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Introduction

A groupoid is a natural extension of a group, considered as a category: it is a category where each morphism is invertible. A groupoid with only one object is a group.

Mackey's theory of induced representations from a subgroup H of a group G to G itself, may be described in intrinsic, more geometric terms. The idea is to associate a representation of G not to a representation of a subgroup H of G but to a G-set X and a representation σ G,X of the so called action groupoid A(G, X), also denoted X G, associated to X.

Recall that the one dimensional characters of A(G, X) play a key role in the geometric construction of linear representations of G. Indeed, we can twist the natural representation of G in the function space L 2 (X) by those characters, to obtain multiplicity-free representations of G in many cases, even if the original action is not transitive.

We show below that in this way we can obtain a geometric construction of Gel'fand Models for symmetric groups and the projective general linear group of rank 2.

On the other hand, groupoids also play a significant role in group representation theory when we look at representations of a whole family of groups instead of just one. For instance, when we construct linear representations of the "field" of symmetric groups S n , each sitting on a set of size n, for all n. More precisely, we consider then the groupoid S whose objects are finite sets, and whose arrows are bijections among finite sets. We have a q-analogue of this, i.e. the linear groupoid GL(q) whose objects are finite dimensional vector spaces over F q and whose arrows are linear isomorphisms.

Induced representations: a geometric approach

Let G be a finite group. If G acts on a finite set X, we can construct the associated action groupoid A(G, X) in the following way:

-the objects of A(G, X) are the points of X.

-the arrows of A(G, X) are the triples (x, g, y) such that y = g • x, with the obvious composition.
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Given an action of a group G on a set X, the action groupoid A(G, X) = X G is closely related to the quotient set X/G (the set of G-orbits). But, instead of taking elements of X in the same G-orbit as being equal in X/G, in the action groupoid they are just isomorphic.

A representation of the groupoid A(G, X) is an action of G on a finite dimensional vector bundle p : W → X. A representation gives a functor σ from A(G, X) to the category of finite dimensional complex vector spaces such that σ(x) is the fiber W x of p at x and σ(x, g, y) : W x → W y is an isomorphism for each g ∈ G such that g • x = y. Now, to any representation (σ, W ) of A(G, X) we can associate the induced representation (ρ, V ) of σ to G, which we call the natural representation ρ of G associated to the G-set X twisted by σ, denoted Ind G A(X,G) (σ), defined as follows: (a) the space of ρ is the complex vector space V = L 2 W (X) of all sections of p;

(b) (ρ g f )(x) = σ(g -1 • x, g, x)[f (g -1 • x)] for all g ∈ G, x ∈ X, f ∈ V .
Proposition 2.1. With the above notations, if X = i∈I X i is the G-orbit decomposition of X and H i is the isotropy group of a chosen point x i ∈ X i for each i ∈ I, then we have

(ρ, V ) ∼ = i∈I Ind G H i (σ| H i ),
where σ| H i stands for the restriction of the representation σ to the isotropy group H i , defined by

σ| H i (h) := σ(x i , h, x i ) for h ∈ H i .
Notice that it follows from this proposition that the induced representation (ρ, V ) depends only on the restriction of the inducing character σ to the isotropy groups H i .

Gelfand models

A Gel'fand model for a finite group G is a complex linear representation M of G that contains each of its irreducible representations with multiplicity one. The representation M is called an involution model if there exists a set of representatives {ω i } of the distinct conjugacy classes of involutions in G and a set

{λ i : C G (ω i ) → C} of linear characters of the centralizers C G (ω i ) in G of the ω i , such that M i Ind G C G (ω i ) (λ i )
Klyachko [START_REF] Klyachko | Models for complex representations of the groups GL(n, q) and Weyl groups (Russian)[END_REF], Inglis, Richardson and Saxl [START_REF] Inglis | An explicit model for the complex representations of Sn[END_REF], Kodiyalam and Verma [START_REF] Kodiyalam | A natural representation model for symmetric groups[END_REF], Adin, Postnikov and Roichman [START_REF] Adin | Combinatorial Gel'fand models[END_REF] constructed involution models for the symmetric group. Baddeley classified which irreducible Weyl groups admit involution models: in particular only those of type D 2n (n > 1); F 4 , E 6 , E 7 and E 8 do not have involution models. Vinroot extended this classification to finite Coxeter groups, in particular showing that the Coxeter groups of type I 2 (n) = G 2 (n) (the dihedral groups) and H 3 do have involution models while the group H 4 does not.

