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Introduction

MEMS gyroscopes are micromachined devices widely employed to measure the rotation of objects. Their main features are easy integration in electronic devices, low cost, and low power consumption. However, MEMS sensors have a degraded precision when compared to other technologies. Therefore, in the last decades, efforts have been devoted to improve the performance of MEMS gyroscopes through the use of control loops.

MEMS gyroscopes are composed of two orthogonal oscillating modes: the drive and sense modes. Controlled oscillations are sustained on the drive mode, such that, when the sensor is submitted to an angular rate Ω 𝑧 , a Coriolis force appears, transferring part of the oscillation energy to the sense mode. The Coriolis force is proportional to Ω 𝑧 ; then, by detecting the oscillations along with the sense mode, the Coriolis force and the angular rate can be computed.

In this work, we focus on the closed-loop operation of the sense mode, also known as forceto-rebalance loop. The main objective of this approach is to use a controller that, through the actuation circuit, applies a force on the sense mode that compensates for the Coriolis one. To this purpose, the well-known electro-mechanical ΣΔ (EM-ΣΔ) architecture has been widely employed [START_REF] Petkov | A fourth-order SigmaDelta interface for micromachined inertial sensors[END_REF][START_REF] El-Shennawy | Design method for a ΣΔ-based closed loop gyroscope[END_REF][START_REF] Raman | A Closed-Loop Digitally Controlled MEMS Gyroscope With Unconstrained Sigma-Delta Force-Feedback[END_REF][START_REF] Elsayed | A self-clocked ASIC interface for MEMS gyroscope with 1m noise floor[END_REF][START_REF] Chen | Design and Implementation of an Optimized Double Closed-Loop Control System for MEMS Vibratory Gyroscope[END_REF][START_REF] Chen | Electro-mechanical Sigma-Delta Modulators (ΣΔM) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review[END_REF]. We can mention three main benefits of this approach. First, like other closed-loop strategies, the bandwidth, linearity, dynamic range, and robustness of the sensor are improved. Second, the use of a relay (1-bit quantizer) for the actuation avoids problems linked to the nonlinear relationship between voltage and force of electrostatic actuators, improving the linear behavior of the device. Finally, being the output signal coded into a single bit, the interface with the digital processing circuits is straightforward. [START_REF] Raman | A Closed-Loop Digitally Controlled MEMS Gyroscope With Unconstrained Sigma-Delta Force-Feedback[END_REF] The EM-ΣΔ architecture is inspired by the classical ΣΔ modulators, which are widely used in A/D conversion circuits, especially when high resolution is required [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]. The strength of the classical ΣΔ modulators comes from the use of oversampling and a feedback loop. The oversampling makes it possible to achieve an interesting signal-to-noise ratio (SNR), even when coding the signal with a single bit. Moreover, the feedback loop is designed to achieve three primary goals. First, to shape the power spectral density (PSD) of the quantization error (or quantization noise), minimizing its influence on the output signal in the frequency range of interest. The second goal is to ensure that the input signal appears at the converter output in the frequency range of interest. And last but not least, to ensure that the closedloop system is stable.

In the classical ΣΔ modulators, the noise-shaping filter is electronic and fully configurable by the designer. There exist well-established methods and numerical tools, allowing for an efficient modulator design. Nevertheless, the noise-shaping filter of the EM-ΣΔ is composed of an electronic filter and a mechanical element -the sense mode -, which is not configurable. Then, while the design of the classical ΣΔ modulators is well established, the design of the electronic filter of the EM-ΣΔ modulator may be a difficult task [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]. In addition to the fixed structure of the mechanical transfer (sense mode), one of the main issues comes from the fact that this transfer is often uncertain due to fabrication dispersion, environmental variation as well as imperfect modeling. Moreover, high-frequency resonant modes may arise from the electrostatic comb fingers, adding an extra phase lag to the system, compromising its stability [START_REF] Chen | Electro-mechanical Sigma-Delta Modulators (ΣΔM) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review[END_REF]. The inclusion of the sense mode also adds noise into the loop (due to mechanical-thermal noise, charge amplifiers, and ADC) [8]. Thus, additionally to the standard specifications (minimize the quantization error and reproduce at the output the input signal), the design of the electronic filter has three more objectives to pursue. The first one is to ensure the stability of the closed-loop system, despite the uncertainties related to the mechanical transfer, i.e., robust stability. The second one is to minimize the effects of the different noises over the output signal. Finally, an additional specification can be the minimization of the displacements of the sense mode [START_REF] Wilcock | Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors[END_REF]. Some design methods for the electronic filter are proposed in the literature. In [START_REF] Petkov | A fourth-order SigmaDelta interface for micromachined inertial sensors[END_REF], inspired by the classical ΣΔ modulators, the authors choose a filter composed of a second-order resonator associated with a lead-phase compensator. The resonator adds zeros on the quantization noise transfer function (QNTF), whereas the compensator provides the required phase to ensure the stability of the closed-loop system. The effects of the electronic noises are evaluated afterward in [8]. In [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF], the authors show that with one additional [START_REF] Elsayed | A self-clocked ASIC interface for MEMS gyroscope with 1m noise floor[END_REF] feedback, the same design flow of the classical ΣΔ modulators can be applied for the EM-ΣΔ feedback, providing a systematic design methodology and ensuring robustness against the relay. Nevertheless, the effects of the all noise sources are not considered for the filter design, and the robust stability is only partially ensured.

