then transformed into a phasor controller Kcp via Theorem 1
and implemented according to the phasor-based architecture.

To evaluate the tracking performance of the obtained
controller, we apply an amplitude reference step at t = 1ms
and ω0 = ωn. The closed loop composed of K and G is
referred to as direct approach, whereas the (virtual) control
loop composed by Kcp and Gcp is denoted ideal CPRM.
Fig. 5 presents the tracking error of both strategies, which are
superposed. We also observe that, in about 0.3 ms, the error
converges to its steady-state value, which is close to 0.001Yr.
For the sake of illustration, we also present the amplitude
envelope computed from the ideal CPRM, that corresponds
to the amplitude of the tracking error. This fact illustrates
the Theorem 1 and validates the discussions of section IV.

In order to evaluate the closed-loop system with the
phasor control and the nonideal s2cp, we simulate the overall
system (G, nonideal s2cp, Kcp, cp2s) with FLP(s) = ωc

s+ωc
and

ωc = 2π · 100rads−1. The simulation results are presented
in Fig. 6, where we notice that the error has higher values
and takes more than 20 ms to achieve steady-state. When
in steady-state, the error amplitude is about 0.005Yr. These



Fig. 6. Case 1 - tracking error of the nonideal CPRM (G, nonideal s2cp,
Kcp, cp2s) with ωc = 2π ·100rads−1.

Fig. 7. Case 2 - comparison between direct approach and nonideal CPRM
with ωx = 2π ·8rads−1 for case 1 (Kcp) and case 2 (K̃).

substantial differences with respect to the ideal CPRM are
mainly due to FLP, present in the nonideal s2cp.

Besides the important changes on the behavior of the
closed-loop system, if we reduce the cutoff frequency of FLP,
the system may become unstable. This is the case when we
make, e.g., ωc = 2π ·8rads−1, illustrated in Fig. 7.

B. Case 2: design based on the CPRM and nonideal s2cp

Here, we illustrate the method presented in section V.
We consider FLP with ωc = 2π · 8rads−1, which makes the
closed-loop system of the previous case unstable.

With the H∞ synthesis, we obtain a controller that ensures,
in addition to the reference tracking, ‖Tncp→ycp‖∞ = 0.983.
Hence, the small gain theorem conditions are satisfied and
ensure the stability of the closed-loop system in presence of
the time-varying matrix ∆(ω0).

The overall system (G, nonideal s2cp, K˜ , cp2s) is simu-
lated with ωc = 2π ·8rads−1. We apply the same reference
signal of the previous case. The tracking error is presented
in Fig. 7. For the sake of comparison, we also plot the
results with the controller designed in case 1 (instability)
and direct approach. We observe that, despite the nonideal
s2cp, at the transient-state, the phasor controller that takes
FLP into account (case 2) has a performance similar to
the direct one. The phasor approach presents some small
oscillations until t ≈ 3ms. In steady-state, the tracking errors
of both strategies converge to close to 0.001Yr, as required.
Furthermore, note that the phasor controller is conceived to
control the nonlinear system presented in Fig. 1 or Fig. 3,
where a direct controller cannot be applied.

VII. CONCLUSIONS

In some application, as the control of MEMS gyroscopes,
it is usual to consider a phasor control architecture due
to its implementation advantages. However, this strategy

introduces nonlinear elements into the loop. In this paper,
we present the complex phasor modeling, which allows
considering the to-be-controlled system as linear for the
controller design.

Correspondences between classical control architectures
and phasor-based ones were established. These equivalences
allow one to design a linear controller in classical architec-
ture and implement an equivalent controller in a phasor-based
architecture, ensuring the same performance level if the s2cp
block is ideal. In practical implementations, nonidealities
appear and can quickly degrade the performance of the
closed-loop system. The modeling of these nonidealities
allows us to analyze the closed-loop system and to take
them into account to design a controller. Simulation results
emphasized the effectiveness of the proposed method.

The final message of this paper is that if there are prac-
tical constraints imposing the use of a phasor architecture,
the nonidealities of the s2cp block have to be taken into
consideration, guaranteeing that the design specifications are
verified in the real implementation.
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