Bump and Ginzburg introduced in [START_REF] Bump | Generalized Frobenius Schur numbers[END_REF] the more flexible notion of generalized involution model. Marberg proved [START_REF] Marberg | Automorphisms and generalized involution models of finite complex reflection groups[END_REF] that a finite complex reflection group has a generalized involution model if and only if each of its irreducible factors is one of the following: G(r, p, n) with gcd(p, n) = 1, G(r, p, 2) with r/p odd, or G 23 , the Coxeter group of type H 3 .

On the other hand, Garge and Oesterlé constructed in [START_REF] Garge | On Gelfand models for finite Coxeter groups[END_REF] for any finite group G with a faithful representation V , a representation which they called the polynomial model for G associated to V . Araujo and others have proved that the polynomial models for certain irreducible Weyl groups associated to their canonical representations are Gel'fand models. In [START_REF] Garge | On Gelfand models for finite Coxeter groups[END_REF] it is proved that a polynomial model for a finite Coxeter group G is a Gel'fand model if and only if G has no direct factor of the type D 2n , E 7 or E 8 .

Combining the above results of [START_REF] Marberg | Automorphisms and generalized involution models of finite complex reflection groups[END_REF] and [START_REF] Garge | On Gelfand models for finite Coxeter groups[END_REF] shows that -the groups F 4 , H 4 and E 6 (which in the Shephard-Todd classification are G 28 , G 30 and G 35 , respectively) do not have a generalized involution model, however they have a polynomial model which is a Gel'fand model; -the groups E 7 and E 8 (which in the Shephard-Todd classification are G 36 and G 37 , respectively) do not have a generalized involution model, have a polynomial model, but this polynomial model is not a Gel'fand model.

3.1.

A geometric Gelfand model for the symmetric group. Let G = S n be the symmetric group realized as the permutation group of {1, 2, . . . , n} and take for X the set of all involutions of G.

In order to illustrate the general picture, we start by the example of the group S 4 .

Example 3.1. Let G = S 4 . Let I denote the identity in G. We have

X = {I, (12) 
, ( 13), ( 14), ( 23), ( 24), ( 34), ( 12)(34), (13)(24), ( 14)(23)} .

Then |X| = 10 and G has three orbits in X, to wit, the orbit that is reduced to the identity I, the orbit consisting of all 6 transpositions (ij) and the orbit consisting of all 3 double transpositions (ij)(kl). Let σ = σ X,S 4 denote the one dimensional representation of A(X, G) defined by

σ(x, g) :=                    1 if x = I, for all g ∈ G; 1 if x = (ij)
with i < j and g(i) < g(j); -1 if x = (ij) with i < j and g(i) > g(j); 1 if x = (ij)(kl) with i < j, k < l and g(i) < g(j) and g(k) < g(l) or g(i) > g(j); and g(k) > g(l) -1 otherwise.

Then the isotropy group G I at I is G, the isotropy group G (12) at ( 12) is {I, (12), (34), [START_REF] Klyachko | Models for complex representations of the groups GL(n, q) and Weyl groups (Russian)[END_REF]

(34)} C 2 × C 2 , where C 2 Z/2Z
is the cyclic group of order 2, and the isotropy group G (12)(34) at (12)(34) is {I, (12), (34), (12)(34), ( 14)(23), (13)(24), ( 1324), ( 1423

)} (C 2 × C 2 ) C 2 .
Notice that these isotropy groups appear as automorphisms groups of the trees naturally associated to the given partitions. The restriction of the representation σ X,S 4 to G I is the unit character 1 of G, the restriction of σ X,S 4 to G [START_REF] Klyachko | Models for complex representations of the groups GL(n, q) and Weyl groups (Russian)[END_REF] is the tensor product sgn ⊗ 1 of the non trivial character sgn of C 2 and the trivial character 1 of C 2 , the restriction of σ X,S 4 to G (12)(34) is the restriction of the signature character sign of G to G (12)(34) . So we obtain that the representation (ρ, V ) of G induced from σ X,S 4 is isomorphic to