More recently, the use of genetic algorithms was also proposed [START_REF] Chen | Design and Implementation of an Optimized Double Closed-Loop Control System for MEMS Vibratory Gyroscope[END_REF][START_REF] Wilcock | Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors[END_REF]. The main advantage of this approach is that it allows choosing a multi-objective criterion to be optimized. In these works, the criterion consists of (i) minimizing the effect of the noises and quantization error on the output; and (ii) minimizing the displacements of the proof mass. The main issue of this approach, however, is that the solutions do not provide any formal guarantee of performance or robust stability.

In this work, we propose a systematic method to design the EM-ΣΔ electronic filter, guaranteeing both performance and robust stability. This method is based on the celebrated 𝐻 ∞ synthesis [START_REF] Skogestad | Multivariable Feedback Control -Analysis and design[END_REF], which is a very flexible design method, allowing to express and to ensure different performance specifications in the frequency domain. Indeed, these specifications are ensured by imposing prescribed shapes on the magnitude of closed-loop transfer functions. Moreover, appropriate frequency-domain constraints also guarantee the robust stability of the system. The critical point of the 𝐻 ∞ design is a suitable choice of the closedloop transfer functions and the so-called weighting filters to impose appropriate frequency constraints. Furthermore, we consider the digital implementation of the electronic filter, taking into account the sampling-and-hold effects.

The standard 𝐻 ∞ design method is conceived for linear systems, which is not generally the case of the EM-ΣΔ architecture. Thus, to apply this method, we model the relay (1-bit quantizer) as an uncertain gain and a quantization error, as usually done for the EM-ΣΔ filter design [START_REF] Petkov | A fourth-order SigmaDelta interface for micromachined inertial sensors[END_REF][START_REF] Chen | Electro-mechanical Sigma-Delta Modulators (ΣΔM) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review[END_REF][START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]. Moreover, with our method, even the constrained nature of EM-ΣΔ filters can be treated by applying the structured 𝐻 ∞ method [START_REF] Apkarian | Nonsmooth 𝐻 ∞ Synthesis[END_REF], keeping the main benefits of the standard 𝐻 ∞ design method.

The remaining of this paper is organized as follows. In Section 2, we revisit the EM-ΣΔ feedback, formalizing the control objectives. In Section 3, the standard 𝐻 ∞ synthesis is presented. In Section 4, the 𝐻 ∞ synthesis is applied to a given EM-ΣΔ architecture. The proposed method is applied to a prototype, and the results are presented in Section 5.

Conclusions are drawn in Section 6.

[5]

EM-𝚺𝚫 Architecture and Control Problem

In this section, we aim at describing the EM-ΣΔ architecture. Then, in a second time, we discuss the expected behavior of the closed-loop system, highlighting the main control objectives and defining the control problem. The EM-ΣΔ architecture is mainly composed of the sense mode, an electronic filter, and a relay (or 1-bit quantizer). The relay feeds back a signal that shall compensate for the disturbing forces at the input of the sense mode, as illustrated in Fig. 1. Because of its role in a feedback loop, in this work, we consider the electronic filter as a controller.

In the scheme of Figure 1, the gyroscope is represented by 𝐻 𝑔𝑦𝑟𝑜 , which models the mechanical part of the sense mode as well as the excitation and detection circuits. The signal 𝐹 𝑖𝑛 is an image of the forces acting on the proof mass, that is, the Coriolis and coupling forces. This "force" is to be rebalanced by the signal 𝑂𝑈𝑇. To quantify the performance of the system, we define the error between these signals: 𝐹 𝑒𝑟𝑟𝑜𝑟 = 𝐹 𝑖𝑛 -𝑂𝑈𝑇.

At the output of 𝐻 𝑔𝑦𝑟𝑜 , 𝑦 is an image of the displacements of the proof mass. The signal 𝑛 models mechanical-thermal and electronic noises as well as any bias added by the instrumentation circuits. The measured signal is then represented by 𝑦 𝑚 = 𝑦 + 𝑛. By adopting the quasi-linear model [START_REF] Petkov | A fourth-order SigmaDelta interface for micromachined inertial sensors[END_REF], the 1-bit quantizer (relay) is modeled by an uncertain gain 𝑘 𝑞 with a quantization error, denoted 𝑄 𝑒𝑟𝑟𝑜𝑟 . This relay produces the signal 𝑂𝑈𝑇, which can take the values +1 and -1.

The controller 𝐾 (electronic filter) may have one or two input signals. If the controller has only one input (𝑦 𝑚 ), it is said to be a one-degree-of-freedom (1DoF) controller. With two inputs (𝑦 𝑚 and 𝑂𝑈𝑇), it is said to be a two-degrees-of-freedom (2DoF) controller. We also classify the controllers as unconstrained or constrained. Controllers are said to be unconstrained if they can implement any transfer function of any order. On the other hand, constrained controllers can only implement a bounded set of transfer functions, often with [START_REF] Chen | Electro-mechanical Sigma-Delta Modulators (ΣΔM) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review[END_REF] limited order. This restriction may be originated, for instance, by the implementation resolution of the controller coefficients.