1 ⊕ Ind G C 2 ×C 2 (sgn ⊗ 1) ⊕ Ind G (C 2 ×C 2 ) C 2 (sign)
. Recall now that G has 5 irreducible representations, to wit:

-the unit representation 1; -the signature representation sign; -a 2-dimensional representation, that we denote by σ (2) ; -a 3-dimensional representation, denoted σ (3) , such that 1 ⊕ σ (3) τ , where τ stands for the natural (permutation) representation of G associated to its canonical action on a 4-point set; -the 3-dimensional representation, sign ⊗ σ (3) . It is easy to check that:

Ind G C 2 ×C 2 (sgn ⊗ 1) σ (3) ⊕ (sign ⊗ σ (3)
) and Ind G (C 2 ×C 2 ) C 2 (sign) sign ⊕ σ (2) . It follows that the induced representation (ρ, V ) is indeed a Gel'fand Model for G = S 4 .

We will now consider the case of G = S n with n arbitrary. For any positive integer t, we will denote by C 2 S t the wreath product of C 2 by S t , that is, the semidirect product (C 2 ) t S t , where the symmetric group S t acts on (C 2 ) t by permuting the t factors C 2 . In other words C 2 S t is the hyperoctahedral group W (B t ) (the Weyl group of type B t ).

For 0 ≤ t ≤ n/2 , let X t denote the conjugacy class of involutions of G that are product of t disjoint transpositions. We have

X = n/2 t=0 X t . Let x ∈ X t , with 0 ≤ t ≤ n/2 . The involution x fixes precisely f = n -2t points.
We write in the cycle notation:

x = (i 1 j 1 )(i 2 j 2 ) • • • (i t j t ),
where i k < j k for each k ∈ {1, 2, . . . , t}. Then the isotropy group G x = C G (x) at x is generated by permutations of following forms:

-(i k i k+1 )(j k j k+1 ), for 1 ≤ k ≤ t; -(i k j k ), for 1 ≤ k ≤ t;
-any permutation of S n which fixes the 2t points i 1 , j 1 , . . ., i t , j t , in other words, any permutation in S f . It follows that G x is isomorphic to the group W (B t ) × S f , where W (B t ) = C 2 S t is embedded in S n so that the subgroup (C 2 ) t is generated by the 2-cycles of x.

As in [START_REF] Adin | A Gel'fand model for wreath products[END_REF] and [START_REF] Marberg | Generalized involution models for wreath products[END_REF], we attach to each permutation g ∈ G its inversion set Inv(g) and the set Pair(g) of the 2-cycles in g, that is:

Inv(g) := {(i, j) : 1 ≤ i < j ≤ n, g(i) > g(j)} , Pair(g) := {(i, j) : 1 ≤ i < j ≤ n, g(i) = j, g(j) = i} .
Let x ∈ X and g ∈ G. We set Inv x (g) := Inv(g) ∩ Pair(x), and we will denote by inv x (g) the cardinality of the set Inv x (g). Definition 3.2. Let σ G,X : A(G, X) → C be the map defined by σ G,X (x, g) := (-1) invx(g) , for x ∈ X and g ∈ G.

Remark 3.3. Let x be a involution in S n which is the product of t disjoint transpositions. If we write x as x = (i

1 i 2 )(i 3 i 4 ) • • • (i 2t-1 i 2t ), where i 2j-1 < i 2j for each j = 1, 2, . . . , t. Then inv x (g) equals the cardinality of {j ∈ [1, t] : g(i 2j-1 ) > g(i 2j )} ,
for any g ∈ G. Hence the sign which occurs is the definition of σ G,X coincides with the sign which was introduced by Kodiyalam and Verma in [START_REF] Kodiyalam | A natural representation model for symmetric groups[END_REF]. It is also the sign which occurs in [START_REF] Adin | Combinatorial Gel'fand models[END_REF] and [START_REF] Marberg | Generalized involution models for wreath products[END_REF].

Lemma 3.4. The map σ G,X defines a one dimensional representation of A(X, G).

Proof. Let x 1 , x 2 ∈ X and let g 1 , g 2 ∈ G such that x 1 = g 2 •x 2 . Let P n := {(i, j) : 1 ≤ i < j ≤ n}.
For any subset Q of P n , we will denote by Q c its complement in P n . Let i and j two elements of {1, . . . , n}. We have

- (i, j) ∈ Inv x 2 (g 1 g 2 ) ∩ Inv(g 2 ) c
if and only if i < j and (g 2 (i), g 2 (j)) ∈ Inv x 1 (g 1 );

- (j, i) ∈ Inv x 2 (g 2 ) ∩ Inv(g 1 g 2 ) c
if and only if i > j and (g 2 (i), g 2 (j)) ∈ Inv x 1 (g 1 ).