Independently of the controller choice (1DoF or 2DoF, constrained or unconstrained), we can enumerate the qualitative control objectives for the EM-ΣΔ to work correctly:

i. minimize the effects of 𝑄 𝑒𝑟𝑟𝑜𝑟 on 𝑂𝑈𝑇;

ii. minimize the effects of the different noises and bias (signal 𝑛) on 𝑂𝑈𝑇;

iii. minimize the displacements of the sense mode (𝑦); iv. ensure that the input signal appears at the output, i.e., 𝑂𝑈𝑇 = 𝐹 𝑖𝑛 ;

v. ensure the stability of the closed-loop system against the relay nonlinear effects;

vi. ensure the stability of the closed-loop system against the uncertainties of the mechanical transfer (e.g., unmodeled dynamics or environmental sensitivity).

Note that it may be impossible to achieve all these specifications fully. If we take, for instance, the specification iv. (𝑂𝑈𝑇 = 𝐹 𝑖𝑛 ), it is clear that this equality holds only if 𝐹 𝑖𝑛 = ±1, which is not the case for a MEMS gyroscope. However, looking at the frequency content of both signals, it is possible to make them equal in a frequency range of interest. For MEMS gyroscopes, the resonance frequency of the drive mode, 𝜔 𝑑 , and the required bandwidth determine this frequency range of interest: [𝜔 -; 𝜔 + ], which includes 𝜔 𝑑 . Therefore, some of the defined control objectives have to be ensured, at least in the frequency range of interest.

It will be specified later when the quantified version of the required specifications is defined.

Assuming it is done, we thus can state the control problem as follows.

Problem 1 (Control problem):

Given 𝐻 𝑔𝑦𝑟𝑜 and 𝑘 𝑞 , compute the controller 𝐾 such that the closed-loop system of Figure 1 achieves the required specifications.

𝑯 ∞ Synthesis for the EM𝚺𝚫 Architecture

The 𝐻 ∞ synthesis is a flexible and powerful design method that allows posing the controller design problem as an optimization problem subject to mathematical constraints. These constraints can be used to express performance criteria as well as stability margins, providing guarantees of stability and performance for the closed-loop system. In this section, we present the main concepts of the 𝐻 ∞ synthesis. For further details, we refer the interested reader to [START_REF] Skogestad | Multivariable Feedback Control -Analysis and design[END_REF], for instance. Without loss of generality, we consider the controller synthesis [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF] in continuous-time. In Sec. 4, we discuss how to transpose to discrete-time the results of this section. All the dynamical models used in the sequel are supposed to be Linear Time-Invariant and are described by (a matrix of) transfer functions.

Let us consider the general control configuration of Fig. 2a, where 𝑃 ̃ is the generalized plant, defined by the to-be-controlled system; 𝑝 is the vector of exogenous inputs of the system (such as the Coriolis force and noise); 𝑞 is the vector of controlled outputs (e.g., the estimation error or the signal 𝑂𝑈𝑇); and 𝑢 𝑃 and 𝑦 𝑃 are respectively the control signals (𝑢 in Fig. 1) and sensed outputs (𝑦 𝑚 or [𝑦 𝑚 , 𝑂𝑈𝑇] 𝑇 of Fig. 1 for 1DoF or 2DoF controller, respectively). Moreover, weights 𝑊 𝑖𝑛 and 𝑊 𝑜𝑢𝑡 can be attributed to the different signals of interest through the so-called weighting filters (or weighting functions), as illustrated in Fig. 2b. These weighting filters are usually diagonal and define the weighted input and output vectors 𝑤 = 𝑊 𝑖𝑛 -1 𝑝 and 𝑧 = 𝑊 𝑜𝑢𝑡 𝑞, respectively. Therefore, the objective is to design a controller 𝐾 that ensures a certain performance level 𝛾 > 0 and the stability of 𝑇 𝑤→𝑧 , where we use the notation 𝑇 𝑎→𝑏 to represent the transfer from a signal 𝑎 to a signal 𝑏. The performance level 𝛾 is defined as an upper bound on the 𝐻 ∞ norm of 𝑇 𝑤→𝑧 , that is, The choice of the 𝐻 ∞ criterion is one of the crucial points of the 𝐻 ∞ synthesis. Indeed, the proper choice of the input and output signals and the design of the weighting functions can enforce the desired specifications and provide formal guarantees of robust stability and performance. Another crucial point is how to compute a controller that ensures the 𝐻 ∞ criterion for a given performance level 𝛾.

‖𝑇 𝑤→𝑧 (𝑠)‖ ∞ < 𝛾. (1) 
[8]

In the sequel of this section, we propose an 𝐻 ∞ criterion adapted to the EM-ΣΔ feedback.

Then, we discuss the computation of the controller for the EM-ΣΔ architecture. Two cases are considered: the unconstrained controller and the constrained one.

An 𝐻 ∞ criterion for the EM-𝛴𝛥 architecture

The first step to define the 𝐻 ∞ criterion related to the EM-ΣΔ architecture (see Fig. 

) = ( (1 -𝑘 𝑞 𝐾 2 )𝑆 1 -𝑘 𝑞 𝐾 1 𝑆 1 -𝑆 1 𝐻 𝑔𝑦𝑟𝑜 (1 -𝑘 𝑞 𝐾 2 )𝑆 1 -𝐻 𝑔𝑦𝑟𝑜 𝑘 𝑞 𝐾 1 𝑆 1 -𝐻 𝑔𝑦𝑟𝑜 𝑆 1 𝐻 𝑔𝑦𝑟𝑜 𝐾 1 𝑆 1 𝐾 1 𝑆 1 𝑇 1 /𝑘 𝑞 𝐻 𝑔𝑦𝑟𝑜 𝑘 𝑞 𝐾 1 𝑆 1 𝑘 𝑞 𝐾 1 𝑆 1 𝑆 1 ) , (2) 
where 𝑆 1 = (1 + 𝑘 𝑞 (𝐻 𝑔𝑦𝑟𝑜 𝐾 1 -𝐾 2 ))

-1

and 𝑇 1 = 1 -𝑆 1 .

Remark 1:

The transfer 𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 = 𝑆 1 corresponds to the so-called (quantization) noise transfer function (NTF), the transfer 𝑇 𝑛→𝑂𝑈𝑇 = 𝑘 𝑞 𝐾 1 𝑆 1 corresponds to the electrical/electronic noise transfer function (ENTF), and 𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇 is the signal transfer function (STF) [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]8].

Remark 2:

The classical approach for designing the electronic filter (controller) consists in minimizing the NTF in the frequency range of interest [START_REF] Petkov | A fourth-order SigmaDelta interface for micromachined inertial sensors[END_REF][START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF], i.e.,

∀𝜔 ∈ [𝜔

-; 𝜔 + ], |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 (𝑗𝜔)| ≪ 1, (3) 
minimizing the power spectral density of the quantization noise in this frequency range. 

where 𝑘 1 , 𝑘 2 and 𝑘 3 are constant parameters defined by the designer.

 Robustness against the relay: for the controller design, the quasi-linear model of the relay is adopted, i.e., the relay is modeled as an uncertain gain with additive noise, as in [START_REF] Petkov | A fourth-order SigmaDelta interface for micromachined inertial sensors[END_REF][START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]. Then, to make the closed-loop system robust against this uncertain gain, the condition

‖𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 ‖ ∞ < 2 (8) [10]
is generally considered for stability [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]. Because 𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 = 𝑆 1 , which represents a sensitivity function from the Control Theory point of view [START_REF] Skogestad | Multivariable Feedback Control -Analysis and design[END_REF], this condition corresponds to a modulus margin at the output or input of the relay Δ𝑀 1 > 0.5, implying sufficient phase and gain margins (against the uncertain gain 𝑘 𝑞 ). Strictly speaking, this condition is valid only for the quasi-linear model; it does not mathematically apply for the nonlinear system, with the real relay. However, in the absence of a simple formal stability measure, this condition has been used in practice [START_REF] Raman | An Unconstrained Architecture for Systematic Design of Higher Order ΣΔ Force-Feedback Loops[END_REF]. In light of this discussion, it is also essential to keep the relay operating as close as possible to a "linear" behavior, avoiding saturation of the quantizer (see Sec. 5).

To this purpose, the bias at the relay input (signal 𝑢) has to be minimized as well as its high-frequency components. That is,

∀𝜔 ≈ 0, |𝑇 𝐹 𝑖𝑛 →𝑢 (𝑗𝜔)| ≪ 1, |𝑇 𝑛→𝑢 (𝑗𝜔)| ≪ 1 and |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑢 (𝑗𝜔)| ≪ 1 (9) ∀𝜔 ≫ 𝜔 + , |𝑇 𝐹 𝑖𝑛 →𝑢 (𝑗𝜔)| ≪ 1, |𝑇 𝑛→𝑢 (𝑗𝜔)| ≪ 1 and |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑢 (𝑗𝜔)| ≪ 1. (10) 
 Robustness against the model uncertainties: a typical choice to enforce good stability margins against model uncertainties is to choose a convenient modulus margin at the input or output of the gyroscope model 𝐻 𝑔𝑦𝑟𝑜 [START_REF] Skogestad | Multivariable Feedback Control -Analysis and design[END_REF]. In this case, the sensitivity function is given by 𝑆 2 = 𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 . Then, the modulus margin is given by Δ𝑀 2 = 1/‖𝑆 2 ‖ ∞ .

So, by restricting the maximum value of |𝑆 2 |, a minimum modulus margin can be enforced.

Further than the modulus margin Δ𝑀 2 , additive and multiplicative uncertainties can be considered to take into account the high-frequency resonant modes of the comb fingers. By bounding |𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 | and |𝑇 𝑛→𝑦 | in the frequency range where the highfrequency resonant modes are located, the robust stability of the closed-loop system against those high-frequency modes can be ensured [START_REF] Skogestad | Multivariable Feedback Control -Analysis and design[END_REF].

Please note that the closed-loop specifications are frequency-dependent. To take into account this dependency, we add weighting filters on the signals of interest, as presented in the 𝐻 ∞ criterion of Fig. 3. Notice that hereafter the signal 𝑂𝑈𝑇 is not taken into account. The output vector is henceforth given by 𝑞 = [𝐹 𝑒𝑟𝑟𝑜𝑟 , 𝑦, 𝑢] 𝑇 . This follows from the fact that there [11] Therefore, the general 𝐻 ∞ EM-ΣΔ design problem can be stated as follows.

Problem 2 (General 𝑯 ∞ -based EM-𝜮𝜟 design problem): Given a generalized plant 𝑃

(which is defined by 𝐻 𝑔𝑦𝑟𝑜 , 𝑘 𝑞 and the weighting functions) and a performance level 𝛾 > 0, compute a controller 𝐾 ∈ 𝒦 that stabilizes 𝑇 𝑤→𝑧 and ensures ‖𝑇 𝑤→𝑧 ‖ ∞ < 𝛾.

The set 𝒦 of controllers is defined in sections 3.3 and 3.4, depending on their structure.