It follows that inv

x 2 (g 1 g 2 ) ≡ inv x 2 (g 2 ) + inv x 1 (g 1 ) (mod 2). We obtain σ G,X (x 2 , g 2 ) • σ G,X (x 1 , g 1 ) = σ G,X (x 2 , g 1 g 2 ), that is, σ G,X is a representation of A(X, G).
There is a unique character sgn CD : W (B t ) → {±1} whose restriction to the normal subgroup (C 2 ) t of W (B t ) is the product of the sign characters of C 2 and that is trivial on the subgroup S t . The kernel of sgn CD is isomorphic to the Weyl group W (D t ). In the parametrization of the irreducible representations of W (B t ) by the pairs of partitions of t (see [START_REF] Lusztig | Irreducible representations of finite classical groups[END_REF]) the representation afforded by the character sgn CD corresponds to (∅, (t)).

Let x ∈ X. Recall that G x = W (B t ) × S f . The restriction of σ G,X to G x is the tensor product of sgn CD by the unit representation of S f :

(σ G,X ) |Gx = sgn CD ⊗ 1 S f .

By transitivity of induction, we get

Ind G Gx (σ G,X ) |Gx = Ind Sn S 2t ×S f (Ind S 2t ×S f Gx (sgn CD ⊗ 1 S f )) = Ind Sn S 2t ×S f Ind S 2t W (Bt) (sgn CD ) ⊗ 1 S f .
The induced representation Ind S 2t W (Bt) (sgn CD ) is the mutiplicity free sum of the irreducible characters of S 2t corresponding to partitions of 2t with even columns only (see, for instance, [15, Ch.I §8 and Ch. VII(2.4)]). By using the Littlewood-Richardson rule, it follows that Ind G Gx (σ G,X ) |Gx is the multiplicity free sum of all irreducible Specht modules indexed by partitions with exactly f odd columns. It follows that the induced representation (V, ρ) is indeed a Gel'fand Model for G = S n .

3.2.

A geometric Gel'fand Model for the group G = PGL 2 (q), q odd. In [START_REF] Bump | Generalized Frobenius Schur numbers[END_REF] a Gelfand Model for G = PGL(2, q) is constructed as a sum of three induced representations, taking advantage of the results of [START_REF] Soto-Andrade | Geometrical Gel'fand Models, Tensor Quotients and Weil Representations[END_REF]. More precisely, we have the natural action of G on the set X consisting of all symmetric matrices in G, which may be identified with non degenerate symmetric bilinear forms mod centre or non-degenerate quadratic forms mod centre on the finite plane over k = F q . This action has 3 orbits:

-the orbit O 1 of the split isotropic hyperbolic form H mod centre, given by (x, y) → xy; -the orbit O 2 of the non-split anisotropic normic form mod centre given by the norm N of the unique quadratic extension of k. -the orbit O 3 of the alternating form det mod centre.

The isotropy groups H 1 , H 2 and H 3 in G for these orbits are just the corresponding two projective similarity orthogonal groups and the projective similarity symplectic group; more precisely:

-H 1 is the normalizer of the split torus T 1 in G; -H 2 is the normalizer of the non-split torus T 2 in G; -H 3 is the whole group G.

Bump and Ginzburg make an ad hoc choice of characters ψ 1 , ψ 2 and ψ 3 to induce from H 1 , H 2 and H 3 :

-ψ 1 is the trivial character 1 for H 1 ; -ψ 2 is the order 2 character of H 2 that is trivial on the non-split torus -ψ 3 is the non unique trivial linear character of G, i. e. the " sign character" given by the determinant mod squares.

Theorem 1. A model M for G is given by M = Ind G H 1 ψ 1 ⊕ Ind G H 2 ψ 2 ⊕ Ind G H 3 ψ 3
Our viewpoint is to obtain the model M as a geometric induced representation from a " sign character" ε of the action groupoid A(X, G) naturally associated to the G-space X.