However, regardless of the controller structure, if the optimization problem above has a solution, the following inequality holds Note that if 𝛾 ≤ 1, the weighting functions define an upper bound on the magnitude of the closed-loop transfer functions. Then, the proper choice of the weighting functions allows one to express and ensure the closed-loop constraints and, hence, the control specifications.

We emphasize that the 𝐻 ∞ criterion here presented can be employed to any EM-ΣΔ architecture in the form of Fig. 1, regardless of the controller structure (constrained or unconstrained). The structure of the controller determines the optimization method that is used to solve Problem 2. This point is discussed in the sequel.

[12] For the case of an unconstrained controller, Problem 2 is a convex optimization problem and can therefore be solved efficiently, i.e., in a reasonable time [START_REF] Apkarian | Nonsmooth 𝐻 ∞ Synthesis[END_REF]. The main advantage of dealing with convex optimization problems is that if there exists a solution to the problem, the solution is always found. The problem is that, in general, the EM-ΣΔ controllers are constrained.

A solution to the unconstrained case

An

A solution to the constrained case

In most of the EM-ΣΔ feedbacks, the controller structure is constrained. That is, the controller does not admit the general state-space representation of [START_REF] Åström | Computer-Controlled Systems Theory and Design[END_REF]. This limitation can have some origins, such as (i) the order of the controller is less than 𝑛 𝐾 ; or (ii) implementation constraints, as a limitation of the gains, for instance.

In this framework, we tackle the controller design as a static output feedback problem with the configuration of Figs. 2a and2b, where the predefined dynamics (integrators) of the controller are encapsulated into a new 𝑃 ̃, such that 𝑢 𝑃 = 𝐾𝑦 𝑃 . In this case, 𝒦 is a subset of real matrices. This subset is defined by the structure of the controller and implementation constraints. Therefore, Problem 2 becomes an 𝐻 ∞ synthesis problem with structural constraints [START_REF] Apkarian | Nonsmooth 𝐻 ∞ Synthesis[END_REF]. In this case, the optimization problem is no longer convex. Then, the solution may depend on the initial point and, even if there exists a solution to the problem, there are no guarantees that this solution will be found. However, with good initialization, this problem can be tackled by efficient optimization methods [START_REF] Apkarian | Nonsmooth 𝐻 ∞ Synthesis[END_REF].

The difficulty here is how to define the subset 𝒦 and the new generalized plant 𝑃 ̃. This subject is discussed in the next section.

[13]

𝑯 ∞ Synthesis for a Constrained EM-𝚺𝚫 Controller

In this section, we apply the proposed method to design the controller parameters of a particular EM-ΣΔ architecture. Nevertheless, we emphasize that the procedure here applied can be extended to other EM-ΣΔ architectures.

We consider the architecture detailed in Fig. 4, which is similar to the one proposed in [START_REF] Elsayed | A self-clocked ASIC interface for MEMS gyroscope with 1m noise floor[END_REF],

and where the digital elements work with a sampling time 𝑇 𝑠 = 2𝜋 36𝜔 𝑑

. We use a MEMS gyroscope from Tronic's Microsystems (GYPRO family), whose dynamic behavior (including actuation and instrumentation circuits) is modeled by

𝐻 𝑔𝑦𝑟𝑜 (𝑠) = 𝑘 0 𝜔 𝑠 2 𝑠 2 +s⋅𝜔 𝑠 /𝑄 𝑠 +𝜔 𝑠 2 , (13) 
where 𝑘 0 = 0.0759 is the static gain, 𝜔 𝑠 = 1.004 ⋅ 𝜔 𝑑 is the resonance frequency and 𝑄 𝑠 = 23.4 ⋅ 10 3 is the quality factor of the sense mode. For the controller synthesis, we adopt In gray, we represent the electronic filter coefficients to be designed Some facts justify the fact that this controller is constrained. First, it has only two integrators, i.e., 𝑛 𝐾 = 2. If any of the weighting functions of the 𝐻 ∞ criterion has an order greater than zero, the order of the generalized plant is greater than 2. Moreover, due to the predefined structure of the controller, its poles and zeros cannot be placed arbitrarily. For instance, this structure fixes the 𝑧-domain poles 𝑝 𝑧1 and 𝑝 𝑧2 such that 𝑝 𝑧1 ⋅ 𝑝 𝑧2 = 1, constraining the set of possible controllers.

𝑘 𝑞 = 1.
The objective is to compute the parameters 𝑎 2 , 𝑎 3 , 𝑎 4 , 𝑎 𝑓𝑏 and 𝑔 2 such that the closed-loop system is stable and verifies the specifications of Sec. 2. Thus, we apply the following steps:

i. the first step is to discretize 𝐻 𝑔𝑦𝑟𝑜 , taking the sampling-and-holding effects into account;

[14]

ii. then, a generalized plant 𝑃 ̃ is defined, including 𝐻 𝑔𝑦𝑟𝑜 and the dynamics of the controller (integrators), and the subset 𝒦 is also defined;

iii. the weighting functions are designed to enforce the desired specifications; and iv. finally, the controller is computed by solving Problem 2 with the subset 𝒦 defined in step ii.

Discretization of 𝐻 𝑔𝑦𝑟𝑜

The first step to designing the controller, which is implemented in discrete-time, is to obtain an equivalent discrete-time model of 𝐻 𝑔𝑦𝑟𝑜 . Moreover, this model has to take into consideration the effects of sampling-and-holding (ADC and DAC). To this purpose, we apply the step-invariant method [START_REF] Åström | Computer-Controlled Systems Theory and Design[END_REF], obtaining

𝐻 𝑔𝑦𝑟𝑜 𝑍𝑂𝐻 (𝑧) = (1 -z -1 )𝒵 {ℒ -1 { 𝐻 𝑔𝑦𝑟𝑜 (𝑠) s }}, ( 15 
)
where 𝒵 is the 𝑧-transform and ℒ -1 is the inverse Laplace transform.

4.2.

Defining the generalized plant 𝑃 ̃ and the subset 𝒦 

Weighting functions and controller design

The weighting functions, thanks to [START_REF] Apkarian | Nonsmooth 𝐻 ∞ Synthesis[END_REF], define upper bounds on 𝑇 𝑝→𝑞 and, therefore, enforce the performance specifications of Sec. 3.2. The controller constraints are also taken into account. Hence, we design the continuous-time weighting functions such that the frequency constraints correspond to the upper bounds presented in Figs. 6 and7. The latter one presents a zoom around 𝜔 𝑑 (the resonance frequency of the drive mode), which normalizes the frequency axis. The proposed method is applied, obtaining closed-loop transfers whose frequency responses are identified as CL_new. For the sake of comparison, we also present the frequency responses obtained with an established set of parameters. These transfers are identified as CL_old.

Please note that, globally, CL_old and CL_new have similar frequency responses around 𝜔 𝑑 (normalized frequency equal to 1) and for higher frequencies. The main difference appears in low frequencies. This behavior is justified by the choice of the weighting functions (upper bounds), which, to ensure that the relay operates "linearly" (see constraint of ( 9)), enforce the transfers to 𝑢 (the relay input) to have low gains in low frequencies, reducing the offset at the relay input. Moreover, we obtain ‖𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 ‖ ∞ < 1.3, ensuring good stability margins against the uncertain gain 𝑘 𝑞 . We also obtain ‖𝑆 2 ‖ ∞ = ‖𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 ‖ ∞ < 4.4, providing an adequate stability margin with respect to the model uncertainties. Because of the controller constraints, this value cannot be reduced further with the constraint of (5).

[16]

Note that the upper bound on |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 | shapes the NTF such that the quantification error on the signal 𝑂𝑈𝑇 is minimized around 𝜔 𝑑 . Also note that the proposed approach allows reducing the effects of the noises 𝑛 on 𝑂𝑈𝑇 (equivalent to 𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 ). Due to controller constraints (structural constraints), the transfers 𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 , 𝑇 𝐹 𝑖𝑛 →𝑦 , 𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 and 𝑇 𝑛→𝑦 cannot be minimized around 𝜔 𝑑 . Still, the proposed approach allows optimizing the global behavior of the closed-loop system, at least on the transfers and frequency ranges in which the controller structure allows so. 

Implementation Results

In this section, we present the implementation results obtained with the proposed approach, always comparing with the performance obtained with CL_old.

First, we measure the signal 𝑂𝑈𝑇 with the two different sets of parameters (CL_old and CL_new) with the gyroscope at rest and with the drive mode operating normally. The results are presented in Fig. 8. Please note that with CL_old, the relay output seems to be saturated.

Then, the quasi-linear model of the relay cannot be considered for this set of parameters.

Indeed, when the output stays in 1, the closed-loop system behaves as if it was in openloop operation. On the other hand, with CL_new, the signal 𝑂𝑈𝑇 is more equilibrated (with an average close to zero). This improvement is achieved through the attenuation of the offset (or low-frequency) signals on 𝑢. When comparing the power spectral density (PSD)

of 𝑂𝑈𝑇 for the two sets of parameters -see Figs. The same approach with the similar frequency constraints is applied to six different gyroscopes of the same family, and characterization tests are performed. The average results are presented in Table 1, where we can observe a significant improvement of more than 30% on the scale factor nonlinearity (SFNL), the RMS noise, and the angle-random walk (ARW). These parameters are mainly linked to the linear behavior of the sensor (SFNL)

and the noise on the signal 𝑂𝑈𝑇. As discussed earlier, these aspects are greatly enhanced with CL_new. Moreover, although the (more) modest performance improvement on scale factor over temperature (SFOT) and bias over temperature (BOT), our approach demonstrates to be as robust as the established one for temperature changes. Regarding the bias instability (BI), the performance of both approaches are similar. 

Conclusion

In this work, a new method for designing the electronic filter of an EM-ΣΔ feedback was presented. This approach is based on the 𝐻 ∞ synthesis, which is a flexible and systematic control design method. The choice of an adequate 𝐻 ∞ criterion is one of the crucial points of the 𝐻 ∞ synthesis. In this paper, we propose an 𝐻 ∞ criterion that is suited for any EM-ΣΔ architecture, regardless of the controller structure. The desired specifications are expressed through the weighting functions, which can be adapted by the designer. Another crucial point is the computation of the controller. Here, two cases appear: the unconstrained and the [19] constrained cases. We focus on the latter one, which represents most of the controllers in EM-ΣΔ feedbacks.

To illustrate the use of our method, we consider a given EM-ΣΔ architecture. A new electronic filter is designed and compared to an established one. The flexibility of our method allows us to better manage the nonlinearities of the relay, despite the controller constraints, reflecting in an improvement of the sensor performance parameters.