The sign character ε, which takes values ±1 only, is defined first on the holonomy (isotropy) groups G x associated to any quadratic form x ∈ X as follows: Definition 3.5. Let Isotr(x) denote the set of all isotropic 1-dimensional vector subspaces of x ∈ X. Then G x acts naturally on Isotr(x) and we define ε(g) := sign of the permutation of Isotr(x) defined by g ∈ G x .

Denote by ε i the restriction of ε to H i , for i = 1, 2, 3. Then

• ε 1 is the order 2 character of H 1 which is trivial on T 1 ; • ε 2 is the trivial character of H 2 ; • ε 3 is the sign character of G.
Indeed, the determinant mod squares character at g ∈ G may be obtained as well as the signature of the permutation induced by g on the set of all 1-dimensional subspaces of the finite plane (the isotropic lines for det mod centre).

Then for any extension ε of the character ε to the whole action groupoid A(X, G), we have Theorem 2. The Model M may be obtained as

M = Ind G A(X,G) (ε) Ind G H 1 ε 1 ⊕ Ind G H 2 ε 2 ⊕ Ind G H 3 ε 3 .
Recall that the induced representation Ind G A(X,G) (ε) depends only on ε. Notice also that we may extend ε to a full-fledged character of the action grupoid A(X, G), by choosing first a point x i in each orbit O i , then for each x ∈ O i , x = x i an element g x ∈ G such that g x • x i = x and assigning arbitrarily a non-zero value α x to each arrow (x i , g x , x) in A(X, G).

Gelfand-Graev representations as geometrically induced representations:

The case of GL 2 (q). To construct the classical Gel'fand-Graev representation of G = GL 2 (q) = GL 2 (F q ) as a geometrically induced representation, we consider first the G-set X consisting of all pairs (u, ω), where u is a non zero vector in k 2 and ω is a non zero 2-vector in 2 k 2 . The elements of X may be called Grassmann chains. The group G acts in a natural way on X.

So we have a G-set X and the associated action groupoid M = A(X, G).

We proceed now to define a linear character ψ of the groupoid M associated to any character ψ of the additive group of the finite field k = F q . Let ψ be a non trivial (complex) character of the additive group of the finite field k = F q . Choose arbitrarily, for each (u, ω) ∈ X, a vector

v ∈ k 2 , such that ω = u ∧ v.
Notice that v is well defined modulo the line < u > generated by u. So we are choosing in fact an element in the fiber k 2 / < u > above u. We have then a natural G-fiber bundle E with the set of all lines through the origin in the finite plane k 2 as basis.

Then, for (x, g, y) ∈ M , if we write

x = (u, ω) = (u, u ∧ v), y = (u , ω ) = (u , u ∧ v ), there is a unique b ∈ k such that g(v) = v + bu . Define ψ(x, g, y) = ψ(b)
with b as above.

Proposition 3.3.1. The mapping ψ just defined is a linear character of the groupoid M .

Proof. We have to check that ψ((x, g, y)(y, h, z)) = ψ(x, g, y) • ψ(y, h, z), i. e. ψ((x, h • g, z)) = ψ(x, g, y) • ψ(y, h, z).

Let us write

x = (u, ω), y = (u , ω ), (z = (u , ω ) and denote by v, v , v the chosen vectors such that

ω = u ∧ v, ω = u ∧ v , ω = u ∧ v . Then, g(v) = v +bu for a suitable b ∈ k, since g(u)∧g(v) = u ∧g(v) = u ∧v and h(v ) = v +b u for a suitable b ∈ k, since h(u ) ∧ h(v ) = u ∧ h(v ) = u ∧ v . But then (h • g)(v) = h(v + bu ) = h(v ) + bh(u ) = v + b u + bu = v + (b + b )u . Hence ψ((x, h • g, z)) = ψ(b + b ) = ψ(b) • ψ(b ) = ψ(x, g, y) • ψ(y, h, z).
Proposition 3.6. The classical Gelfand-Graev representation of G is isomorphic to the geometrically induced representation of G from the linear character ψ of the action groupoid A(X, G) as above.