Future works are focused on the inclusion of other parameters in the design method, such as the gains of the charge amplifiers. Moreover, tests with a more extensive set of gyroscopes are also planned.
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  are no constraints on 𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇 (to have 𝑂𝑈𝑇 = 𝐹 𝑖𝑛 , the constraints are on 𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 instead) and from the redundancies in (2): |𝑇 𝑛→𝑂𝑈𝑇 | = |𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 | and |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 | = |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 |.
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 3 Figure 3 -𝐻 ∞ criterion for the EM-ΣΔ architecture
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 4 Figure 4. EM-ΣΔ architecture. In gray, we represent the electronic filter coefficients to be designed

  The next step is to define the generalized plant 𝑃 ̃ and the subset 𝒦. To this purpose, we isolate the to-be-designed parameters from the rest of the system, defining 𝑃 ̃, as illustrated in Fig.5. The signals entering the to-be-designed parameters define the sensed signal vector 𝑦 𝑃 = [𝑦 1 , 𝑦 2 , 𝑦 3 , 𝑦 4 ] 𝑇 . The signals delivered by these parameters define the control signal vector 𝑢 𝑃 = [𝑢 1 , 𝑢 2 ] 𝑇 .
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 5 Figure 5. EM-ΣΔ architecture. In gray, we represent the electronic filter coefficients to be designed; in blue, the signals composing 𝑢 𝑃 ; and in red, the signals defining 𝑦 𝑃
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 67 Figure 6. Closed-loop transfer functions

  9 and 10 -, we can note a substantial reduction of the low-frequency components (up to 70 dB attenuation). The noise level is also reduced in almost all the frequency range, especially around 𝜔 𝑑 . The peak that appears at 𝜔 = 1 corresponds to the coupling force, which transfers part of the oscillations from the drive mode to the sense one (parasitic mechanical coupling).
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 89 Figure 8. Measures of the signal 𝑂𝑈𝑇 for the two approaches

Figure 10 .

 10 Figure 10. PSD of the measures of the signal 𝑂𝑈𝑇 for the two approaches. Zoom around 𝜔 𝑑

  1) is to choose the signals of interest and compute the closed-loop transfer functions. Then, the control specifications are formulated as closed-loop frequency constraints that express the desired closed-loop behavior. Finally, weighting functions are designed to enforce these frequency constraints. Here, we consider the general case with a 2DoF controller, defined as 𝐾 = [𝐾 1 , 𝐾 2 ]. For the 1DoF controller, consider the following results with 𝐾 2 = 0. We start by selecting as signals of interest the inputs 𝐹 𝑖𝑛 , 𝑛 and 𝑄 𝑒𝑟𝑟𝑜𝑟 , and the outputs 𝐹 𝑒𝑟𝑟𝑜𝑟 , 𝑦, 𝑢 and 𝑂𝑈𝑇. They define the input vector 𝑝 = [𝐹 𝑖𝑛 , 𝑛, 𝑄 𝑒𝑟𝑟𝑜𝑟 ] 𝑇 and the output vector 𝑞 = [𝐹 𝑒𝑟𝑟𝑜𝑟 , 𝑦, 𝑢, 𝑂𝑈𝑇] 𝑇 . Thus, the closed-loop transfer matrix 𝑇 𝑝→𝑞 is given by

		𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟
		𝑇 𝐹 𝑖𝑛 →𝑦	𝑇 𝑛→𝑦	𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑦
		𝑇 𝐹 𝑖𝑛 →𝑢	𝑇 𝑛→𝑢	𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑢
	(	𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇	𝑇 𝑛→𝑂𝑈𝑇	𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇

  Note that |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| = |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 (𝑗𝜔)|. In the case of 𝐾 2 = 0 (1DoF), |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| = |𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)|. Moreover, structurally, A similar reasoning is applied for the transfers to 𝑦. In the case of 𝐾 2 = 0 (1DoF), when (3) is ensured, |𝑇 𝐹 𝑖𝑛 →𝑦 (𝑗𝜔)| = |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑦 (𝑗𝜔)| ≈ 1/|𝐾 1 (𝑗𝜔)|. Since |𝐾 1 (𝑗𝜔)| is usually high in the range [𝜔 -; 𝜔 + ] (to ensure (3)), it minimizes the displacements of the proof mass in this frequency range. Now, if 𝐾 2 ≠ 0 (2DoF), and except for particular cases, the displacements of the proof mass are not necessarily minimized, even if (3) is satisfied. Let us now translate the control specifications of Sec. 2 into mathematical constraints on the closed-loop frequency responses, as follows. ∀𝜔, |𝑇 𝐹 𝑖𝑛 →𝑦 (𝑗𝜔)| ≤ 𝑘 1 , |𝑇 𝑛→𝑦 (𝑗𝜔)| ≤ 𝑘 2 and |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑦 (𝑗𝜔)| ≤ 𝑘 3 ,

	Hence, designing an adequate NTF does not automatically imply that the STF is adequate
	for the application.	
	Remark 3:	
	𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑠) + 𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇 (𝑠) = 1.	(4)
	[9]	

Then,

[START_REF] Raman | A Closed-Loop Digitally Controlled MEMS Gyroscope With Unconstrained Sigma-Delta Force-Feedback[END_REF] 

implies that the STF |𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇 (𝑗𝜔)| ≈ 1 for all 𝜔 ∈ [𝜔 -; 𝜔 + ]. Nevertheless, if 𝐾 2 ≠ 0 (2DoF), except for some particular cases, |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| ≠ |𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)|.  Minimization of the effects of 𝑄 𝑒𝑟𝑟𝑜𝑟 and 𝑛 on 𝑂𝑈𝑇: minimizing the effects of the quantization error and different noises 𝑛 on the signal 𝑂𝑈𝑇 corresponds to impose, ∀𝜔 ∈ [𝜔 -; 𝜔 + ], |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 (𝑗𝜔)| ≪ 1 and |𝑇 𝑛→𝑂𝑈𝑇 (𝑗𝜔)| ≪ 1. (5) Since |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑂𝑈𝑇 (𝑗𝜔)| = |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| and |𝑇 𝑛→𝑂𝑈𝑇 (𝑗𝜔)| = |𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)|, the above conditions are equivalent to ∀𝜔 ∈ [𝜔 -; 𝜔 + ], |𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| ≪ 1 and |𝑇 𝑛→𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| ≪ 1.

(6)

 Ensure that 𝑂𝑈𝑇 tracks the input signal 𝐹 𝑖𝑛 : to have 𝑂𝑈𝑇 = 𝐹 𝑖𝑛 , the transfer 𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇 must be equal to one. Note that 𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 + 𝑇 𝐹 𝑖𝑛 →𝑂𝑈𝑇 = 1. Then, with

∀𝜔 ≈ 𝜔 𝑥 , |𝑇 𝐹 𝑖𝑛 →𝐹 𝑒𝑟𝑟𝑜𝑟 (𝑗𝜔)| ≪ 1,

(7)

we ensure 𝑂𝑈𝑇 ≈ 𝐹 𝑖𝑛 , at least for the frequency range of interest [𝜔 -; 𝜔 + ].

 Displacements minimization: this specification corresponds to minimizing the magnitude of the transfers 𝑇 𝐹 𝑖𝑛 →𝑦 , 𝑇 𝑛→𝑦 , 𝑇 𝑄 𝑒𝑟𝑟𝑜𝑟 →𝑦 not only for [𝜔 -; 𝜔 + ] bur for all frequencies, that is,

  EMΣΔ controller is said to be unconstrained if it admits a state-space representation of the form 𝐾: { 𝑥K(𝑡) = 𝐴 𝐾 𝑥 𝐾 (𝑡) + 𝐵 𝐾 𝑦 𝑃 (𝑡) 𝑢 𝑃 (𝑡) = 𝐶 𝐾 𝑥 𝐾 (𝑡) + 𝐷 𝐾 𝑦 𝑃 (𝑡) , (12) where 𝑥 𝐾 (𝑡) ∈ ℝ 𝑛 𝐾 with 𝑛 𝐾 = 𝑛 𝑃 and 𝑛 𝑃 being the order of 𝐻 𝑔𝑦𝑟𝑜 plus the total order of all the weighting function\ns. The state-space matrices are real-valued and have adequate dimensions. They define any transfer function 𝐾(𝑠) of order 𝑛 𝐾 with 𝑛 𝑦 𝑃 inputs and 𝑛 𝑢 𝑃 outputs. That is, for the unconstrained case, the set 𝒦 is defined as 𝒦 = ℛ 𝑝 𝑛 𝑦 𝑃 ×𝑛 𝑢 𝑃 , where ℛ 𝑝 𝑛 𝑦 𝑃 ×𝑛 𝑢 𝑃 is the set of all rational proper transfer matrices of dimension 𝑛 𝑦 𝑃 × 𝑛 𝑢 𝑃 .

  𝑎 2 , 𝑎 2 ] , ∃ 𝑎 3 ∈ [𝑎 3 , 𝑎 3 ] , ∃ 𝑎 4 ∈ [𝑎 4 , 𝑎 4 ] , ∃ 𝑔 2 ∈ [𝑔 2 , 𝑔 2 ] , ∃ 𝑎 𝑓𝑏 ∈ [𝑎 𝑓𝑏 , 𝑎 𝑓𝑏 ] ,The notation (⋅) and (⋅) indicates the upper and lower bounds of (⋅), respectively. Finally, 𝑃 ̃ is defined as the transfer that maps the inputs 𝑝 = [𝐹 𝑖𝑛 , 𝑛, 𝑄 𝑒𝑟𝑟𝑜𝑟 ] 𝑇 and 𝑢 𝑃 into the outputs 𝑞 = [𝐹 𝑒𝑟𝑟𝑜𝑟 , 𝑦, 𝑢] 𝑇 and 𝑦 𝑃 .Note that the generalized plant 𝑃 ̃ is in discrete-time. Although it is possible to make the design in discrete-time, for frequency-domain design methods (as the 𝐻 ∞ synthesis), it is more convenient to use equivalent continuous-time models. The main reason is that in continuous-time, conventional frequency-domain techniques can be used. The equivalent continuous-time model is obtained through the bilinear (or Tustin) transform of 𝑃 ̃[START_REF] Åström | Computer-Controlled Systems Theory and Design[END_REF].

	𝒦 =	{	𝐾| ∃ 𝑎 2 ∈ [𝐾 = (	𝑎 2 𝑎 3 𝑎 4 0 0 0 𝑔 2 𝑎 𝑓𝑏	)	} .	(15)

Table 1 -Results for a set of six gyroscopes

 1 

	Parameter	SFNL (ppm)	RMS noise (°/𝑠)	ARW (°/√ℎ)	BI (°/ℎ)	SFOT (%)	BOT (°/𝑠)
	CL_old	259	0.035	0.148	0.317	0.032	0.013
	CL_new	150	0.020	0.097	0.302	0.029	0.010
	Improvement	32%	43%	34%	5%	10%	22%