3.4. Gelfand Models as top cohomology spaces, à la Solomon-Tits-Lehrer.

We also suspect that a Gelfand Model is quite often accessible to a cohomological construction à la Solomon-Tits (just like the Steinberg representation is). This is the case for the symmetry groups of regular polygons, for instance. In the simplest example, of G = GL 2 (q) for q = 2, where the geometry associated to the G-affine plane is just the geometry of the equilateral triangle, we see that a Gelfand Model for G may be obtained as H 1 (C) where C = {C n } n is the following cochain complex:

C n = L 2 (X n ), where X -1 is a point, X 0 is the set of vertices of the equilateral triangle, and X 1 is the set of oriented edges of the equilateral triangle, with the usual coboundary operators δ n : C n → C n+1 , given by (δ -1 λ)(x) = λ, for all x ∈ X 0 and λ ∈ L 2 (X 1 ) = C ; (δ 0 f )(x, y) = f (y) -f (x), for x, y ∈ X 0 , and δ 1 = 0.

So we may expect for more general groups G, to find a cochain complex C, naturally associated to some canonical geometric space X for G, whose top cohomology space (with complex coefficients) realizes the model M we are after. This geometric space X should be naturally endowed with a poset structure and the cohomology theory involved in our construction should be analogous to, but different from, the usual cohomology of posets [START_REF] Bouc | Homologie de certains ensembles ordonnés: Modules de Möbius[END_REF], the difference coming from the choice of the associated complex C, as in the very simple example above where C is not the cochain complex which gives the usual cohomology of the triangle.

Properties of Gelfand Models.

We state three properties that should be satisfied in many cases by Gel'fand Models. Property 1. M = L 2 (X) -L 2 (Y ) in the ring Green(G) of natural (permutation) representations of G, for suitable G-sets x and Y . Equivalently, M is an integer linear combination of natural representations. Property 2. M is a "twisted" L 2 (X), i.e. the induced representation from a suitable linear character of the isotropy group of a point in a transitive G-space X. Property 3. M may be realized as the top cohomology space of a G-poset complex associated to a suitable G-set X.

Positive results.

-Property 1 is satisfied for symmetric groups. It holds in fact already for the irreducible representations of the symmetric groups (see [START_REF] James | The representation theory of the symmetric group[END_REF], 2.3). -Property 1 is satisfied for GL n (q). This follows from [START_REF] Yáñez | A weakly geometrical Gelfand model for GL(n, q) and a realization of the Gelfand character of a finite group[END_REF] and [START_REF] Klyachko | Models for complex representations of the groups GL(n, q) and Weyl groups (Russian)[END_REF]. -Property 2 is satisfied for PGL 2 (q). -Property 3 is satisfied for S 3 .

Counterexamples.

(1) The quaternion group H = {±1, ±i, ±j, ±k} is the smallest case where Property 1 is not satisfied. It has 5 conjugacy classes, its Gelfand character takes values [ 6 0 0 2 0], it has a four 1-dimensional irreducible representations and one 2-dimensional irreducible representation that appears only in its regular representation among natural representations.

So M cannot be an integer linear combination of natural representations of H. (2) The group G(96) = smallgroup (96, 3) in the GAP Small Groups Library, of order 96, whose Gelfand character takes values [30 2 -2 6 6 2 2 2] on its 8 conjugacy classes, is a counterexample to the non-negativity of the Gelfand Character. This group, which is in fact isomorphic to the semidirect product ((C 2 × C 4 ) C 4 ) C 3 is also a counterexample to Property 1. Indeed, it may be checked by SAGE that no integer linear combination of its permutation characters can afford its Gel'fand character. (3) The binary icosahedral group G = SL 2 (5) as a counter example to Property 1.

The list of the dimensions of the irreducible representations of G is : 1 (unit representation), 2, 2 (half dimensional cuspidal representations), 3, 3 (half dimensional principal series representations), 4, 4 (cuspidal representations), 5 (Steinberg representation), 6 (principal series representation).

Then dim M = 30. We give below the list of the natural representations of G, ordered by decreasing dimension, described by the multiplicities in their decomposition into irreducibles, in the same order as in our list above, followed by their dimensions. 6 [1 0 0 0 0 1 0 0 0] 5 Notice that the natural representation of dimension 20 = 25 2 -5 is afforded by the (double cover) of the finite analogue of Poincaré's half plane over F 5 , endowed by the homographic action of G, which is not multiplicity free, contrary to the case of PGL 2 (5)). Clearly M cannot be obtained as a linear integer combination of these natural representations.
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